
MCRapper: Monte-Carlo Rademacher Averages
for Poset Families and Approximate Pattern Mining

Leonardo Pellegrina
Dept. of Information

Engineering
Università di Padova

Padova, Italy
pellegri@dei.unipd.it

Cyrus Cousins
Dept. of Computer Science

Brown University
Providence, RI, USA

ccousins@cs.brown.edu

Fabio Vandin
Dept. of Information

Engineering
Università di Padova

Padova, Italy
fabio.vandin@unipd.it

Matteo Riondato
Dept. of Computer Science

Amherst College
Amherst, MA, USA

mriondato@amherst.edu

“I’m an MC still as honest” – Eminem, Rap God

ABSTRACT

We presentMCRapper, an algorithm for efficient computation of
Monte-Carlo Empirical Rademacher Averages (MCERA) for families
of functions exhibiting poset (e.g., lattice) structure, such as those
that arise in many pattern mining tasks. The MCERA allows us to
compute upper bounds to the maximum deviation of sample means
from their expectations, thus it can be used to find both statistically-
significant functions (i.e., patterns) when the available data is seen
as a sample from an unknown distribution, and approximations of
collections of high-expectation functions (e.g., frequent patterns)
when the available data is a small sample from a large dataset.
This feature is a strong improvement over previously proposed
solutions that could only achieve one of the two.MCRapper uses
upper bounds to the discrepancy of the functions to efficiently
explore and prune the search space, a technique borrowed from
pattern mining itself. To show the practical use of MCRapper,
we employ it to develop an algorithm TFP-R for the task of True
Frequent Pattern (TFP) mining. TFP-R gives guarantees on the
probability of including any false positives (precision) and exhibits
higher statistical power (recall) than existing methods offering the
same guarantees. We evaluateMCRapper and TFP-R and show that
they outperform the state-of-the-art for their respective tasks.

CCS CONCEPTS

• Information systems→Datamining; •Mathematics of com-

puting→ Probabilistic algorithms; • Theory of computation

→ Sketching and sampling.

ACM Reference Format:

Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato.
2020. MCRapper: Monte-Carlo Rademacher Averages for Poset Families
and Approximate Pattern Mining. In Proceedings of the 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’20), August
23–27, 2020, Virtual Event, CA, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3394486.3403267

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’20),
August 23–27, 2020, Virtual Event, CA, USA, https://doi.org/10.1145/3394486.3403267.

1 INTRODUCTION

Pattern mining is a key sub-area of knowledge discovery from
data, with a large number of variants (from itemsets mining [1] to
subgroup discovery [13], to sequential patterns [2], to graphlets [3])
tailored to applications ranging from market basket analysis to
spam detection to recommendation systems. Ingenuous algorithms
have been proposed over the years, and pattern mining is both
extremely used in practice and a very vibrant area of research.

In this work we are interested in the analysis of samples for
pattern mining. There are two meanings of “sample” in this context,
but, as we now argue, they are really two sides of the same coin,
and our methods work for both sides.

The first meaning is sample as a small random sample of a large
dataset: since mining patterns becomes more expensive as the
dataset grows, it is reasonable to mine only a small random sam-
ple that fits into the main memory of the machine. Recently, this
meaning of sample as “sample-of-the-dataset” has been used also
to enable interactive data exploration using progressive algorithms
for pattern mining [22]. The patterns obtained from the sample
are an approximation of the exact collection, due to the noise in-
troduced by the sampling process. To obtain desirable probabilistic
guarantees on the quality of the approximation, one must study
the trade-off between the size of the sample and the quality of the
approximation. Many works have progressively obtained better
characterizations of the trade-off using advanced probabilistic con-
cepts [7, 17, 18, 20, 22, 26]. Recent methods [17, 18, 20, 22] use
VC-dimension, pseudodimension, and Rademacher averages [4, 14],
key concepts from statistical learning theory [28] (see also Sect. 2
and Sect. 3.2), because they allow to obtain uniform (i.e., simultane-
ous) probabilistic guarantees on the deviations of all sample means
(e.g., sample frequencies, or other measure of interestingness, of all
patterns) from their expectations (the exact interestingness of the
patterns in the dataset).

The second meaning is sample as a sample from an unknown data
generating distribution: the whole dataset is seen as a collection of
samples from an unknown distribution, and the goal of mining pat-
terns from the available dataset is to gain approximate information
(or better, discover knowledge) about the distribution. This area is
known as statistically-sound pattern discovery [11], and there are
many different flavors of it, from significant pattern mining [25]
from transactional datasets [12, 15], sequences [27], or graphs [24],
to true frequent itemset mining [19], to, at least in part, contrast

https://doi.org/10.1145/3394486.3403267
https://doi.org/10.1145/3394486.3403267

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

pattern mining [5]. Many works in this area also use concepts from
statistical learning theory such as empirical VC-dimension [19]
or Rademacher averages [15], because, once again, these concepts
allow to get very sharp bounds on the maximum difference between
the observed interestingness on the sample and the unknown in-
terestingness according to the distribution.

The two meanings of “sample” are really two sides of the same
coin, because also in the first case the goal is to approximate an
unknown distribution from a sample, thus falling back into the
second case. Despite this similarity, previous contributions have
been extremely point-of-view-specific and pattern-specific. In part,
these limitations are due to the techniques used to study the trade-
off between sample size and quality of the approximation obtained
from the sample. Our work instead proposes a unifying solution for
mining approximate collections of patterns from samples, while
giving guarantees on the quality of the approximation: our proposed
method can easily be adapted to approximate collections of frequent
itemsets, frequent sequences, true frequent patterns, significant
patterns, and many other tasks, even outside of pattern mining.

At the core of our approach is the 𝑛-Samples Monte-Carlo (Em-
pirical) Rademacher Average (𝑛-MCERA) [4] (see (4)), which has
the flexibility and the power needed to achieve our goals, as it
gives much sharper bounds to the deviation than other approaches.
The challenge in using the 𝑛-MCERA, like other quantities from
statistical learning theory, is how to compute it efficiently.

Contributions. We present MCRapper, an algorithm for the fast
computation of the 𝑛-MCERA of families of functions with a poset
structure, which often arise in pattern mining tasks (Sect. 3.1).
• MCRapper is the first algorithm to compute the 𝑛-MCERA effi-
ciently. It achieves this goal by using sharp upper bounds to the
discrepancy of each function in the family (Sect. 4.1) to quickly
prune large parts of the function search space during the ex-
ploration necessary to compute the 𝑛-MCERA, in a branch-and-
bound fashion. We also develop a novel sharper upper bound to
the supremum deviation using the 1-MCERA (Thm. 4.6). It holds
for any family of functions, and is of independent interest.
• To showcase the practical strength of MCRapper, we develop
TFP-R (Sect. 5), a novel algorithm for the extraction of the True
Frequent Patterns (TFP) [19]. TFP-R gives probabilistic guaran-
tees on the quality of its output: with probability at least 1 − 𝛿
(over the choice of the sample and the randomness used in the
algorithm), for user-supplied 𝛿 ∈ (0, 1), the output is guaran-
teed to not contain any false positives. That is, TFP-R controls
the Family-Wise Error Rate (FWER) at level 𝛿 while achieving
high statistical power, thanks to the use of the 𝑛-MCERA and
of novel variance-aware tail bounds (Thm. 3.2). We also discuss
other applications of MCRapper, to remark on its flexibility as a
general-purpose algorithm.
• We conduct an extensive experimental evaluation of MCRapper
and TFP-R on real datasets (Sect. 6), and compare their perfor-
mance with that of state-of-the-art algorithms for their respec-
tive tasks. MCRapper, thanks to the 𝑛-MCERA, computes much
sharper (i.e, lower) upper bounds to the supremum deviation
than algorithms using the looser Massart’s lemma [23, Lemma
26.8]. TFP-R extracts many more TFPs (i.e., has higher statistical
power) than existing algorithms with the same guarantees.

2 RELATEDWORK

Our work applies to both the “small-random-sample-from-large-
dataset” and the “dataset-as-a-sample” settings, so we now discuss
the relationship of our work to prior art in both settings. We do
not study the important but different task of output sampling in
pattern mining [6, 9]. We focus on works that use concepts from
statistical learning theory: these are the most related to our work,
and most often the state of the art in their areas. More details are
available in surveys [11, 17].

The idea of mining a small random sample of a large dataset
to speed up the pattern extraction step was proposed for the case
of itemsets by Toivonen [26] shortly after the first algorithm for
the task had been introduced. The trade-off between the sample
size and the quality of the approximation obtained from the sample
has been progressively better characterized [7, 17, 18], with large
improvements due to the use of concepts from statistical learn-
ing theory. Riondato and Upfal [17] study the VC-dimension of
the itemsets mining task, which results in a worst-case dataset-
dependent but sample- and distribution-agnostic characterization
of the trade-off. The major advantage of using Rademacher aver-
ages [14], as we do inMCRapper is that the characterization is now
sample-and-distribution-dependent, which gives much better upper
bounds to the maximum deviation of sample means from their
expectations. Rademacher averages were also used by Riondato
and Upfal [18], but they used worst-case upper bounds (based on
Massart’s lemma [23, Lemma 26.2]) to the empirical Rademacher
average of the task, resulting in excessively large bounds. MCRap-
per instead computes the exact 𝑛-MCERA of the family of interest
on the observed sample, without having to consider the worst case.
For other kinds of patterns, Riondato and Vandin [20] studied the
pseudodimension of subgroups, while Servan-Schreiber et al. [22]
and Santoro et al. [21] considered the (empirical) VC-dimension
and Rademacher averages for sequential patterns.MCRapper can
be applied in all these cases, and obtains better bounds because it
uses the sample-and-distribution-dependent 𝑛-MCERA, rather than
a worst case dataset-dependent bound.

Significant pattern mining considers the dataset as a sample
from an unknown distribution. Many variants and algorithms are
described in the survey by Hämäläinen and Webb [11]. We discuss
only the two most related to our work. Riondato and Vandin [19]
introduce the problem of finding the true frequent itemsets, i.e., the
itemsets that are frequent w.r.t. the unknown distribution. They
propose a method based on empirical VC-dimension to compute the
frequency threshold to use to obtain a collection of true frequent
patterns with no false positives (see also Sect. 5). Our algorithm
TFP-R uses the 𝑛-MCERA, and as we show in Sect. 6, it greatly
outperforms the state-of-the-art (a modified version of the algo-
rithm by Riondato and Upfal [18] for approximate frequent itemsets
mining). Pellegrina et al. [15] use empirical Rademacher averages
in their work for significant pattern mining. As their work uses the
bound by Riondato and Upfal [18], the same comments about the
𝑛-MCERA being a superior approach hold.

Our approach to bounding the supremum deviation by comput-
ing the𝑛-MCERAwith efficient search space exploration techniques
is novel, not just in knowledge discovery, as the 𝑛-MCERA has re-
ceived scant attention. De Stefani and Upfal [8] use it to control the

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

generalization error in a sequential and adaptive setting, but do not
discuss efficient computation. We believe that the lack of attention
to the 𝑛-MCERA can be be explained by the fact that there were no
efficient algorithms for it, a gap now filled byMCRapper.

3 PRELIMINARIES

We now define the most important concepts and results that we use
throughout this work. Let F be a class of real valued functions from
a domain X to the interval [𝑎, 𝑏] ⊂ R. We use 𝑐 to denote |𝑏 − 𝑎 |
and 𝑧 to denote max{|𝑎 |, |𝑏 |}. In this work, we focus on a specific
class of families (see Sect. 3.1). In pattern mining from transactional
datasets,X is the set of all possible transactions (or, e.g., sequences).
Let 𝜇 be an unknown probability distribution overX and the sample
S = {𝑠1, . . . , 𝑠𝑚} be a bag of𝑚 i.i.d. random samples from X drawn
according to 𝜇. We discussed in Sect. 1 how in the pattern mining
case, the samplemay either be thewhole dataset (sampled according
to an unknown distribution) or a random sample of a large dataset
(more details in Sect. 3.1). For each 𝑓 ∈ F , we define its empirical
sample average (or sample mean) ÊS [𝑓] on S and its expectation
E[𝑓] respectively as

Ê
S
[𝑓] � 1

𝑚

∑
𝑠𝑖 ∈S

𝑓 (𝑠𝑖) and E[𝑓] � E
𝜇

1
𝑚

∑
𝑠𝑖 ∈S

𝑓 (𝑠𝑖)
 .

In the pattern mining case, the sample mean is the observed in-
terestingness of a pattern, e.g., its frequency (but other measures
of interestingness can be modeled as above, as discussed for sub-
groups by Riondato and Vandin [20]), while the expectation is the
unknown exact interestingness that we are interested in approxi-
mating, that is, either in the large datasets or w.r.t. the unknown
data generating distribution. We are interested in developing tight
and fast-to-compute upper bounds to the supremum deviation (SD)
D(F ,S, 𝜇) of F on S between the empirical sample average and
the expectation simultaneously for all 𝑓 ∈ F , defined as

D(F ,S, 𝜇) = sup
𝑓 ∈F

����ÊS[𝑓] − E𝜇 [𝑓]
���� . (1)

The supremum deviation allows to quantify how good the estimates
obtained from the samples are. Because 𝜇 is unknown, it is not
possible to compute D(F ,S, 𝜇) exactly. We introduce concepts
such as Monte-Carlo Rademacher Average and results to compute
such bounds in Sect. 3.2, but first we elaborate on the specific class
of families that we are interested in.

3.1 Poset families and patterns

A partially-ordered set, or poset is a pair (𝐴, ⪯) where𝐴 is a set and
⪯ is a binary relation between elements of 𝐴 that is reflexive, anti-
symmetric, and transitive. Examples of posets include the𝐴 = N and
the obvious “less-than-or-equal-to” (≤) relation, and the powerset
of a set of elements and the “subset-or-equal” (⊆) relation. For any
element 𝑦 ∈ 𝐴, we call an element𝑤 ∈ 𝐴,𝑤 ≠ 𝑦 a descendant of 𝑦
(and call 𝑦 an ancestor of 𝑤) if 𝑦 ⪯ 𝑤 . Additionally, if 𝑦 ⪯ 𝑤 and
there is no 𝑞 ∈ 𝐴, 𝑞 ≠ 𝑦, 𝑞 ≠ 𝑤 such that 𝑦 ⪯ 𝑞 ⪯ 𝑤 , then we say
that𝑤 is a child of 𝑦 and that 𝑦 is a parent of𝑤 . For example, the
set {0, 2} is a parent of the set {0, 2, 5} and an ancestor of the set
{0, 1, 2, 7}, when considering 𝐴 to be all possible subsets of integers
and the ⊆ relation.

In this work we are interested in posets where 𝐴 is a family F
of functions as in Sect. 3.2, and the relation ⪯ is the following: for
any 𝑓 , 𝑔 ∈ F

𝑓 ⪯ 𝑔 iff

{
𝑓 (𝑥) ≥ 𝑔(𝑥) for every 𝑥 ∈ X s.t. 𝑓 (𝑥) ≥ 0
𝑓 (𝑥) ≤ 𝑔(𝑥) for every 𝑥 ∈ X s.t. 𝑓 (𝑥) < 0

. (2)

The very general but a bit complicated requirement often collapses
to much simpler ones as we discuss below. We aim for generality, as
our goal is to develop a unifying approach for many pattern mining
tasks, for both meanings of “sample”, as discussed in Sect. 1. For
now, consider for example that requiring |𝑓 (𝑥) | ≥ |𝑔(𝑥) | for every
𝑥 ∈ X is a specialization of the above more general requirement. We
assume to have access to a blackbox function children that, given
any function 𝑓 ∈ F , returns the list of children of 𝑓 according to
⪯, and to a blackbox function minimals that, given F , returns the
minimal elements w.r.t. ⪯, i.e., all the functions 𝑓 ∈ F without any
parents. We refer to families that satisfy these conditions as poset
families, even if the conditions are more about the relation ⪯ than
about the family. We now discuss how poset families arise in many
pattern mining tasks.

In pattern mining, it is assumed to have a language L containing
the patterns of interest. For example, in itemsets mining [1], L
is the set of all possible itemsets, i.e., all non-empty subsets of an
alphabet I of items, while in sequential pattern mining [2], L is
the set of sequences, and in subgroup discovery [13], L is set by
the user as the set of patterns of interest. In all these cases, for each
pattern 𝑃 ∈ L, it is possible to define a function 𝑓𝑃 from the domain
X, which is the set of all possible transactions, i.e., elementary
components of the dataset or of the sample, to an appropriate co-
domain [𝑎, 𝑏], such that 𝑓𝑃 (𝑥) denotes the “value” of the pattern
𝑃 on the transaction 𝑥 . For example, for itemsets mining, X is all
the subsets of I and 𝑓𝑃 maps X to {0, 1} so that 𝑓𝑃 (𝑥) = 1 iff 𝑃 ⊆ 𝑥

and 0 otherwise. A consequence of this definition is that ÊS [𝑓𝑃]
is the frequency of 𝑃 in S, i.e., the fraction of transaction of S that
contain the pattern 𝑃 . A more complex (due to the nature of the
patterns) but similar definition would hold for sequential patterns.
For the case of high-utility itemset mining [10], the value of 𝑓𝑃 (𝑥)
would be the utility of 𝑃 in the transaction 𝑥 . The family F is the
set of the functions 𝑓𝑃 for every pattern 𝑃 ∈ L. Similar reasoning
also applies to patterns on graphs, such as graphlets [3].

Now that we have defined the set that we are interested in, let’s
comment on the relation ⪯ that, together with the set, forms the
poset. In the itemsets case, for any two patterns 𝑃 ′ and 𝑃 ′′ ∈ L,
i.e., for any two functions 𝑓 = 𝑓𝑃 ′ and 𝑔 = 𝑓𝑃 ′′ ∈ F , it holds 𝑓 ⪯ 𝑔

iff 𝑃 ′ ⊆ 𝑃 ′′. For sequences, the subsequence relation ⊑ defines ⪯
instead. In all pattern mining tasks, the only minimal element of
F w.r.t. ⪯ is the empty itemset (or sequence) ∅. Our assumption to
have access to the blackboxes children and minimals is therefore
very reasonable, because computing these collections is extremely
straightforward in all the pattern mining cases we just mentioned
and many others.

3.2 Rademacher Averages

Here we present Rademacher averages [4, 14] and related results at
the core of statistical learning theory [28]. Our presentation uses
the most recent and sharper results, and we also introduce new

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

results (Thm. 3.2, and later Thm. 4.6) that may be of independent
interest. For an introduction to statistical learning theory and more
details about Rademacher averages, we refer the interested reader to
the textbook by Shalev-Shwartz and Ben-David [23]. In this section
we consider a generic family F , not necessarily a poset family.

A key quantity to study the supremum deviation (SD) from (1) is
the empirical Rademacher average (ERA) R̂ (F ,S) of F on S [4, 14],
defined as follows. Let 𝝈 = ⟨𝜎1, . . . , 𝜎𝑚⟩ be a collection of𝑚 i.i.d.
Rademacher random variables, i.e., each taking value in {−1, 1}
with equal probability. The ERA of F on S is the quantity

R̂ (F ,S) � E
𝝈

[
sup
𝑓 ∈F

1
𝑚

𝑚∑
𝑖=1

𝜎𝑖 𝑓 (𝑠𝑖)
]

. (3)

Computing the ERA R̂ (F ,S) exactly is often intractable, due to the
expectation over 2𝑚 possible assignments for𝝈 , and the need to com-
pute a supremum for each of these assignments, which precludes
many standard techniques for computing expectations. Bounds
to the SD are then obtained through efficiently-computable up-
per bounds to the ERA. Massart’s lemma [23, Lemma 26.2] gives
a deterministic upper bound to the ERA that is often very loose.
Monte-Carlo estimation allows to obtain an often sharper proba-
bilistic upper bound to the ERA. For 𝑛 ≥ 1, let 𝝈 ∈ {−1, 1}𝑛×𝑚
be a 𝑛 ×𝑚 matrix of i.i.d. Rademacher random variables. The 𝑛-
Samples Monte-Carlo Empirical Rademacher Average (𝑛-MCERA)
R̂𝑛𝑚 (F ,S,𝝈) of F on S using 𝝈 is [4]

R̂𝑛𝑚 (F ,S,𝝈) �
1
𝑛

𝑛∑
𝑗=1

sup
𝑓 ∈F

1
𝑚

∑
𝑠𝑖 ∈S

𝝈 𝑗,𝑖 𝑓 (𝑠𝑖) . (4)

The 𝑛-MCERA allows to obtain probabilistic upper bounds to the
SD as follows (proof in App. A.1). In Sect. 4.3 we show a novel
improved bound for the special case 𝑛 = 1 (Thm. 4.6).

Theorem 3.1. Let 𝜂 ∈ (0, 1). For ease of notation let

R̃ � R̂𝑛𝑚 (F ,S,𝝈) + 2𝑧

√
ln 4

𝜂

2𝑛𝑚
. (5)

With probability at least 1 − 𝜂 over the choice of S and 𝝈 , it holds

D(F ,S, 𝜇) ≤ 2R̃+

√
𝑐 (4𝑚R̃ + 𝑐 ln 4

𝜂) ln
4
𝜂

𝑚
+
𝑐 ln 4

𝜂

𝑚
+𝑐

√
ln 4

𝜂

2𝑚
. (6)

Sharper upper bounds to D(F ,S, 𝜇) can be obtained with the
𝑛-MCERA when more information about F is available. The proof
is in App. A.1. We use this result for a specific pattern mining task
in Sect. 5.

Theorem 3.2. Let 𝑣 be an upper bound to the variance of every
function in F , and let 𝜂 ∈ (0, 1). Define the following quantities

𝜌 � R𝑛𝑚 (F ,S,𝝈) + 2𝑧

√
ln 4

𝜂

2𝑛𝑚
, (7)

𝑟 � 𝜌 + 1
2𝑚

©«
√
𝑐

(
4𝑚𝜌 + 𝑐 ln

4
𝜂

)
ln

4
𝜂
+ 𝑐 ln

4
𝜂

ª®¬ ,
𝜀 � 2𝑟 +

√
2 ln 4

𝜂 (𝑣 + 8𝑐𝑟)
𝑚

+
2𝑐 ln 4

𝜂

3𝑚
. (8)

Then, with probability at least 1 − 𝜂 over the choice of S and 𝝈 , it
holds

D(F ,S, 𝜇) ≤ 𝜀 .

Due to the dependency on 𝑧 in Thms. 3.1 and 3.2, it is often
convenient to use R̂𝑛𝑚 (F − 𝑐

2 ,S,𝝈) in place of R̂𝑛𝑚 (F ,S,𝝈) in the
above theorems, where F − 𝑐

2 denotes the range-centralized family
of functions obtained by shifting every function in F by −𝑐2 . The re-
sults still hold for D(F ,S, 𝜇) because the SD is invariant to shifting,
but the bounds to the SD usually improve since the corresponding
𝑧 for the range-centralized family is smaller.

4 MCRAPPER

We now describe and analyze our algorithm MCRapper to effi-
ciently compute the 𝑛-MCERA (see (4)) for a family F with the
binary relation ⪯ defined in (2) and the blackbox functions children
and minimals described in Sect. 3.1.

4.1 Discrepancy bounds

For 𝑗 ∈ {1, . . . , 𝑛}, we denote as the 𝑗-discrepancy Δ 𝑗 (𝑓) of 𝑓 ∈ F
on S w.r.t. 𝝈 the quantity

Δ 𝑗 (𝑓) �
∑
𝑠𝑖 ∈S

𝝈 𝑗,𝑖 𝑓 (𝑠𝑖) .

The 𝑗-discrepancy is not an anti-monotonic function, in the sense
that it does not necessarily hold that Δ 𝑗 (𝑓) ≥ Δ 𝑗 (𝑔) for every
descendant 𝑔 of 𝑓 ∈ F . Clearly, it holds

R̂𝑛𝑚 (F ,S,𝝈) =
1
𝑛𝑚

𝑛∑
𝑗=1

sup
𝑓 ∈F

Δ 𝑗 (𝑓) . (9)

A naïve computation of the 𝑛-MCERA would require enumerating
all the functions in F and computing their 𝑗-discrepancies, 1 ≤ 𝑗 ≤
𝑛, in order to find each of the 𝑛 suprema. We now present novel
easy-to-compute upper bounds Ψ̃(𝑓) and Ψ𝑗 (𝑓) to Δ 𝑗 (𝑓) such that
Ψ̃(𝑓) ≥ Δ 𝑗 (𝑔) and Ψ𝑗 (𝑓) ≥ Δ 𝑗 (𝑔) for every 𝑔 ∈ d(𝑓), where d(𝑓)
denote the set of the descendants of 𝑓 w.r.t. ⪯. This key property
(which is a generalization of anti-monotonicity to posets) allows us
to derive efficient algorithms for computing the 𝑛-MCERA exactly
without enumerating all the functions in F . Such algorithms take
a branch-and-bound approach using the upper bounds to Δ 𝑗 (𝑓) to
prune large portions of the search space (see Sect. 4.2).

For every 𝑗 ∈ {1, . . . , 𝑛} and 𝑖 ∈ {1, . . . ,𝑚}, let
𝝈+𝑗,𝑖 � 1(𝝈 𝑗,𝑖 = 1), and 𝝈−𝑗,𝑖 � 1(𝝈 𝑗,𝑖 = −1)

and for every 𝑓 ∈ 𝐹 and 𝑥 ∈ X, define the functions
𝑓 + (𝑥) � 𝑓 (𝑥)1(𝑓 (𝑥) ≥ 0), and 𝑓 − (𝑥) � 𝑓 (𝑥)1(𝑓 (𝑥) < 0) .

It holds 𝑓 + (𝑥) ≥ 0 and 𝑓 − (𝑥) ≤ 0 for every 𝑓 ∈ F and 𝑥 ∈ X. For
every 𝑗 ∈ {1, . . . , 𝑛} and 𝑓 ∈ F , define

Ψ̃(𝑓) �
∑
𝑠𝑖 ∈S
|𝑓 (𝑠𝑖) | and

Ψ𝑗 (𝑓) �
∑
𝑠𝑖 ∈S

𝝈+𝑗,𝑖 𝑓
+ (𝑠𝑖) −

∑
𝑠𝑖 ∈S

𝝈−𝑗,𝑖 𝑓
− (𝑠𝑖) . (10)

Computationally, these quantities are extremely straightforward
to obtain. Both Ψ̃(𝑓) and Ψ𝑗 (𝑓) are upper bounds to Δ 𝑗 (𝑓) and to
Δ 𝑗 (𝑔) for all 𝑔 ∈ d(𝑓) (proof in App. A.1).

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

Theorem 4.1. For any 𝑓 ∈ F and 𝑗 ∈ {1, . . . , 𝑛}, it holds

max
{
Δ 𝑗 (𝑔) : 𝑔 ∈ d(𝑓) ∪ {𝑓 }

}
≤ Ψ𝑗 (𝑓) ≤ Ψ̃(𝑓) .

The bounds we derived in this section are deterministic. An
interesting direction for future research is how to obtain sharper
probabilistic bounds.

4.2 Algorithms

We now use the discrepancy bounds Ψ̃(·) and Ψ· (·) from Sect. 4.1
in our algorithmMCRapper for computing the exact 𝑛-MCERA. As
the real problem is usually not to only compute the 𝑛-MCERA but
to actually compute an upper bound to the SD, our description of
MCRapper includes this final step, this also enables fair comparison
with existing algorithms that use deterministic bounds to the ERA
to compute an upper bound to the SD (see also Sect. 6).

MCRapper offers probabilistic guarantees on the quality of the
bound it computes (proof deferred to after the presentation).

Theorem 4.2. Let 𝛿 ∈ (0, 1). With probability at least 1 − 𝛿 over
the choice of S and of 𝝈 , the value 𝜀 returned by MCRapper is such
that D(F ,S, 𝜇) ≤ 𝜀.

The pseudocode of MCRapper is presented in Alg. 1. The division
in functions is useful for reusing parts of the algorithm in later
sections (e.g., Alg. 3). After having sampled the 𝑛 ×𝑚 matrix of
i.i.d. Rademacher random variables (line 1), the algorithm calls the
function getSupDevBound with appropriate parameters, which in
turn calls the function getNMCERA, the real heart of the algorithm.
This function computes the 𝑛-MCERA R̂𝑛𝑚 (F ,S,𝝈) by exploring
and pruning the search space (i.e., F) in according to the order of
the elements in the priority queue 𝑄 (line 8). One possibility is to
explore the space in Breadth-First-Search order (so 𝑄 is just a FIFO
queue), while another is to use the upper bound Ψ̃(𝑓) as the priority,
with the top element in the queue being the one with maximum
priority among those in the queue. Other orders are possible, but
we assume that the order is such that all parents of a function
are explored before the function, which is reasonable to ensure
maximum pruning, and is satisfied by the two mentioned orders.
We assume that the priority queue also has a method delete(𝑒)
to delete an element 𝑒 in the queue. This requirement could be
avoided with some additional book-keeping, but it simplifies the
presentation of the algorithm.

The algorithm keeps in the quantities 𝜈 𝑗 , 𝑗 ∈ {1, . . . , 𝑛}, the cur-
rently best available lower bound to the quantity sup𝑓 ∈F Δ 𝑗 (𝑓)
(see (9)), which initially are all −𝑧𝑚 (the lowest possible value of a
discrepancy).MCRapper also maintains a dictionary J (line 10),
initially empty, whose keys will be elements of F and the values
are subsets of {1, . . . , 𝑛}. The value associated to a key 𝑓 in the
dictionary is a superset of the set of values 𝑗 ∈ {1, . . . , 𝑛} for which
Ψ̃(𝑓) ≥ 𝜈𝑖 , i.e., for which 𝑓 or one of its descendants may be the
function attaining the supremum 𝑗-discrepancy among all the func-
tions in F (see (9)). A function and all its descendants are pruned
when this set is the empty set. The set of keys of the dictionary J
is, at all times, the set of all and only the functions in F that have
ever been added to 𝑄 . The last data structure is the set 𝐻 (line 11),
initially empty, which will contain pruned elements of F , in order
to avoid visiting either them or their descendants.

Algorithm 1:MCRapper
Input: Poset family F , sample S of size𝑚, 𝛿 ∈ (0, 1), 𝑛 ≥ 1
Output: Upper bound to D(F ,S, 𝜇) with probability

≥ 1 − 𝛿 .
1 𝝈 ← draw(𝑚, 𝑛)
2 𝜀 ← getSupDevBound(F , S, 𝛿 , 𝝈)
3 return 𝜀

4 Function getSupDevBound(F , S, 𝛿 , 𝝈):
5 R̃← getNMCERA(F , S, 𝝈) + 2𝑧

√
ln(4/𝛿)

2𝑛𝑚
6 return r.h.s. of (6) using 𝜂 = 𝛿

7 Function getNMCERA(F , S, 𝝈):
8 𝑄 ← empty priority queue
9 foreach 𝑗 ∈ {1, . . . , 𝑛} do 𝜈 𝑗 ← −𝑧𝑚

10 J ← empty dictionary from F to subsets of {1, . . . , 𝑛}
11 𝐻 ← ∅
12 foreach 𝑓 ∈ minimals(F) do

13 𝑄 .push(𝑓)
14 J [𝑓] ← {1, . . . , 𝑛}
15 while 𝑄 is not empty do

16 𝑓 ← 𝑄 .pop()
17 𝑌 ← ∅
18 foreach 𝑗 ∈ J [𝑓] s.t. Ψ̃(𝑓) ≥ 𝜈 𝑗 do

19 if Ψ𝑗 (𝑓) ≥ 𝜈 𝑗 then

20 𝜈 𝑗 ← max{𝜈 𝑗 ,Δ 𝑗 (𝑓)}
21 𝑌 ← 𝑌 ∪ { 𝑗}
22 foreach 𝑔 ∈ children(𝑓) \ 𝐻 do

23 if 𝑔 ∈ J then 𝑁 ← J[𝑔] ∩ 𝑌 else 𝑁 ← 𝑌

24 if 𝑁 = ∅ then
25 𝐻 ← 𝐻 ∪ {𝑔}
26 if 𝑔 ∈ J then 𝑄 .delete(𝑔)
27 else

28 if 𝑔 ∉ J then 𝑄 .push(𝑔)
29 J [𝑔] ← 𝑁

30 return
1

𝑛𝑚

∑𝑛
𝑗=1 𝜈 𝑗

MCRapper populates𝑄 and J by inserting in them the minimal
elements of F w.r.t. ⪯ (line 12), using the set {1, . . . , 𝑛} as the value
for these keys in the dictionary. It then enters a loop that keeps
iterating as long as there are elements in𝑄 (line 15). The top element
𝑓 of 𝑄 is extracted at the beginning of each iteration (line 16). A
set 𝑌 , initially empty, is created to maintain a superset of the set
of values 𝑗 ∈ {1, . . . , 𝑛} for which a child of 𝑓 may be the function
attaining the supremum 𝑗-discrepancy among all the functions in
F (see (9)). The algorithm then iterates over the elements 𝑗 ∈ J [𝑓]
s.t. Ψ̃(𝑓) is greater than 𝜈 𝑗 (line 18). The elements for which Ψ̃(𝑓) <
𝑣 𝑗 can be ignored because 𝑓 and its descendants can not attain the
supremum of the 𝑗-discrepancy in this case, thanks to Thm. 4.1.
Computing Ψ̃(𝑓) is straightforward and can be done even faster
if one keeps a frequent-pattern tree or a similar data structure to
avoid having to scan S all the times, but we do not discuss this case
for ease of presentation. For the values 𝑗 that satisfy the condition
on line 18, the algorithm computes Δ 𝑗 (𝑓) and updates 𝜈 𝑗 to this
value if larger than the current value of 𝜈 𝑗 (line 20), to maintain the

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

invariant that 𝜈 𝑗 stores the highest value of 𝑗-discrepancy seen so
far (this invariant, together with the one maintained by the pruning
strategy, is at the basis of the correctness of MCRapper). Finally,
𝑗 is added to the set 𝑌 (line 21), as it may still be the case that a
descendant of 𝑓 has 𝑗-discrepancy higher than 𝜈 𝑗 . The algorithm
then iterates over the children of 𝑓 that have not been pruned, i.e.,
those not in 𝐻 (line 22). If the child 𝑔 is such that there is a key
𝑔 in J (because before 𝑓 we visited another parent of 𝑔), then let
𝑁 be J [𝑔] ∩ 𝑌 , otherwise, let 𝑁 be 𝑌 . The set 𝑁 is a superset of
the indices 𝑗 s.t. 𝑔 may attain the supremum 𝑗-discrepancy. Indeed
for a value 𝑗 to have this property, it is necessary that Ψ𝑗 (𝑓) ≥ 𝜈 𝑗
for every parent 𝑓 of 𝑗 (where the value of 𝜈 𝑗 in this expression is
the one that 𝜈 𝑗 had when 𝑓 was visited). If 𝑁 = ∅, then 𝑔 and all
its descendants can be pruned, which is achieved by adding 𝑔 to
𝐻 (line 25) and removing 𝑔 from 𝑄 if it is a key J (line 26). When
𝑁 ≠ ∅, first𝑔 is added to𝑄 (with the appropriate priority depending
on the ordering of𝑄) if it did not belong to J yet (line 28), and then
J [𝑔] is set to 𝑁 (line 29). This operation completes the current
loop iteration starting at line 15.

Once 𝑄 is empty, the loop ends and the function getNMCERA()
returns the sum of the values 𝜈 𝑗 divided by 𝑛 ·𝑚. The returned value
is summed to an appropriate term to obtain R̃ (line 5), which is used
to compute the return value of the function getSupDevBound()
using (6) with 𝜂 = 𝛿 (line 6). This value 𝜀 is returned in output by
MCRapper when it terminates (line 2).

The following result is at the core of the correctness of MCRap-
per (proof in App. A.1.)

Lemma 4.3. getNMCERA(F , S, 𝝈) returns the value R̂𝑛𝑚 (F ,S,𝝈).

The proof of Thm. 4.2 is then just an application of Lemma 4.3
and Thm. 3.1 (with 𝜂 = 𝛿), as the value 𝜀 returned by MCRapper is
computed according to (6).

4.2.1 Limiting the exploration of the search space. Despite the very
efficient pruning strategy made possible by the upper bounds to the
𝑗-discrepancy,MCRapper may still need to explore a large fraction
of the search space, with negative impact on the running time. We
now present a “hybrid” approach that limits this exploration, while
still ensuring the guarantees from Thm. 4.2.

Let 𝛽 be any positive value and define

G(S, 𝛽) �
{
𝑓 ∈ F :

1
𝑚

𝑚∑
𝑖=1
(𝑓 (𝑠𝑖))2 ≥ 𝛽

}
,

andK(S, 𝛽) = F \G(S, 𝛽). In the case of itemsets mining, G(S, 𝛽)
would be the set of frequent itemsets w.r.t. 𝛽 ∈ [0, 1].

The following result is a consequence of Hoeffding’s inequality
and a union bound over 𝑛 · |K(S, 𝛽) | events.

Lemma 4.4. Let 𝜂 ∈ (0, 1). Then, with probability at least 1−𝜂 over
the choice of 𝝈 , it holds that simultaneously for all 𝑗 ∈ {1, . . . , 𝑛},

R̂1
𝑚 (K(S, 𝛽),S,𝝈 𝑗) ≤

√√
2𝛽 log

(
𝑛 |K (S,𝛽) |

𝜂

)
𝑚

. (11)

The following is an immediate consequence of the above and
the definition of 𝑛-MCERA.

Theorem 4.5. Let 𝜂 ∈ (0, 1). Then with probability ≥ 1 − 𝜂 over
the choice of 𝝈 , it holds

R̂𝑛𝑚 (F ,S,𝝈) =
1
𝑛

𝑛∑
𝑗=1

max
{
R̂1
𝑚 (G(S, 𝛽),S,𝝈 𝑗), R̂1

𝑚 (K(S, 𝛽),S,𝝈 𝑗)
}

≤ 1
𝑛

𝑛∑
𝑗=1

max

R̂
1
𝑚 (G(S, 𝛽),S,𝝈 𝑗),

√√
2𝛽 log

(
𝑛 |K (S,𝛽) |

𝜂

)
𝑚

 .

The result of Thm. 4.5 is especially useful in situations when it
is possible to compute efficiently reasonable upper bounds on the
cardinality of K(S, 𝛽), possibly using information from S (but not
𝝈). For the case of pattern mining, these bounds are often easy to
obtain: e.g., in the case of itemsets, it holds |K(S, 𝛽) | ≤ ∑

𝑠𝑖 ∈S 2 |𝑠𝑖 | ,
where |𝑠𝑖 | is the number of items in the transaction 𝑠𝑖 . Much better
bounds are possible, and in many other cases, but we cannot discuss
them here due to space limitations.

Combining the above with MCRapper may lead to a significant
speed-up thanks to the fact thatMCRapperwould be exploring only
(a subset of) G(S, 𝛽) instead of (a subset of) the entire search space
F , at the cost of computing an upper bound to R̂𝑛𝑚 (F ,S,𝝈 𝑗), rather
than its exact value. We study this trade-off, which is governed by
the choice of 𝛽 , experimentally in Sect. 6.3. The correctness follows
from Thms. 3.1, 4.2 and 4.5, and an application of the union bound.

We now describe this variant MCRapper-H of MCRapper, pre-
sented in Alg. 2.MCRapper-H accepts in input the same parameters
of MCRapper, but also the parameters 𝛽 and 𝛾 < 𝛿 , which controls
the confidence of the probabilistic bound from Thm. 4.5. After hav-
ing drawn 𝝈 ,MCRapper-H computes the upper bound to |K(S, 𝛽) |
(line 3), and calls the function getNMCERA(G(S, 𝛽), S, 𝝈) (line 2),
slightly modified w.r.t. the one on line 30 of Alg. 1 so it returns
the set of 𝑛 values {𝜈1, . . . , 𝜈𝑛} instead of their average. Then, it
computes R̃ using the r.h.s. of (11) and returns the bound to the SD
obtained from the r.h.s. of (6) with 𝜂 = 𝛿 − 𝛾 .

Algorithm 2:MCRapper-H
Input: Poset family F , sample S of size𝑚, 𝛿 ∈ (0, 1),

𝛽 ∈ [0, 𝑧2], 𝛾 ∈ (0, 𝛿)
Output: Upper bound to D(F ,S, 𝜇) with prob. ≥ 1 − 𝛿 .

1 𝝈 ← draw(𝑚, 𝑛)
2 {𝑣1, . . . , 𝑣𝑛} ← getNMCERA(G(S, 𝛽), S, 𝝈)
3 𝜔 ← upper bound to |K(S, 𝛽) |

4 R̃← 1
𝑛

∑𝑛
𝑗=1 max

 𝑣𝑗
𝑚 ,

√
2𝛽 log

(
𝑛𝜔
𝛾

)
𝑚

 + 2𝑧

√
ln
(

4
𝛿−𝛾

)
2𝑛𝑚

5 return r.h.s. of (6) using 𝜂 = 𝛿 − 𝛾

It is not necessary to choose 𝛽 a-priori, as long as it is chosen
without using any information that depends on 𝝈 . In situations
where deciding 𝛽 a-priori is not simple, one may define instead, for
a given value of 𝑘 set by the user, the quantity 𝛽𝑘 defined as

𝛽𝑘 � min {𝛽 : |G(S, 𝛽) | ≤ 𝑘} .
When the queue 𝑄 (line 8 of Alg. 1) is sorted by decreasing value
of

∑𝑛
𝑖=1 (𝑓 (𝑠𝑖))

2, the value 𝑘 is the maximum number of nodes the

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

branch-and-bound search in getNMCERA() may enumerate. We are
investigating more refined bounds than Thm. 4.5.

4.3 Improved bounds for 𝑛 = 1
For the special case of 𝑛 = 1, it is possible to derive a better bound
to the SD than the one presented in Thm. 3.1. This result is new
and of independent interest because it holds for any family F . The
proof is in App. A.1.

Theorem 4.6. Let 𝜂 ∈ (0, 1). With probability at least 1 − 𝜂 over
the choice of S and 𝜎 , it holds that

D(F ,S, 𝜇) ≤ 2R̂1
𝑚

(
F − 𝑐

2
,S,𝝈

)
+ 3𝑐

√
ln 2

𝜂

2𝑚
. (12)

The advantage of (12) over (6) (with 𝑛 = 1) is in the smaller
“tail bounds” terms that arise thanks to a single application of a
probabilistic tail bound, rather than three such applications. To use
this result in MCRapper, line 2 must be replaced with

𝜀 ← getNMCERA(F , S, 𝝈) + 3𝑐

√
ln 2

𝛿

2𝑚
;

so the upper bound to the SD is computed according to (12). The
same guarantees as in Thm. 4.2 hold for this modified algorithm.

5 APPLICATIONS

To showcaseMCRapper’s practical strengths, we now discuss ap-
plications to various pattern mining tasks. The value 𝜀 computed
by MCRapper can be used, for example, to compute, from a ran-
dom sample S, a high-quality approximation of the collection of
frequent itemsets in a dataset w.r.t. a frequency threshold 𝜃 ∈ (0, 1),
by mining the sample at frequency 𝜃 − 𝜀 [17]. Also, it can be used in
the algorithm by Pellegrina et al. [15] to achieve statistical power
in significant pattern mining, or in the progressive algorithm by
Servan-Schreiber et al. [22] to enable even more accurate interac-
tive data exploration. Essentially any of the tasks we mentioned
in Sect. 1 and 2 would benefit from the improved bound to the SD
computed by MCRapper. To support this claim, we now discuss in
depth one specific application.

Mining True Frequent Patterns. We now show how to useMCRap-
per together with sharp variance-aware bounds to the SD (Thm. 3.2)
for the specific application of identifying the True Frequent Pat-
terns (TFPs) [19]. The original work considered the problem only
for itemsets, but we solve the problem for a general poset family of
functions, thus for many other pattern classes, such as sequences.

The task of TFP mining is, given a pattern language L (i.e., a
poset family) and a threshold 𝜃 ∈ [0, 1], to output the set

TFP (𝜃,L) =
{
𝑓 ∈ L : E

𝜇
[𝑓] ≥ 𝜃

}
.

Computing TFP (𝜃,L) exactly requires to know E𝜇 [𝑓] for all 𝑓 ;
since this is almost never the case (and in such case the task is triv-
ial), it is only possible to compute an approximation of TFP (𝜃,L)
using information available from a random bagS of𝑚 i.i.d. samples
from 𝜇. In this work, mimicking the guarantees given in significant
pattern mining [11] and in multiple hypothesis testing settings, we
are interested in approximations that are a subset of TFP(𝜃,L), i.e.,

we do not want false positives in our approximation, but we accept
false negatives. A variant that returns a superset of TFP(𝜃,L) is
possible and only requires minimal modifications ot the algorithm.
Due to the randomness in the generation of S, no algorithm can
guarantee to be able to compute a (non-trivial) subset of TFP(𝜃,L)
from every possible S. Thus, one has to accept that there is a prob-
ability over the choice of S and other random choices made by the
algorithm to obtain a set of patterns that is not a subset of TFP(𝜃,L).
We now present an algorithm TFP-R with the following guarantee
(proof in App. A.1).

Theorem 5.1. Given L, S, 𝜃 ∈ [0, 1], 𝛿 ∈ (0, 1), and a number
𝑛 ≥ 1 of Monte-Carlo trials, TFP-R returns a set 𝑌 such that

Pr
S,𝝈
(𝑌 ⊆ TFP(𝜃,L)) ≥ 1 − 𝛿,

where the probability is over the choice of both S and the randomness
in TFP-R, i.e., an 𝑛 ×𝑚 matrix of i.i.d. Rademacher variables 𝝈 .

The intuition for TFP-R is the following. Let B− (TFP(𝜃,L)) be
the negative border of TFP(𝜃,L), that is, the set of functions in L \
TFP(𝜃,L) such that every parent w.r.t. ⪯ of 𝑓 is in TFP(𝜃, 𝐹). If we
can compute an 𝜀 ∈ (0, 1) such that, for every 𝑓 ∈ B− (TFP(𝜃,L)),
it holds ÊS [𝑓] ≤ 𝜃 + 𝜀, then we can be sure that any 𝑔 ∈ L such
that ÊS [𝑔] > 𝜃 + 𝜀 belongs to TFP(𝜃,L). This guarantee will natu-
rally be probabilistic, for the reasons we already discussed. Since
B− (TFP(𝜃,L)) is unknown, TFP-R approximates it by progressively
refining a superset C of it, starting from L. The correctness of TFP-
R is based on the fact that at every point in the execution, it holds
B− (TFP(𝜃,L)) ⊆ C, as we show in the proof of Thm. 5.1.

Algorithm 3: TFP-R
Input: Poset family L, sample S of size𝑚, 𝜃 ∈ [0, 1],

𝛿 ∈ (0, 1), 𝑛 ≥ 1.
Output: A set 𝑌 of patterns

1 𝑌 ← ∅
2 𝝈 ← draw(𝑚, 𝑛)
3 if 𝜃 ≥ 1

2 then 𝑣 ← 1
4 else 𝑣 ← 𝜃 (1 − 𝜃)

4 C ← L
5 repeat

6 𝜀 ← getSupDevBoundVar(C, S, 𝛿 , 𝝈 , 𝑣)
7 C′ ← C
8 C ← {𝑓 ∈ C′ : ÊS [𝑓] < 𝜃 + 𝜀}
9 𝑌 ← 𝑌 ∪ (C′ \ C)

10 until C = C′
11 return 𝑌

The pseudocode of TFP-R is presented in Alg. 3. The algorithm
first draws the matrix 𝝈 (line 2), and then computes an upper bound
𝑣 to the variances of the the frequencies in B− (TFP(𝜃,L)) (line 3).
It then initializes, as discussed above, the set C to L (line 4) and
enters a loop. At each iteration of the loop, TFP-R calls the function
getSupDevBoundVar which returns a value 𝜀 computed as in (8)
using F = C, and 𝜂 = 𝛿 . The function getNMCERA from Alg. 1 is
used inside of getSupDevBoundVar (with parameters C, S, and 𝝈)
to compute the 𝑛-MCERA in the value 𝜌 from (7). The properties
of 𝜀 are discussed in the proof for Thm. 5.1.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

103 104 105 106

Sample Size

0.2

0.4

0.6

0.8

1.0

1.2

Ra
tio

 o
f S

D
bo

un
d

(M
CR

/A
)

(a) 𝑛 = 1.

103 104 105 106

Sample Size

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ra
tio

 o
f S

D
bo

un
d

(M
CR

/A
)

(b) 𝑛 = 10.

103 104 105 106

Sample Size

0.40

0.45

0.50

0.55

0.60

0.65

Ra
tio

 o
f S

D
bo

un
d

(M
CR

/A
)

(c) 𝑛 = 102
.

Figure 1: Ratios of the SD Bound obtained by MCRapper (𝑛 ∈ {1, 10, 102}) and Amira for the entire F , for 4 of the datasets we

analyzed. For 𝑛 = 1, dashed lines use the tail bound from Thm. 3.1 instead of the one from Thm. 4.6.

a9
a

ac
cid

en
ts

bm
s-

po
s

bm
s-

we
b1

bm
s-

we
b2

br
ea

st
-c

an
ce

r
ch

es
s

co
nn

ec
t

co
vt

yp
e

ijc
nn

1
m

us
hr

oo
m

ph
ish

in
g

pu
m

b-
st

ar
re

ta
il

su
sy

sv
m

gu
id

e3
T1

0I
4D

10
0K

T4
0I

10
D1

00
K0.00

0.02

0.04

0.06

0.08

0.10

0.12

Bo
un

d
on

 S
up

re
m

um
 D

ev
ia

tio
n

TFP-A
TFP-R

(a)

a9
a

ac
cid

en
ts

bm
s-

po
s

bm
s-

we
b1

bm
s-

we
b2

br
ea

st
-c

an
ce

r
ch

es
s

co
nn

ec
t

co
vt

yp
e

ijc
nn

1
m

us
hr

oo
m

ph
ish

in
g

pu
m

b-
st

ar
re

ta
il

su
sy

sv
m

gu
id

e3
T1

0I
4D

10
0K

T4
0I

10
D1

00
K

103

104

105

106

107

108

Nu
m

be
r o

f R
ep

or
te

d
Pa

tte
rn

s TFP-A
TFP-R

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ra
tio

 o
f R

ep
. P

at
t.

(T
FP

-R
/T

FP
-A

)

Ratio

(b)

0.07 0.08 0.09 0.10 0.11
Bound on supremum deviation

100

101

102

103

104

Ru
nn

in
g

Ti
m

e
(s

)

Amira+Min.(= 0.1)
MCR
MCR-H(= 0.01)

MCR-H(= 0.025)
MCR-H(= 0.05)
MCR-H(= 0.1)

connect
accidents
chess

(c)

Figure 2: (a) Bound on the SupremumDeviation obtained byTFP-R andTFP-A. (b) Number of reported patterns (left𝑦-axis) and

ratios (right 𝑦-axis) by TFP-R and TFP-A. (c) Running times of MCRapper,MCRapper-H and Amira vs corresponding upper

bound on SD of the entire F . For MCRapper-H we use different values of 𝛽 . Each marker shape corresponds to one of the

datasets we considered (other 3 shown in the Appendix). For Amirawe also show the time for mining the TFPs (Amira+Min.),

with freq. ≥ 𝛽 = 0.1, as needed after processing the sample.

TFP-R uses 𝜀 to refine the set C with the goal of obtaining a better
approximation of B− (TFP(𝜃,L)). The set C′ stores the current
value of C, and the new value of C is obtained by keeping all and
only the patterns 𝑓 ∈ C′ such that ÊS [𝑓] < 𝜃 + 𝜀 (line 8). All the
patterns that have been filtered out, i.e., the patterns in C′ \ C, or
in other words, all the patterns 𝑓 ∈ C′ such that ÊS [𝑓] ≥ 𝜃 + 𝜀, are
added to the output set 𝑌 (line 9). TFP-R keeps iterating until the
value of C does not change from the previous iteration (condition on
line 10), and finally the set𝑌 is returned in output.While we focused
on the a conceptually high-level description of TFP-R, we note that
an efficient implementation only requires one exploration of F ,
such that 𝑌 can be provided in output as F is explored, therefore
without executing either multiple instances of MCRapper or, at the
end of TFP-R, a frequent pattern mining algorithm to compute 𝑌 .

6 EXPERIMENTS

In this section we present the results of our experimental evalu-
ation for MCRapper. We compare MCRapper to Amira [18], an
algorithm that bounds the Supremum Deviation by computing a
deterministic upper bound to the ERA with one pass on the ran-
dom sample. The goal of our experimental evaluation is to compare

MCRapper to Amira in terms of the upper bound to the SD they
compute. We also assess the impact of the difference in the SD
bound provided by MCRapper and Amira for the application of
mining true frequent patterns, by comparing our algorithm TFP-
R with TFP-A, a simplified variant of TFP-R that uses Amira to
compute a bound 𝜀 on the SD for all functions in L, and returns
as candidate true frequent patterns the set G(𝜃 + 𝜀,S). It is easy to
prove that the output of TFP-A is a subset of true frequent patterns
with probability ≥ 1 − 𝛿 . We also evaluate the running time of
MCRapper and of its variant MCRapper-H.

Datasets and implementation. We implemented MCRapper and
MCRapper-H in C, by modifying TopKWY [16]. Our implementa-
tions are available at https://github.com/VandinLab/MCRapper. The
implementation of Amira [18] has been provided by the authors.
We test both methods on 18 datasets (see Table 1 in the Appendix
for their statistics), widely used for the benchmark of frequent item-
set mining algorithms. To compare MCRapper to Amira in terms
of the upper bound to the SD, we draw, from every dataset, random
samples of increasing size𝑚; we considered 6 values equally spaced
in the logarithmic space in the interval [103, 106]. We only consider

https://github.com/VandinLab/MCRapper

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

values of𝑚 smaller than the dataset size |D|. For both algorithms
we fix 𝛿 = 0.1. ForMCRapper we use 𝑛 ∈ {1, 10, 100}.

To compare TFP-R to TFP-A, we analyze synthetic datasets of
size𝑚 = 104 obtained by random sampling transactions from each
dataset: the true frequency of a pattern corresponds to its frequency
in the original dataset, which we use as the ground truth. We use
𝑛 = 10 for TFP-R, and 𝛿 = 0.1. We report the results for 𝜃 = 0.05
(other values of 𝜃 and 𝑛 produced similar results).

For all experiments and parameters combinations we perform
10 runs (i.e., we create 10 random samples of the same size from
the same dataset). In all the figures we report the averages and avg
± standard deviations of these runs.

6.1 Bounds on the SD

Figure 1 shows the ratio between the upper bound on the SD ob-
tained byMCRapper and the one obtained by Amira for different
values of 𝑛. The bound provided by MCRapper is always better
(i.e., lower) than the bound provided by Amira (e.g., for 𝑛 = 100
the bound from MCRapper is always at least 34% smaller than the
bound from Amira). For 𝑛 = 1 one can see that the novel improved
bound from Thm. 4.6 should really be preferred over the “standard”
one (dashed lines). Similar results hold for all other datasets. These
results highlight the effectiveness of MCRapper in providing a
much tighter bound to the SD than currently available approaches.

6.2 Mining True Frequent Patterns

We compare the final SD computed by MCRapper with the one
computed by TFP-A. The results are shown in Fig. 2a. Similarly to
what we observed in Sect. 6.1, MCRapper provides much tighter
bounds being, in most cases, less than 50% of the bound reported by
Amira. We then assessed the impact of such difference in themining
of TFP, by comparing the number of patterns reported by TFP-R
and by TFP-A. Since for both algorithms the output is a subset of
the true frequent patterns with probability ≥ 1 − 𝛿 , reporting a
higher number of patterns corresponds to identifying more true
frequent patterns, i.e., to higher power. Figure 2b shows the number
of patterns reported by TFP-R and by TFP-A (left 𝑦-axis) and the
ratio between such quantities (right 𝑦-axis). The SD bound from
MCRapper is always lower than the SD bound from Amira, so
TFP-R always reports at least as many patterns as TFP-A, and for
10 out of 18 datasets, it reports at least twice as many patterns as
TFP-A. These results show that the SD bound computed by TFP-R
provides a great improvement in terms of power for mining TFPs
w.r.t. current state-of-the-art methods for SD bound computation.

6.3 Running time

For these experimentswe take 10 random samples of size 104 of the 6
most demanding datasets (accidents, chess, connect, phishing,
pumb-star, susy; for the other datasetsMCRapper takes much less
time than the ones shown) and use the hybrid approachMCRapper-
H (Sect. 4.2.1) with different values of 𝛽 (and 𝑛 = 1, which gives a
good trade-off between the bounds and the running time, 𝛾 = 0.01,
𝛿 = 0.1). We naïvely upper bound |K(S, 𝛽) | with∑

𝑠𝑖∈S 2 |𝑠𝑖 | , where
|𝑠𝑖 | is the length of the transaction 𝑠𝑖 , a very loose bound that could
be improved using more information from S. Figures 2c and 3 (in
the Appendix) show the running time of MCRapper and Amira vs.

the obtained upper bound on the SD (different colors correspond to
different values of 𝛽). With Amira one can quickly obtain a fairly
loose bound on the SD, by using MCRapper and MCRapper-H one
can trade-off the running time for smaller bounds on the SD.

7 CONCLUSION

We present MCRapper, an algorithm for computing a bound to the
supremum deviation of the sample means from their expectations
for families of functions with poset structure, such as those that
arise in pattern mining tasks. At the core of MCRapper there is
a novel efficient approach to compute the 𝑛-sample Monte-Carlo
Empirical Rademacher Average based on fast search space explo-
ration and pruning techniques.MCRapper returns a much better
(i.e., smaller) bound to the supremum deviation than existing tech-
niques. We use MCRapper to extract true frequent patterns and
show that it finds many more patterns than the state of the art.

ACKNOWLEDGMENTS

Part of this work was conducted while L.P. was visiting the Depart-
ment of Computer Science of Brown University, supported by a
“Fondazione Ing. Aldo Gini” fellowship. Part of this work is sup-
ported by the National Science Foundation grant RI-1813444, by the
MIUR of Italy under PRIN Project n. 20174LF3T8 AHeAD (Efficient
Algorithms for HArnessing Networked Data), and by the University
of Padova grant STARS 2018.

REFERENCES

[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association
rules between sets of items in large databases. SIGMOD Rec. 22 (June 1993),
207–216. Issue 2. https://doi.org/10.1145/170036.170072

[2] Rakesh Agrawal and Ramakrishnan Srikant. 1995. Mining sequential patterns. In
Proceedings of the Eleventh International Conference on Data Engineering, (ICDE’95).
IEEE, 3–14.

[3] N. K. Ahmed, J. Neville, R. A. Rossi, and Duffield N. 2015. Efficient Graphlet
Counting for Large Networks. In 2015 IEEE International Conference on Data
Mining. 1–10. https://doi.org/10.1109/ICDM.2015.141

[4] Peter L. Bartlett and ShaharMendelson. 2002. Rademacher and Gaussian complex-
ities: Risk bounds and structural results. Journal of Machine Learning Research 3,
Nov (2002), 463–482.

[5] Stephen D. Bay and Michael J. Pazzani. 2001. Detecting group differences: Mining
contrast sets. Data Mining and Knowledge Discovery 5, 3 (2001), 213–246.

[6] Mario Boley, Claudio Lucchese, Daniel Paurat, and Thomas Gärtner. 2011. Direct
local pattern sampling by efficient two-step random procedures. Proceedings of
the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining - KDD ’11 (2011). https://doi.org/10.1145/2020408.2020500

[7] Venkatesan T. Chakaravarthy, Vinayaka Pandit, and Yogish Sabharwal. 2009.
Analysis of sampling techniques for association rule mining. In Proc. 12th
Int. Conf. Database Theory (St. Petersburg, Russia) (ICDT ’09). ACM, New York,
NY, USA, 276–283. https://doi.org/10.1145/1514894.1514927

[8] L. De Stefani and E. Upfal. 2019. A Rademacher Complexity Based Method for
Controlling Power and Confidence Level in Adaptive Statistical Analysis. In 2019
IEEE International Conference on Data Science and Advanced Analytics (DSAA).
71–80. https://doi.org/10.1109/DSAA.2019.00021

[9] Vladimir Dzyuba, Matthijs van Leeuwen, and Luc De Raedt. 2017. Flexible
constrained sampling with guarantees for pattern mining. Data Mining and
Knowledge Discovery 31, 5 (Mar 2017), 1266–1293. https://doi.org/10.1007/s10618-
017-0501-6

[10] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong-Chi, and Roger Nkam-
bou. 2019. A Survey of High Utility Itemset Mining. In High-Utility Pattern
Mining. Springer International Publishing.

[11] Wilhelmiina Hämäläinen and Geoffrey I. Webb. 2018. A Tutorial on Statistically
Sound Pattern Discovery. Data Mining and Knowledge Discovery (Dec 2018).
https://doi.org/10.1007/s10618-018-0590-x

[12] Adam Kirsch, Michael Mitzenmacher, Andrea Pietracaprina, Geppino Pucci, Eli
Upfal, and Fabio Vandin. 2012. An efficient rigorous approach for identifying
statistically significant frequent itemsets. Journal of the ACM (JACM) 59, 3 (2012),
1–22.

https://doi.org/10.1145/170036.170072
https://doi.org/10.1109/ICDM.2015.141
https://doi.org/10.1145/2020408.2020500
https://doi.org/10.1145/1514894.1514927
https://doi.org/10.1109/DSAA.2019.00021
https://doi.org/10.1007/s10618-017-0501-6
https://doi.org/10.1007/s10618-017-0501-6
https://doi.org/10.1007/s10618-018-0590-x

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

[13] Willi Klösgen. 1992. Problems for knowledge discovery in databases and their
treatment in the Statistics Interpreter Explora. International Journal of Intelligent
Systems 7 (1992), 649–673.

[14] Vladimir Koltchinskii and Dmitriy Panchenko. 2000. Rademacher processes
and bounding the risk of function learning. In High dimensional probability II.
Springer, 443–457.

[15] Leonardo Pellegrina, Matteo Riondato, and Fabio Vandin. 2019. SPuManTE:
Significant Pattern Mining with Unconditional Testing. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (Anchorage, AK, USA) (KDD ’19). ACM, New York, NY, USA, 1528–1538.
https://doi.org/10.1145/3292500.3330978

[16] Leonardo Pellegrina and Fabio Vandin. 2020. Efficient mining of the most signifi-
cant patterns with permutation testing. Data Mining and Knowledge Discovery
(2020).

[17] Matteo Riondato and Eli Upfal. 2014. Efficient Discovery of Association Rules and
Frequent Itemsets through Sampling with Tight Performance Guarantees. ACM
Trans. Knowl. Disc. from Data 8, 4 (2014), 20. https://doi.org/10.1145/2629586

[18] Matteo Riondato and Eli Upfal. 2015. Mining Frequent Itemsets through Pro-
gressive Sampling with Rademacher Averages. In Proceedings of the 21st ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’15). ACM, 1005–1014.

[19] Matteo Riondato and Fabio Vandin. 2014. Finding the true frequent itemsets.
In Proceedings of the 2014 SIAM international conference on data mining. SIAM,
497–505.

[20] Matteo Riondato and Fabio Vandin. 2018. MiSoSouP: Mining Interesting
Subgroups with Sampling and Pseudodimension. In Proc. 24th ACM SIGKDD
Int. Conf. Knowl. Disc. and Data Mining (KDD ’18). ACM, 2130–2139.

[21] Diego Santoro, Andrea Tonon, and Fabio Vandin. 2020. Mining Sequential Pat-
terns with VC-Dimension and Rademacher Complexity. Algorithms 13, 5 (2020),
123.

[22] Sacha Servan-Schreiber, Matteo Riondato, and Emanuel Zgraggen. 2018. ProS-
ecCo: Progressive SequenceMining with Convergence Guarantees. In Proceedings
of the 18th IEEE International Conference on Data Mining. 417–426.

[23] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press.

[24] Mahito Sugiyama, Felipe Llinares-López, Niklas Kasenburg, and Karsten M Borg-
wardt. 2015. Significant subgraph mining with multiple testing correction. In
Proceedings of the 2015 SIAM International Conference on Data Mining. SIAM,
37–45.

[25] Aika Terada, Mariko Okada-Hatakeyama, Koji Tsuda, and Jun Sese. 2013. Sta-
tistical significance of combinatorial regulations. Proceedings of the National
Academy of Sciences 110, 32 (2013), 12996–13001.

[26] Hannu Toivonen. 1996. Sampling Large Databases for Association Rules. In
Proc. 22nd Int. Conf. Very Large Data Bases (VLDB ’96). Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 134–145.

[27] Andrea Tonon and Fabio Vandin. 2019. Permutation Strategies for Mining Signif-
icant Sequential Patterns. In 2019 IEEE International Conference on Data Mining
(ICDM). IEEE, 1330–1335.

[28] Vladimir N. Vapnik. 1998. Statistical learning theory. Wiley.

https://doi.org/10.1145/3292500.3330978
https://doi.org/10.1145/2629586

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

A APPENDIX

A.1 Missing Proofs

TheoremA.1 (Symmetrization ineqality [1]). For any family

F it holds ES
[
sup𝑓 ∈F

(
ÊS [𝑓] − E𝜇 [𝑓]

)
− 2R̂(F ,S)

]
≤ 0

Theorem A.2 ([3, Thm. 2.2]). Let𝑍 = sup𝑓 ∈F
(
ÊS [𝑓] − E𝜇 [𝑓]

)
.

Let 𝜂 ∈ (0, 1). Then, with probability at least 1 − 𝜂 over the choice of
S, it holds

𝑍 ≤ E
𝜇
[𝑍] +

√
2 ln 1

𝜂

(
𝑣 + 4𝑐 E𝜇 [𝑍]

)
𝑚

+
2𝑐 ln 1

𝜂

3𝑚
. (13)

Proof of Thm. 3.2. Consider the following events

E1 � 𝜌 ≥ R̂ (F ,S) ,
E2 � 𝐸𝜇 [R̂ (F ,S)] ≤ R̂ (F ,S)

+ 1
2𝑚

©«
√
𝑐

(
4𝑚𝜌 + 𝑐 ln

4
𝛿

)
ln

4
𝛿
+ 𝑐 ln

4
𝛿

ª®¬ .

From Lemma A.4, we know that E1 holds with probability at
least 1 − 𝛿

4 over the choice of S and 𝝈 . E2 is guaranteed to with
probability at least 1 − 𝛿

4 over the choice of S [2, (generalization
of) Thm. 3.11]. Define the event E3 as the event in (13) for 𝜂 = 𝛿

4
and the event E4 as the event in (13) for 𝜂 = 𝛿

4 and for F = −F . [3,
Thm. 2.2] tells us that events E3 and E4 hold each with probability
at least 1 − 𝑑

4 over the choice of S. Thus from the union bound we
have that the event E = E1 ∩ E2 ∩ E3 holds with probability at least
1 − 𝛿 over the choice of S and 𝝈 . Assume from now on that the
event E holds.

Because E holds, it must be 𝑟 ≥ E𝜇 [R̂(F ,S)]. From this result
and Thm. A.1 we have that

E
𝜇
[sup
𝑓 ∈F

(
Ê
S
[𝑓] − E

𝜇
[𝑓]

)
] ≤ 2E

𝜇
[R̂(F ,S)] ≤ 2𝑟 .

From here, and again because E, by plugging 2𝑟 in place of 𝐸 [𝑍]
into (13) (for 𝜂 = 𝛿

4), we obtain that sup𝑓 ∈F
(
ÊS [𝑓] − E𝜇 [𝑓]

)
≤ 𝜀.

To show that it also holds

sup
𝑓 ∈F

(
Ê
S
[𝑓] − E

𝜇
[𝑓]

)
≤ 𝜀

(which allows us to conclude that D(F ,S, 𝜇) ≤ 𝜀), we repeat the
reasoning above for −F and use the fact that R̂(F ,S) = R̂(−F ,S),
a known property of the ERA, thus

𝜌 ≥ R̂(−F ,S) and 𝑟 ≥ 𝐸𝜇 [R̂(−F ,S)] and

𝜀 ≥ D(−F ,S) = sup
𝑓 ∈F

(
Ê
S
[𝑓] − E

𝜇
[𝑓]

)
. □

Theorem A.3 (McDiarmid’s ineqality [4]). Let Y ⊆ Rℓ , and
let 𝑔 : Y → R be a function such that, for each 𝑖 , 1 ≤ 𝑖 ≤ ℓ , there is a
nonnegative constant 𝑐𝑖 such that:

sup
𝑥1,...,𝑥ℓ
𝑥 ′𝑖 ∈X

|𝑔(𝑥1, . . . , 𝑥ℓ) −𝑔(𝑥1, . . . , 𝑥𝑖−1, 𝑥
′
𝑖 , 𝑥𝑖+1, . . . , 𝑥ℓ) | ≤ 𝑐𝑖 . (14)

Let 𝑥1, . . . , 𝑥ℓ be ℓ independent random variables taking value in Rℓ

such that ⟨𝑥1, . . . , 𝑥ℓ ⟩ ∈ Y. Then it holds

Pr
(
𝑔(𝑥1, . . . , 𝑥ℓ) − E

𝜇
[𝑔] > 𝑡

)
≤ 𝑒−2𝑡2/𝐶 ,

where 𝐶 =
∑ℓ
𝑖=1 𝑐

2
𝑖
.

The following result is an application of McDiarmid’s inequality
to the 𝑛-MCERA, with constants 𝑐𝑖 = 2𝑧

𝑛𝑚 .

Lemma A.4. Let 𝜂 ∈ (0, 1). Then, with probability at least 1 − 𝜂
over the choice of 𝝈 , it holds

R̂ (F ,S) = E
𝝈

[
R̂𝑛𝑚 (F ,S,𝝈)

]
≤ R̂𝑛𝑚 (F ,S,𝝈) + 2𝑧

√
ln 1

𝜂

2𝑛𝑚
.

The following result gives a probabilistic upper bound to the
supremum deviation using the RA and the ERA [2, Thm. 3.11].

Theorem A.5. Let 𝜂 ∈ (0, 1). Then, with probability at least 1 − 𝜂
over the choice of S, it holds

D(F ,S, 𝜇) ≤ 2R̂ (F ,S)

+

√
𝑐

(
4𝑚R̂ (F ,S) + 𝑐 ln 3

𝜂

)
ln 3

𝜂

𝑚
+
𝑐 ln 3

𝜂

𝑚
+ 𝑐

√
ln 3

𝜂

2𝑚
.1 (15)

Proof of Thm. 3.1. Through Lemma A.4 (using 𝜂 there equal
to 𝜂

4), Thm. A.5 (using 𝜂 there equal to 3𝜂
4), and an application of

the union bound. □

Proof of Thm. 4.1. It is immediate from the definitions of Ψ̃(𝑓)
and Ψ𝑗 (𝑓) in (10) that Ψ𝑗 (𝑓) ≤ Ψ̃(𝑓), so we can focus on Ψ𝑗 (𝑓).
We start by showing that Δ 𝑗 (𝑓) ≤ Ψ𝑗 (𝑓). It holds

Δ 𝑗 (𝑓) =∑
𝑠𝑖 ∈S

𝝈+𝑗,𝑖 𝑓
+ (𝑠𝑖) −

∑
𝑠𝑖 ∈S

𝝈−𝑗,𝑖 𝑓
− (𝑠𝑖) −

∑
𝑠𝑖 ∈S

𝝈−𝑗,𝑖 𝑓
+ (𝑠𝑖) +

∑
𝑠𝑖 ∈S

𝝈+𝑗,𝑖 𝑓
− (𝑠𝑖)

≤
∑
𝑠𝑖 ∈S

𝝈+𝑗,𝑖 𝑓
+ (𝑠𝑖) −

∑
𝑠𝑖 ∈S

𝝈−𝑗,𝑖 𝑓
− (𝑠𝑖) = Ψ𝑗 (𝑓)

where the inequality comes from the fact that
∑
𝑠𝑖 ∈S 𝝈

−
𝑗,𝑖
𝑓 + (𝑠𝑖) ≥ 0,

and
∑
𝑠𝑖 ∈S 𝝈

+
𝑗,𝑖
𝑓 − (𝑠𝑖) ≤ 0.

To prove that Δ 𝑗 (𝑔) ≤ Ψ𝑗 (𝑓) for every 𝑔 ∈ d(𝑓) it is sufficient
to show that Ψ𝑗 (𝑔) ≤ Ψ𝑗 (𝑓) hold for every such 𝑔, since we just
showed that Δ 𝑗 (𝑔) ≤ Ψ𝑗 (𝑔) is true for any 𝑓 ∈ F . It holds 𝑓 ⪯ 𝑔,
so from the definition of the relation ⪯ in (2), we get

Ψ𝑗 (𝑔) =
∑
𝑠𝑖 ∈S

𝝈+𝑗,𝑖𝑔
+ (𝑠𝑖) −

∑
𝑠𝑖 ∈S

𝝈−𝑗,𝑖𝑔
− (𝑠𝑖)

≤
∑
𝑠𝑖 ∈S

𝝈+𝑗,𝑖 𝑓
+ (𝑠𝑖) −

∑
𝑠𝑖 ∈S

𝝈−𝑗,𝑖 𝑓
− (𝑠𝑖) = Ψ𝑗 (𝑓)

which completes our proof. □

1Slightly sharper bounds are possible at the expense of an increased complexity of the
terms.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

Proof of Lemma 4.3. For 𝑗 ∈ {1, . . . , 𝑛}, let ℎ 𝑗 be any of the
functions attaining the supremum in sup𝑓 ∈𝑓 Δ 𝑗 (𝑓). We need to
show that the algorithm updates 𝜈 𝑗 on line 20 of Alg. 1 using Δ 𝑗 (ℎ 𝑗)
at some point during its execution. We focus on a single 𝑗 , as the
proof is the same for any value of 𝑗 .

It is evident from the description of the algorithm that 𝜈 𝑗 is
always only set to values of Δ 𝑗 (𝑔), and since ℎ 𝑗 has the maximum
of these values, 𝜈 𝑗 will be, at any point in the execution of the
algorithm less than or equal to Δ 𝑗 (ℎ 𝑗). Let’s call this fact F1. Thus,
if the algorithm ever hits line 20 with 𝑓 = ℎ 𝑗 , then we can be sure
that the value stored in 𝜈 𝑗 will be Δ 𝑗 (ℎ 𝑗), and this variable will
never take an higher value. From fact F1 and Thm. 4.1 we also
have that at any point in time it must be 𝜈 𝑗 ≤ Ψ𝑗 (ℎ 𝑗) ≤ Ψ̃(ℎ 𝑗),
so the conditions on lines 19 and 18 are definitively satisfied, so
the question is now whether 𝑗 ∈ J [ℎ 𝑗] and whether there is an
iteration of the while loop of line 15 for which 𝑓 = ℎ 𝑗 .

It holds from Thm. 4.1 that it must be Δ 𝑗 (ℎ 𝑗) ≤ Ψ𝑗 (𝑔) ≤ Ψ̃(𝑔)
for every ancestor 𝑔 of ℎ 𝑗 . From this fact and from fact A then it
holds that at any point in time it must hold 𝜈 𝑗Ψ𝑗 (𝑔) ≤ Ψ̃(𝑔) for
every such ancestor 𝑔 of ℎ 𝑗 . Thus, the value 𝑗 is always added to
the set 𝑌 at every iteration of the while loop for which 𝑓 is an
ancestor of ℎ 𝑗 . Let’s call this fact F2. Thus, as long as no ancestor of
ℎ 𝑗 is pruned or ℎ 𝑗 itself is pruned, 𝑗 is guaranteed to be in J [ℎ 𝑗].
But from fact F2 and from the fact that 𝑗 belongs to J [𝑓] for all
the ancestors of ℎ 𝑗 that are in minimals(𝑓) (line 14), then 𝑗 must
belong to the set 𝑁 computed on line 23 for all ancestors of ℎ 𝑗 , thus
𝑁 is never empty and therefore no ancestor of ℎ 𝑗 is ever pruned
and neither is 𝑓 and we are guaranteed that ℎ 𝑗 is added to 𝑄 on
line 28 when the first of its parents is visited. Thus, there is an
iteration of the while loop that has 𝑓 = ℎ 𝑗 , and because of what
we discussed above, then it will be the case that 𝜈 𝑗 = Δ 𝑗 (ℎ 𝑗) and
our proof is complete. □

Proof of Thm. 4.6. For ease of notation, letG = F− 𝑐2 . Consider
the event

E1 � sup
𝑔∈G

(
Ê
S
[𝑔] − E

𝜇
[𝑔]

)
≤ 2R̂1

𝑚 (G,S,𝝈) + 3𝑐

√
ln 2

𝜂

2𝑚
. (16)

We now show that this event holds with probability at least 1 − 𝜂
2

over the choices of S and 𝝈 , and then we use this fact to obtain the
thesis with some additional steps.

Using linearity of expectation and the fact that the 𝑛-MCERA is
an unbiased estimator for the ERA (i.e., its expectation is the ERA),
we can rewrite the symmetrization inequality (Thm. A.1) as

E
S,𝝈

[
sup
𝑔∈G

(
Ê
S
[𝑔] − E

𝜇
[𝑔]

)
− 2R̂1

𝑚 (G,S,𝝈)
]
≤ 0 .

The argument of the (outmost) expectation on the l.h.s. can be seen
as a function ℎ of the𝑚 pairs of r.v.’s (𝝈1,1, 𝑠1), . . . , (𝝈1,𝑚, 𝑠𝑚). Fix
any possible assignment 𝑣 ′ of values to these pairs. Consider now
a second assignment 𝑣 ′′ obtained from 𝑣 ′ by changing the value of
any of the pairs with any other value in {−1, 1} × X. We want to
show that it holds |ℎ(𝑣 ′) − ℎ(𝑣 ′′) | ≤ 3 𝑐

𝑚 .
We separately handle the SD and the 1-MCERA, as both depend

on the values of the assignment of values to the pairs. The SD
does not depend on 𝝈1, ·, and in the argument of the supremum,

changing any 𝑠 𝑗 changes a single summand of the empirical mean
ÊS [𝑓], with maximal change when 𝑓 (𝑠 𝑗) changes from 𝑎 to 𝑏 (or
viceversa), thus the SD itself changes by no more than 𝑐

𝑚 .
We now consider the 1-MCERA, and assume that the pair chang-

ing value is (𝝈1, 𝑗 , 𝑠 𝑗). Then the only term of the 1-MCERA sum
that changes is the 𝑗-th term. If only the first component of the
pair changes value (i.e., 𝝈1, 𝑗 changes from 1 to −1 or viceversa, i.e.,
from 𝝈1, 𝑗 to −𝝈1, 𝑗), then the 𝑗-th term in the 1-MCERA sum cannot
change by more than 𝑐 , because it holds 𝝈1, 𝑗𝑔(𝑠 𝑗) ∈ [−𝑐2 ,

𝑐
2], thus

−𝝈1, 𝑗𝑔(𝑠 𝑗) also belongs to this interval, and it must be |𝝈1, 𝑗𝑔(𝑠 𝑗) −
(−𝝈1, 𝑗𝑔(𝑠 𝑗)) | ≤ 𝑐 . If only the second component of the pair changes
value (i.e., 𝑠 𝑗 changes value to 𝑠 𝑗), then the 𝑗-th term in the 1-
MCERA sum cannot change by more than 𝑐 , because each func-
tion 𝑔 ∈ G goes from X to [−𝑐2 ,

𝑐
2], and it must be |𝝈1, 𝑗𝑔(𝑠 𝑗) −

𝝈𝑖, 𝑗𝑔(𝑠 𝑗) | ≤ 𝑐 . Consider now the final case where both 𝝈1, 𝑗 and 𝑠 𝑗
change value. We have once again |𝝈1, 𝑗𝑔(𝑠 𝑗) − (−𝝈1, 𝑗𝑔(𝑠 𝑗)) | ≤ 𝑐 .

By the adding the maximum change in the SD and the maximum
change in the 1-MCERA we can conclude that function ℎ satisfies
the requirements of McDiarmid’s inequality (Thm. A.3) with con-
stants 3 𝑐

𝑚 , and obtain that event E1 from (16) holds with probability
at least 1 − 𝜂

2 .
Let now −G represent the family of functions containing −𝑔 for

each 𝑔 ∈ G. Consider the event

E2 � sup
𝑔∈−G

(
Ê
S
[𝑔] − E

𝜇
[𝑔]

)
≤ 2R̂1

𝑚 (−G,S,−𝝈) + 3𝑐

√
ln 2

𝜂

2𝑚
.

Following the same steps as for E1, we have that E2 holds with
probability at least 1 − 𝜂

2 , as the fact that we are considering
R̂1
𝑚 (−G,S,−𝝈) rather than R̂1

𝑚 (−G,S,𝝈) is not influential.
It is easy to see that R̂1

𝑚 (−G,S,−𝝈) = R̂1
𝑚 (G,S,𝝈), and that

sup
𝑔∈−G

(
Ê
S
[𝑔] − E

𝜇
[𝑔]

)
= sup

𝑔∈G

(
E
𝜇
[𝑔] − Ê

S
[𝑔]

)
.

Thus we can rewrite E2 as

E2 = sup
𝑔∈G

(
E
𝜇
[𝑔] − Ê

S
[𝑔]

)
≤ 2R̂1

𝑚 (G,S,𝝈) + 2𝑐

√
ln 2

𝜂

2𝑚
.

From the union bound, we have that E1 and E2 hold simultaneously
with probability at least 1 − 𝜂, i.e., the following event holds with
probability at least 1 − 𝜂

D(G,S, 𝜇) ≤ 2R̂1
𝑚 (G,S,𝝈) + 3𝑐

√
ln 2

𝜂

2𝑚
.

The thesis then follows from the fact D(F ,S, 𝜇) = D(G,S, 𝜇). □

Proof of Thm. 5.1. For ease of notation, letG = B− (TFP(𝜃,L)).
Let 𝜌 , 𝑟 , and 𝜀 be as in Thm. 3.2 for 𝜂 = 𝛿 and F = G. Thm. 3.2
tells us that, with probability at least 1 − 𝛿 , it holds D(G,S) ≤ 𝜀.2
Assume from now on that that is the case.

We use this fact to show inductively that, at the end of every
iteration of the loop of TFP-R (lines 5–10 of Alg. 3), it holds that
G ⊆ C and 𝑌 ⊆ TFP(𝜃,L), and therefore the thesis will hold.

2We actually only need a value 𝜀 such that sup𝑓 ∈G

(
ÊS [𝑓] − E𝜇 [𝑓]

)
< 𝜀 , but the

gain would be minimal and it would make the presentation more complicated.

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

Consider the first iteration of the loop. We have C = L ⊇ G. Let
𝜌 , 𝑟 , and 𝜀 be the values computed inside the call to the function
getSupDevBoundVar on line 6 with the parameters mentioned in
the description of the algorithm. It holds that 𝜌 ≥ 𝜌 , because the 𝑛-
MCERA of a superset of a family is not smaller than the 𝑛-MCERA
of the family. It follows that 𝑟 ≥ 𝑟 , which in turn implies that 𝜀 ≥ 𝜀.
Since we assumed that D(G,S) ≤ 𝜀, we have 𝜀 ≥ 𝜀 ≥ D(G,S) No
function 𝑓 ∈ G may then have sample mean ÊS [𝑓] greater than or
equal to 𝜃 +𝜀, as every such 𝑓 has E𝜇 [𝑓] < 𝜃 . Call this fact A. A first
consequence of A is that, at the end of the iteration, it holds G ⊆ C.
A second consequence of A and of the antimonotonicity property
is that none of the functions 𝑓 ∈ L such that E𝜇 [𝑓] < 𝜃 may
have ÊS [𝑓] ≥ 𝜃 + 𝜀. Equivalently, only functions 𝑓 ∈ L such that
E𝜇 [𝑓] ≥ 𝜃 , i.e., such that 𝑓 ∈ TFP(𝜃,L), may have ÊS [𝑓] ≥ 𝜃 + 𝜀,
i.e., C′ \ C ⊆ TFP(𝜃,L), so 𝑌 ⊆ TFP(𝜃,L) at the end of the first
iteration. The base case is complete.

Assume now that G ⊆ C and 𝑌 ⊆ TFP(𝜃,L) at the end of all
iterations from 1 to 𝑖 . Following the same reasoning as for the base
case, it holds that these facts are true also at the end of iteration
𝑖 + 1 and our proof is complete. □

dataset |D | |𝐼 | avg. trans. len.

svmguide3 1,243 44 21.9
chess 3,196 75 37
breast cancer 7,325 396 11.7
mushroom 8,124 117 22
phishing 11,055 137 30
a9a 32,561 245 13.9
pumb-star 49,046 7,117 50.9
bms-web1 58,136 60,878 3.51
connect 67,557 129 43.5
bms-web2 77,158 330,285 5.6
retail 87,979 16,470 10.8
ijcnn1 91,701 43 13
T10I4D100K 100,000 1,000 10
T40I10D100K 100,000 1,000 40
accidents 340,183 468 34.9
bms-pos 515,420 1,657 6.9
covtype 581,012 108 12.9
susy 5,000,000 190 19

Table 1: Datasets statistics. For each dataset, we report the

number |D| of transactions; the number |I | of items; the av-

erage transaction length.

A.2 Reproducibility

We now describe how to reproduce our experimental results. Code
and data are available at https://github.com/VandinLab/MCRapper.

The code of MCRapper, TFP-R, and Amira are in the sub-folders
mcrapper/ and amira/. To compile with recent GCC or Clang, use
the make command inside each sub-folder.

The convenient scripts run_amira.py and run_mcrapper.py
can be used to run the experiments (i.e., run Amira, MCRapper,
and TFP-R). They accept many input parameters (described using
the flag -h). You need to specify a dataset and the size of a random
sample to create using the flags -db and -sz. E.g., to process a

0.06 0.07 0.08 0.09 0.10
Bound on supremum deviation

10 2

10 1

100

101

102

103

104

Ru
nn

in
g

Ti
m

e
(s

)

Amira+Min.(= 0.1)
MCR
MCR-H(= 0.01)

MCR-H(= 0.025)
MCR-H(= 0.05)
MCR-H(= 0.1)

pumb-star
susy
phishing

Figure 3: Running times of MCRapper, MCRapper-H and

Amira vs corresponding upper bound on supremum devia-

tion of the entire set of functions F . For MCRapper-H we

use different values of 𝛽 . 𝑦-axis in log scale but 𝑥 axis is lin-

ear. Each marker shape corresponds to one of the datasets.

random sample of 103 transactions from the dataset mushroom with
𝑛 = 100, run

run_mcrapper.py -db mushroom -sz 1000 -j 100

and it automatically executes both Amira and MCRapper. The
command line to process with TFP-R a sample of 104 transactions
from the dataset retail with 𝑛 = 10 and 𝜃 = 0.05 is

run_mcrapper.py -db retail -sz 10000 -j 10 -tfp 0.05

The run_all_datasets.py script runs all the instances of MCRap-
per and Amira in parallel, and can be used to reproduce all the
experiments described in Sect. 6. The run_tfp_all_datasets.py
script reproduces the experiments for TFP-R and TFP-A.

All the results are stored in the files results_mcrapper.csv
and results_tfp_mcrapper.csv.

REFERENCES

[1] V. Koltchinskii and D. Panchenko. Rademacher processes and bounding the risk
of function learning. In High dimensional probability II, 443–457. Springer, 2000.

[2] L. Oneto, A. Ghio, D. Anguita, and S. Ridella. An improved analysis of the
Rademacher data-dependent bound using its self bounding property. Neural
Networks, 44:107–111, 2013.

[3] O. Bousquet. A Bennett concentration inequality and its application to suprema
of empirical processes. Comptes Rendus Mathem., 334(6):495–500, 2002.

[4] C. McDiarmid. On the method of bounded differences. Surveys in combinatorics,
141(1):148–188, 1989.

https://github.com/VandinLab/MCRapper

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Poset families and patterns
	3.2 Rademacher Averages

	4 MCRapper
	4.1 Discrepancy bounds
	4.2 Algorithms
	4.3 Improved bounds for n=1

	5 Applications
	6 Experiments
	6.1 Bounds on the SD
	6.2 Mining True Frequent Patterns
	6.3 Running time

	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Missing Proofs
	A.2 Reproducibility

	References

