
Space-Round Tradeoffs for MapReduce Computations

Andrea Pietracaprina
Dip. di Ingegneria
dell’Informazione

Università di Padova
Padova, Italy

capri@dei.unipd.it

Geppino Pucci
Dip. di Ingegneria
dell’Informazione

Università di Padova
Padova, Italy

geppo@dei.unipd.it

Matteo Riondato
Dept. of Computer Science

Brown University
Providence, RI USA

matteo@cs.brown.edu

Francesco Silvestri
Dip. di Ingegneria
dell’Informazione

Università di Padova
Padova, Italy

silvest1@dei.unipd.it

Eli Upfal
Dept. of Computer Science

Brown University
Providence, RI USA
eli@cs.brown.edu

ABSTRACT

This work explores fundamental modeling and algorithmic
issues arising in the well-established MapReduce framework.
First, we formally specify a computational model for MapRe-
duce which captures the functional flavor of the paradigm by
allowing for a flexible use of parallelism. Indeed, the model
diverges from a traditional processor-centric view by featur-
ing parameters which embody only global and local memory
constraints, thus favoring a more data-centric view. Second,
we apply the model to the fundamental computation task
of matrix multiplication presenting upper and lower bounds
for both dense and sparse matrix multiplication, which high-
light interesting tradeoffs between space and round complex-
ity. Finally, building on the matrix multiplication results, we
derive further space-round tradeoffs on matrix inversion and
matching.

Categories and Subject Descriptors

C.1.4 [Parallel Architectures]: Distributed architectures;
F.1.2 [Modes of Computation]: Parallelism and concur-
rency; F.1.3 [Complexity Measures and Classes]: Re-
lations among complexity measures; F.2.1 [Numerical Al-

gorithms and Problems]: Computations on matrices

General Terms

Algorithms, Design, Theory

Keywords

MapReduce, tradeoff, sparse and dense matrix multiplica-
tion, matrix inversion, matching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’12, June 25–29, 2012, San Servolo Island, Venice, Italy.
Copyright 2012 ACM 978-1-4503-1316-2/12/06 ...$10.00.

1. INTRODUCTION
In recent years, MapReduce has emerged as a compu-

tational paradigm for processing large-scale data sets in a
series of rounds executed on conglomerates of commodity
servers [6], and has been widely adopted by a number of
large Web companies (e.g., Google, Yahoo!, Amazon) and
in several other applications (e.g., GPU and multicore pro-
cessing). (See [20] and references therein.)

Informally, a MapReduce computation transforms an in-
put set of key-value pairs into an output set of key-value
pairs in a number of rounds, where in each round each pair
is first individually transformed into a (possibly empty) set
of new pairs (map step) and then all values associated with
the same key are processed, separately for each key, by an
instance of the same reduce function (simply called reducer

in the rest of the paper) thus producing the next new set of
key-value pairs (reduce step). In fact, as already noticed in
[19], a reduce step can clearly embed the subsequent map
step so that a MapReduce computation can be simply seen
as a sequence of rounds of (augmented) reduce steps.

The MapReduce paradigm has a functional flavor, in that
it merely requires that the algorithm designer decomposes
the computation into rounds and, within each round, into
independent tasks through the use of keys. This enables
parallelism without forcing an algorithm to cater for the ex-
plicit allocation of processing resources. Nevertheless, the
paradigm implicitly posits the existence of an underlying
unstructured and possibly heterogeneous parallel infrastruc-
ture, where the computation is eventually run. While mostly
ignoring the details of such an underlying infrastructure, ex-
isting formalizations of the MapReduce paradigm constrain
the computations to abide with some local and aggregate
memory limitations.

In this paper, we look at both modeling and algorithmic is-
sues related to the MapReduce paradigm. We first provide a
formal specification of the model, aimed at overcoming some
limitations of the previous modeling efforts, and then derive
interesting tradeoffs between memory constraints and round
complexity for the fundamental problem of matrix multipli-
cation and some of its applications.

1.1 Previous work
The MapReduce paradigm has been introduced in [6] with-

out a fully-specified formal computational model for algo-
rithm design and analysis. Triggered by the quickly gained
popularity of the paradigm, a number of subsequent works
have dealt more rigorously with modeling and algorithmic
issues [16, 9, 7].
In [16], a MapReduce algorithm specifies a sequence of

rounds as described in the previous section. Somewhat ar-
bitrarily, the authors impose that in each round the memory
needed by any reducer to store and transform its input pairs
has size O

(
n1−ǫ

)
, and that the aggregate memory used by

all reducers has size O
(
n2−2ǫ

)
, where n denotes the input

size and ǫ is a fixed constant in (0, 1). The cost of local
computation, that is, the work performed by the individual
reducers, is not explicitly accounted for, but it is required to
be polynomial in n. The authors also postulate, again some-
what arbitrarily, that the underlying parallel infrastructure
consists of Θ

(
n1−ǫ

)
processing elements with Θ

(
n1−ǫ

)
local

memory each, and hint at a possible way of supporting the
computational model on such infrastructure, where the re-
duce instances are scheduled among the available machines
so to distribute the aggregate memory in a balanced fash-
ion. It has to be remarked that such a distribution may
hide non negligible costs for very fine-grained computations
(due to the need of allocating multiple reducer with differ-
ent memory requirements to a fixed number of machines)
when, in fact, the algorithmic techniques of [16] do not fully
explore the larger power of the MapReduce model with re-
spect to a model with fixed parallelism. In [19] the same
model of [16] is adopted but when evaluating an algorithm
the authors also consider the total work and introduce the
notion of work-efficiency typical of the literature on parallel
algorithms.
An alternative computational model for MapReduce is

proposed in [9], featuring two parameters which describe
bandwidth and latency characteristics of the underlying com-
munication infrastructure, and an additional parameter that
limits the amount of I/O performed by each reducer. Also,
a BSP-like cost function is provided which combines the in-
ternal work of the reducers with the communication costs
incurred by the shuffling of the data needed at each round.
Unlike the model of [16], no limits are posed to the aggre-
gate memory size. This implies that in principle there is
no limit to the allowable parallelism while, however, the
bandwidth/latency parameters must somewhat reflect the
topology and, ultimately, the number of processing elements.
Thus, the model mixes the functional flavor of MapReduce
with the more descriptive nature of bandwidth-latency mod-
els such as BSP [29, 3].
A model which tries to merge the spirit of MapReduce

with the features of data-streaming is the MUD model of
[7], where the reducers receive their input key-value pairs
as a stream to be processed in one pass using small working
memory, namely polylogarithmic in the input size. A similar
model has been adopted in [5].
MapReduce algorithms for a variety of problems have been

developed on the aforementioned MapReduce variants in-
cluding, among others, primitives such as prefix sums, sort-
ing, random indexing [9], and graph problems such as trian-
gle counting [28] minimum spanning tree, s-t connectivity,
[16], maximal and approximate maximum matching, edge
cover, minimum cut [19], and max cover [5]. Moreover

simulations of the PRAM and BSP in MapReduce have
been presented in [16, 9]. In particular, it is shown that
a T -step EREW PRAM algorithm can be simulated by an
O (T)-round MapReduce algorithm, where each reducer uses
constant-size memory and the aggregate memory is propor-
tional to the amount of shared memory required by the
PRAM algorithm [16]. The simulation of CREW or CRCW
PRAM algorithms incurs a further O (logm(M/m)) slow-
down, where m denotes the local memory size available for
each reducer and M the aggregate memory size [9].

All of the aforementioned algorithmic efforts have been
aimed at achieving the minimum number of rounds, pos-
sibly constant, provided that enough local memory for the
reducer (typically sublinear in the input size) and enough
aggregate memory is available. However, so far, to the best
of our knowledge, there has been no attempt to fully explore
the tradeoffs that can be exhibited for specific computational
problems between the local and aggregate memory sizes, on
one side, and the number of rounds, on the other, under rea-
sonable constraints of the amount of total work performed
by the algorithm. Our results contribute to filling this gap.

Matrix multiplication is a building block for many prob-
lems, including matching [25], matrix inversion [15], all-pairs
shortest path [15], graph contraction [8], cycle detection [30],
and parsing context free languages [27]. Parallel algorithms
for matrix multiplication of dense matrices have been widely
studied: among others, we note [14, 22] which provide upper
and lower bounds exposing a tradeoff between communica-
tion complexity and processor memory. For sparse matri-
ces, interesting results are given in [23, 21] for some network
topologies like hypercubes, in [18] for PRAM, and in [4] for
a BSP-like model. In particular, techniques in [22, 18] are
used in the following sections for deriving efficient MapRe-
duce algorithms. In the sequential settings, some interest-
ing works providing upper and lower bounds are [13, 17]
for dense matrix multiplication, and [12, 31, 11] for sparse
matrix multiplication.

1.2 New results
The contribution of this paper is twofold, since it targets

both modeling and algorithmic issues.
We first provide a more general and polished version of the

MapReduce model of [16]. In particular, we generalize the
model by letting the local and aggregate memory sizes be
two independent parameters, m and M , respectively. More-
over, we enforce a clear separation between the model and
underlying execution infrastructure: for instance, we do not
impose a bound on the number of available machines, thus
fully decoupling the degree of parallelism exposed by a com-
putation from the one of the machine where the computation
will be eventually executed. This decoupling greatly simpli-
fies algorithm design, which has been one of the original
objectives of the MapReduce paradigm. (In Section 2, we
quantify the cost of implementing a round of our model on
a system with fixed parallelism.)

Our algorithmic contributions concern the study of at-
tainable tradeoffs in MapReduce for several variants of the
fundamental primitive of matrix multiplication. In partic-
ular, we develop deterministic upper and lower bounds for
dense-dense, sparse-dense and sparse-sparse matrix multi-
plication, and a more efficient randomized upper bound for
the sparse-sparse case. As a by-product of this latter re-
sult, we also obtain a randomized procedure to approximate

the number of nonzero entries in the output matrix. Our
algorithms are parametric in the m and M , and achieve op-
timal or quasi-optimal round complexity in the entire range
of variability of these parameters. Finally, building on the
matrix multiplication results, we derive space-round trade-
offs for matrix inversion and matching, which are important
by-products of matrix multiplication.
To the best of our knowledge, no previous work in the

MapReduce literature has explicitly addressed the above
fundamental problems, and the round complexity of our
MapReduce algorithms for these problems exhibit a logarith-
mic improvement upon what could be obtained by simulat-
ing the best known PRAM algorithms using the techniques
by [16]. Moreover, we show that, for suitable values of the
memory parameters, constant number of rounds (the holy
grail of algorithmic research in MapReduce) are achievable
for both dense and sparse matrix multiplication.

1.3 Organization of the paper
The rest of the paper is structured as follows. In Section 2

we introduce our computational model for MapReduce and
describe important algorithmic primitives (sorting and pre-
fix sums) that we use in our algorithms. Section 3 deals
with matrix multiplication in our model, presenting theo-
retical bounds to the complexity of algorithms to solve this
problem. We apply these results in Section 4 to derive algo-
rithms for matrix inversion and for matching in graphs.

2. MODELDEFINITIONANDBASIC PRIM-

ITIVES
Our model is defined in terms of two integral parameters

m and M , whose meaning will be explained below, and is
named MR(m,M). Algorithms specified in this model will
be referred to as MR-algorithms. An MR-algorithm specifies
a sequence of rounds: the r-th round, with r ≥ 1 transforms
a multisetWr of key-value pairs into two multisetsWr+1 and
Or of key-value pairs, where Wr+1 is the input of the next
round (empty, if r is the last round), and Or is a (possibly
empty) subset of the final output. The input of the algo-
rithm is represented by W1 while the output is represented
by ∪r≥1Or, with ∪ denoting the union of multisets. The uni-
verses of keys and values may vary at each round, and we
let Ur denote the universe of keys of Wr. The computation
performed by Round r is defined by a reducer function ρr
which is applied independently to each multiset Wr,k ⊆ Wr

consisting of all entries in Wr with key k ∈ Ur.
Let n be the input size. The two parameters m and M

specify the memory requirements that each round of an MR-
algorithm must satisfy. In particular, let mr,k denote the
space needed to compute ρr(Wr,k) on a RAM, including the
space taken by the input (i.e., mr,k ≥ |Wr,k|) and the work
space, but excluding the space taken by the output, which
contributes either to Or (i.e., the final output) or to Wr+1.
The model imposes that mr,k ∈ O (m), for every r ≥ 1 and
k ∈ Ur, that

∑
k∈Ur

mr,k ∈ O (M), for every r ≥ 1, and

that
∑

r≥1 Or = O (M). Note that the size of the output
generated by a reducer is not limited by the local memory
m. The complexity of an MR-algorithm is the number of
rounds that it executes in the worst case, and it is expressed
as a function of the input size n and of parameters m and
M . The dependency on the parameters m and M allows for
a finer analysis of the cost of an MR-algorithm.

As in [16], we require that each reducer function runs in
time polynomial in n. In fact, it can be easily seen that the
model defined in [16] is equivalent to the MR(m,M) model
with m ∈ O

(
n1−ǫ

)
and M ∈ O

(
n2−2ǫ

)
, for some fixed

constant ǫ ∈ (0, 1), except that we eliminate the additional
restrictions that the number of rounds of an algorithm be
polylogarithmic in n and that the number of physical ma-
chines on which algorithms are executed be Θ

(
n1−ǫ

)
, which

in our opinion should not be imposed at the model level.
Compared to the model in [9], our MR(m,M) model in-

troduces the parameter M to limit the size of the aggregate
memory required at each round, whereas in [9] this size is
virtually unbounded, and it imposes a less stringent bound
on the output size of each reducer1. Moreover, the complex-
ity analysis in MR(m,M) focuses on the tradeoffs between
m and M , on one side, and the number of rounds on the
other side, while in [9] a more complex cost function is de-
fined which accounts for the overall message complexity of
each round, the time complexity of each reducer computa-
tion, and the latency and bandwidth characteristics of the
executing platform.

2.1 Sorting and prefix sum computations
Sorting and prefix sum primitives are used in the algo-

rithms presented in this paper. The input to both primitives
consists of a set of n key-value pairs (i, ai) with 0 ≤ i < n
and ai ∈ S, where S denotes a suitable set. For sorting,
a total order is defined over S and the output is a set of
n key-value pairs (i, bi), where the bi’s form a permutation
of the ai’s and bi−1 ≤ bi for each 0 < i < n. For pre-
fix sums, a binary associative operation ⊕ is defined over S
and the output consists of a collection of n pairs (i, bi) where
bi = a0 ⊕ . . .⊕ ai, for 0 ≤ i < n.

By straightforwardly adapting the results in [9] to our
model we have:

Theorem 1. The sorting and prefix sum primitives for

inputs of size n can be performed in O (logm n) rounds in

MR(m,M) for any M = Ω(n).

We remark that each reducer in the implementation of the
sorting and prefix primitives makes use of Θ (m) memory
words. Hence, the same round complexity can be achieved
in a more restrictive scenario with fixed parallelism. In fact,
our MR(m,M) model can be simulated on a platform with
Θ (M/m) processing elements, each with internal memory of
size Θ (m), at the additional cost of one prefix computation
per round. Therefore, O (logm n) can be regarded as an
upper bound on the relative power of our model with respect
to one with fixed parallelism.

In [9], the authors claim that the round complexities stated
in Theorem 1 are optimal in their model, as a consequence
of the lower bound for computing the OR of n bits on the
BSP model [10]. It can be shown that the optimality carries
through to our model for any m and any M = Ω(n).

3. MATRIX MULTIPLICATION
Let A and B be two

√
n × √

n matrices and let C =
A · B. We use ai,j , bi,j and ci,j , with 0 ≤ i, j <

√
n, to

denote the entries of A,B and C, respectively. In this sec-
tion we present upper and lower bounds for computing the
1For clarity, we remark that in [9] M denotes the maximum
amount of space used by a reducer, that is, the quantity
denoted by m in our model.

product C in MR(m,M). All our algorithms envision the
matrices as conceptually divided into submatrices of size√
m × √

m, and we denote these submatrices with Ai,j ,

Bi,j and Ci,j , respectively, for 0 ≤ i, j <
√

n/m. Clearly,

Ci,j =
∑√

n/m−1

h=0 Ai,h ·Bh,j .
All our algorithms exploit the following partition of the

(n/m)3/2 products between submatrices (e.g., Ai,h · Bh,j)

into
√

n/m groups: group Gℓ, with 0 ≤ ℓ <
√

n/m, consists

of products Ai,h · Bh,j , for every 0 ≤ i, j <
√

n/m and for

h = (i + j + ℓ) mod
√

n/m. Observe that each submatrix
of A and B occurs exactly once in each group Gℓ, and that
each product in Gℓ contributes to a distinct submatrix of C.
We focus our attention on matrices whose entries belong

to a semiring (S,⊕,⊙) such that for any a ∈ S we have
a ⊙ 0 = 0, where 0 is the identity for ⊕. In this setting,
efficient matrix multiplication techniques such as Strassen’s
cannot be employed. Moreover, for the sake of the analysis,
we make the reasonable assumption that the inner products
of any row of A and of any column of B with overlapping
nonzero entries never cancel to zero.
In our algorithms, any input matrix X (X = A,B) is

provided as a set of key-value pairs (ki,j , (i, j, xi,j)) for all
elements xi,j 6= 0. Key ki,j represents a progressive index,
e.g., the number of nonzero entries preceding xi,j in the row-
major scan of X. We call a

√
n × √

n matrix dense if the
number of its nonzero entries is Θ (n), and we call it sparse
otherwise. In what follows, we present different algorithms
tailored for the multiplication of dense-dense (Section 3.1),
sparse-sparse (Section 3.2), and sparse-dense matrices (Sec-
tion 3.3). For suitable values of m and M the algorithms
complete in a constant number of rounds. We also derive
lower bounds which demonstrate that our deterministic al-
gorithms are either optimal or close to optimal (Section 3.4),
and an algorithm for estimating the number of nonzero en-
tries in the product of two sparse matrices (Section 3.2.4).

3.1 Dense-Dense Matrix Multiplication
In this section we provide a simple, deterministic algo-

rithm for multiplying two dense matrices, which will be
proved optimal in Subsection 3.4. The algorithm is a straight-
forward adaptation of the well-established three-dimensional
algorithmic strategy for matrix multiplication of [22, 14],
however we describe a few details of its implementation in
MR(m,M) since the strategy is also at the base of algo-
rithms for sparse matrices. W.l.o.g. we may assume that
m ≤ 2n, since otherwise matrix multiplication can be exe-
cuted by a trivial sequential algorithm. We consider matri-
ces A and B as decomposed into

√
m×√

m submatrices and
subdivide the products between submatrices into groups as
described above.
In each round, the algorithm computes all products within

K = min{M/n,
√

n/m} consecutive groups: namely, at
round r ≥ 1, all multiplications in Gℓ are computed, with
(r − 1)K ≤ ℓ < rK. The idea is that in a round all sub-
matrices of A and B can be replicated K times and paired
in such a way that each reducer performs a distinct multi-
plication in ∪(r−1)K≤ℓ<rKGℓ. Then, each reducer sums the
newly computed product to a partial sum which accumulates
all of the products contributing to the same submatrix of C
belonging to groups with the same index modulo K dealt
with in previous rounds. At the end of the

√
n/(K

√
m)-th

round, all submatrix products have been computed. The

final matrix C is then obtained by adding together the K
partial sums contributing to each entry of C through a prefix
computation2. We have the following result.

Theorem 2. The above MR(m,M)-algorithm multiplies

two
√
n×√

n dense matrices in

O

(
n3/2

M
√
m

+ logm n

)

rounds.

Proof. The algorithm clearly complies with the mem-
ory constraints of MR(m,M) since each reducer multiplies
two

√
m×√

m submatrices and the degree of replication is
such that the algorithm never exceeds the aggregate mem-
ory bound of M . Also, the (n/m)3/2 products are computed

in n3/2/(M
√
m) rounds, while the final prefix computation

requires O (logm K + 1) = O (logm n) rounds.

We remark that the multiplication of two
√
n × √

n dense
matrices can be performed in a constant number of rounds
whenever m = Ω(nǫ), for constant ǫ > 0, and M

√
m =

Ω
(
n3/2

)
.

3.2 Sparse-Sparse Matrix Multiplication
Consider two

√
n×√

n sparse matrices A and B and de-
note with ñ < n the maximum number of nonzero entries in
any of the two matrices, and with õ the number of nonzero
entries in the product C = A ·B. Below, we present two de-
terministic MR-algorithms (D1 and D2) and a randomized
one (R1), each of which turns out to be more efficient than
the others for suitable ranges of parameters. We consider
only the case m < 2ñ, since otherwise matrix multiplication
can be executed by a trivial one-round MR-algorithm using
only one reducer. We also assume that the value ñ is pro-
vided in input. (If this were not the case, such a value could
be computed with a simple prefix computation in O (logm n)
rounds, which does not affect the asymptotic complexity of
our algorithms.) However, we do not assume that õ is known
in advance since, unlike ñ, this value cannot be easily com-
puted. In fact, the only source of randomization in algorithm
R1 stems from the need to estimate õ.

3.2.1 Deterministic algorithm D1

This algorithm is based on the following strategy adapted
from [18]. For 0 ≤ i <

√
n, let ai (resp., bi) be the number of

nonzero entries in the ith column of A (resp., ith row of B),
and let Γi be the set containing all nonzero entries in the ith
column of A and in the ith row of B. It is easily seen that all
of the aibi products between entries in Γi (one from A and
one from B) must be computed. The algorithm performs a
sequence of phases as follows. Suppose that at the beginning
of Phase t, with t ≥ 0, all products between entries in Γi, for
each i ≤ r−1 and for a suitable value r (initially, r = 0), have
been computed and added to the appropriate entries of C.
Through a prefix computation, Phase t computes the largest
Kt such that

∑r+Kt

j=r ajbj ≤ M . Then, all products between
entries in Γj , for every r ≤ j ≤ r +Kt, are computed using
one reducer (with constant memory) for each such product.

2The details of the key assignments needed to perform the
necessary data redistributions among reducers are tedious
but straightforward, and will be provided in the full version
of this abstract.

The products are then added to the appropriate entries of
C using again a prefix computation.

Theorem 3. Algorithm D1 multiplies two sparse
√
n ×√

n matrices with at most ñ nonzero entries each in

O

(⌈
ñmin{ñ,√n}

M

⌉
logm M

)

rounds, on MR(m,M).

Proof. The correctness is trivial and the memory con-
straints imposed by the model are satisfied since in each
phase at most M elementary products are performed. The
theorem follows by observing that the maximum number of
elementary products is ñmin{ñ,√n} and that two consec-
utive phases compute at least M elementary products in
O (logm M) rounds.

3.2.2 Deterministic algorithm D2

The algorithm exploits the same three-dimensional algo-
rithmic strategy used in the dense-dense case and consists
of a sequence of phases. In Phase t, t ≥ 0, all

√
m × √

m-
size products within Kt consecutive groups are performed
in parallel, where Kt is a phase-specific value. Observe that
the computation of all products within a group Gℓ requires
space Mℓ ∈ [ñ, ñ + õ], since each submatrix of A and B
occurs only once in Gℓ and each submatrix product con-
tributes to a distinct submatrix of C. However, the value
Mℓ can be determined in Θ (ñ) space and O (logm n) rounds
by“simulating”the execution of the products in Gℓ (without
producing the output values) and adding up the numbers of
nonzero entries contributed by each product to the output
matrix. The value Kt is determined as follows. Suppose
that, at the beginning of Phase t, groups Gℓ have been pro-
cessed, for each ℓ ≤ r − 1 and for a suitable value r (ini-
tially, r = 0). The algorithm replicates the input matrices

K′
t = min{M/ñ,

√
n/m} times. Subsequently, through sort-

ing and prefix computations the algorithm computes Mℓ for
each r ≤ ℓ < r + K′

t and determines the largest Kt ≤ K′
t

such that
∑r+Kt

ℓ=r Mℓ ≤ M . Then, the actual products in
Gℓ, for each r ≤ ℓ ≤ r +Kt are executed and accumulated
(again using a prefix computation) in the output matrix C.
We have the following theorem.

Theorem 4. Algorithm D2 multiplies two sparse
√
n ×√

n matrices with at most ñ nonzero entries each in

O

(⌈
(ñ+ õ)

√
n

M
√
m

⌉
logm M

)

rounds on MR(m,M), where õ denotes the maximum num-

ber of nonzero entries in the output matrix.

Proof. The correctness of the algorithm is trivial. Phase
t requires a constant number of sorting and prefix computa-
tions to determine Kt and to add the partial contributions
to the output matrix C. Each value Mℓ is O (ñ+ õ) and the

groups are
√

n/m, then Kt = Ω
(
min{M/(ñ+ õ),

√
n/m}

)

and the theorem follows.

We remark that the value õ appearing in the stated round
complexity needs not be explicitly provided in input to the
algorithm. We also observe that with respect to Algorithm
D1, Algorithm D2 features a better exploitation of the local

memories available to the individual reducers, which com-
pute

√
m × √

m-size products rather than working at the
granularity of the single entries.

By suitably combining Algorithms D1 and D2, we can get
the following result.

Corollary 1. There is a deterministic algorithm which

multiplies two sparse
√
n × √

n matrices with at most ñ
nonzero entries each in

O

(⌈
min{ñ2, ñ

√
n, (ñ+ õ)

√
n/m}

M

⌉

logm M

)

rounds on MR(m,M), where õ denotes the maximum num-

ber of nonzero entries in the output matrix.

3.2.3 Randomized algorithm R1

Algorithm D2 requires O (logm M) rounds in each Phase
t for computing the number Kt of groups to be processed.
However, if õ were known, we could avoid the computa-
tion of Kt and resort to the fixed-K strategy adopted in
the dense-dense case, by processing K = M/(ñ+ õ) con-
secutive groups per round. This would yield an overall
O ((ñ+ õ)

√
n/(M

√
m) + logm M) round complexity, where

the logm M additive term accounts for the complexity of
summing up, at the end, the K contributions to each en-
try of C. However, õ may not be known a priori. In this
case, using the strategy described in Section 3.2.4 we can
compute a value ô which is a 1/2-approximation to õ with
probability at least 1− 1/n. (We say that ô ǫ-approximates
õ if |õ− ô| < ǫõ.) Hence, in the algorithm we can plug in 2ô
as an upper bound to õ. By using the result of Theorem 6
with ǫ = 1/2 and δ = 1/(2n), we have:

Theorem 5. Let m = Ω
(
log2 n

)
. Algorithm R1 multi-

plies two sparse
√
n ×√

n matrices with at most ñ nonzero

entries in

O

(
(ñ+ õ)

√
n

M
√
m

+ logm M

)

rounds on MR(m,M), with probability at least 1− 1/n.

By comparing the rounds complexities stated in Corol-
lary 1 and Theorem 5, it is easily seen that the random-
ized algorithm R1 outperforms the deterministic strategies
when m ∈ (Ω

(
log2 n

)
, o(M ǫ)), for any constant ǫ, ñ ≥√

n/m/ logm M , and õ ≤ ñmin{ñ,√m} logm M . For a con-
crete example, R1 exhibits better performance when ñ >√
n, õ = Θ(ñ), and m is polylogarithmic in M . More-

over, both the deterministic and randomized strategies can
achieve a constant round complexity for suitable values of
the memory parameters.

3.2.4 Evaluation of the number of nonzero entries

Observe that a
√
n-approximation to õ derives from the

following simple argument. Let ai and bi be the number of
nonzero entries in the ith column of A and in the ith row ofB
respectively, for each 0 ≤ i <

√
n. Then, õ ≤∑

√
n−1

i=0 aibi ≤
õ
√
n. Evaluating the sum requires O (1) sorting and pre-

fix computations, hence a
√
n-approximation of õ can be

computed in O (logm ñ) rounds. However, such an approxi-
mation is too weak for our purposes and we show below how
to achieve a tighter approximation by adapting a strategy
born in the realm of streaming algorithms.

Let ǫ > 0 and 0 < δ < 1 be two arbitrary values. An ǫ-
approximation to õ can be derived by adapting the algorithm
of [2] for counting distinct elements in a stream x0x1 . . .,
whose entries are in the domain [n] = {0, . . . , n − 1}. The
algorithm of [2] makes use of a very compact data structure,
customarily called sketch in the literature, which consists of
∆ = Θ(log(1/δ)) lists, L1, L2, . . . , L∆. For 0 ≤ w < ∆, Lw

contains the t = Θ
(
⌈1/ǫ2⌉

)
distinct smallest values of the

set {φw(xi) : i ≥ 0}, where φw : [n] → [n3] is a hash function
picked from a pairwise independent family. It is shown in [2]
that the median of the values tn3/v0, . . . tn

3/v∆−1, where vw
denotes the tth smallest value in Lw, is an ǫ-approximation
to the number of distinct elements in the stream, with prob-
ability at least 1−δ. In order to compute an ǫ-approximation
of õ for a product C = A · B of

√
n ×√

n matrices, we can
modify the algorithm as follows. Consider the stream of
values in [n] where each element of the stream corresponds
to a distinct product ai,hbh,j 6= 0 and consists of the value
j + i

√
n. Clearly, the number of distinct elements in this

stream is exactly õ. (A similar approach has been used in
[1] in the realm of sparse boolean matrix products.) We now
show how to implement this idea on MR(m,M).
The MR-algorithm is based on the crucial observation

that if the stream of values defined above is partitioned
into segments, the sketch for the entire stream can be ob-
tained by combining the sketches computed for the individ-
ual segments. Specifically, two sketches are combined by
merging each pair of lists with the same index and selecting
the t smallest values in the merged list. The MR(m,M)-
algorithm consists of a number of phases, where each phase,
except for the last one, produces set of M/m sketches, while
the last phase combines the last batch of M/m sketches into
the final sketch, and outputs the approximation to õ.
We refer to the partition of the matrices into

√
m × √

m
submatrices and group the products of submatrices as done
before. In Phase t, with t ≥ 1, the algorithm processes the
products in K = min{M/ñ,

√
n/m} consecutive groups, as-

signing each pair of submatrices in one of the K groups to
a distinct reducer. A reducer receiving Ai,h and Bh,j , each
with at least a nonzero entry, either computes a sketch for
the stream segment of the nonzero products between en-
tries of Ai,h and Bh,j , if the total number of nonzero en-
tries of Ai,h and Bh,j exceeds the size of the sketch, namely
H = Θ

(
(1/ǫ2) log(1/δ)

)
words, or otherwise leaves the two

submatrices untouched (observe that in neither case the ac-
tual product of the two submatrices is computed). In this
latter case, we refer to the pair of (very sparse) submatrices
as a pseudosketch. At this point, the sketches produced by
the previous phase (if t > 1), together with the sketches and
pseudosketches produced in the current phase are randomly
assigned to M/m reducers. Each of these reducers can now
produce a single sketch from its assigned pseudosketches (if
any) and merge it with all other sketches that were assigned

to it. In the last phase (t =
√

n/m/K) the M/m sketches
are combined into the final one through a prefix computa-
tion, and the approximation to õ is computed.

Theorem 6. Let m = Ω
(
(1/ǫ2) log(1/δ) log(n/δ)

)
and

let ǫ > 0 and 0 < δ < 1 be arbitrary values. Then, with

probability at least 1− 2δ, the above algorithm computes an

ǫ-approximation to õ in

O

(
ñ
√
n

M
√
m

+ logm M

)

rounds, on MR(m,M)

Proof. The correctness of the algorithm follows from the
results of [2] and the above discussion. Recall that the value
computed by the algorithm is an ǫ-approximation to õ with
probability 1− δ. As for the rounds complexity we observe
that each phase, except for the last one, requires a constant
number of rounds, while the last one involves a prefix com-
putation thus requiring O (logm M) rounds. We only have
to make sure that in each phase the memory constraints are
satisfied (with high probability). Note also that a sketch of
size H ≤ m is generated either in the presence of a pair
of submatrices Ai,h, Bh,j containing at least H entries, or
within one of the M/m reducers. By the choice of K, it is
easy to see that in any case, the overall memory occupied by
the sketches is O (M). As for the constraint on local mem-
ories, a simple modification of the standard balls-into-bins
argument [24] and the union bound suffices to show that
with probability 1 − δ, in every phase when sketches and
pseudosketches are assigned to M/m reducers, each reducer
receives in O

(
m+ (1/ǫ2) log(1/δ) log(n/δ)

)
= O (m) words.

The theorem follows. (More details will be provided in the
full version of the paper.)

3.3 Sparse-Dense matrix multiplication
Let A be a sparse

√
n×√

n matrix with at most n̄ nonzero
entries and let B be a dense

√
n×√

n matrix (the symmet-
ric case, where A is dense and B sparse, is equivalent). The
algorithm for dense-dense matrix multiplication does not ex-
ploit the sparsity of A and takes O (n

√
n/(M

√
m) + logm n)

rounds. Also, if we simply plug ñ = n in the complexities
of the three algorithms for the sparse-sparse case (where ñ
represented the maximum number of nonzero entries of A or
B) we do not achieve a better round complexity. However,
a careful analysis of algorithm D1 in the sparse-dense case
reveals that its round complexity is O (⌈n̄√n/M⌉ logm M).
By using the fastest algorithm, depending on the relative
values of the parameters, we obtain:

Corollary 2. The multiplication on MR(m,M) between
a sparse

√
n × √

n matrix with at most n̄ nonzero entries

and a dense
√
n × √

n matrix requires a number of rounds

which is the minimum between O (⌈n̄√n/M⌉ logm M) and

O (n
√
n/(M

√
m) + logm n).

The above sparse-dense strategy outperforms all previous
algorithms for instance when n̄ = o(n/(

√
m logm M)).

3.4 Lower bounds
In this section we provide lower bounds for deterministic

dense-dense and sparse-sparse matrix multiplication. We
restrict our attention to algorithms performing all nonzero
elementary products ai,k · bk,j , which we refer to as conven-
tional sparse algorithms, extending a similar terminology
introduced in [14] for the dense case. Although this assump-
tion limits the class of algorithms, ruling out Strassen-like
techniques, the following lemma generalizes a result in [17]
to prove that computing all nonzero elementary products
is indeed necessary when entries of the input matrices are
from the semiring (N,+, ·). (A similar lemma holds for the
semiring (N ∪ {∞},min,+), where ∞ is the identity of the
min operation, which is usually adopted for shortest path
computations.)

Lemma 1. Consider an algorithm A which multiples two√
n×√

n matrices A and B with ñA and ñB nonzero entries,

respectively, from the semiring (N,+, ·). Then, for each ñA

and ñB, algorithm A must perform all the nonzero elemen-

tary products.

Proof. The result in [17] focuses on algorithms for mul-
tiplying

√
n × √

n matrices which do not exploit sparsity.
The proof in [17] identifies some specific pairs of

√
n × √

n
matrices so that any algorithm that does not compute all
elementary products is not correct on at least one such pair.
Our generalization identifies similar matrix pairs containing
ñA and ñB nonzero entries so that any algorithm that does
not compute all nonzero elementary products is not correct
on at least one such pair. More details will be provided in
the full version of the paper.

The following theorem exhibits a tradeoff in the lower
bound between the amount of local and aggregate memory
and the round complexity of a conventional sparse matrix
multiplication algorithm. The proof is similar to the one
proposed in [14] for lower bounding the communication com-
plexity of dense-dense matrix multiplication in a BSP-like
model: however, differences arise since we focus on round
complexity and our model does not assume the outdegree of
a reducer to be bounded. In the proof of the theorem we
use the following lemma which was proved using the red-blue
pebbling game in [13] and then restated in [14] as follows.

Lemma 2 ([14]). Consider a parallel algorithm comput-

ing the product C = A ·B, where A and B are two arbitrary

matrices. A processor that uses NA entries of A and NB

entries of B, and computes elementary products for NC en-

tries of C, can compute at most (NANBNC)
1/2 elementary

products.

Theorem 7. Consider a conventional sparse MR(m,M)-
algorithm A for multiplying two

√
n × √

n matrices. Let P
and õ denote the number of nonzero elementary products and

the number of nonzero entries in the output matrix, respec-

tively. Then, the round complexity of A is

Ω

(⌈
P

M
√
m

⌉
+ logm

(
P

õ

))
.

Proof. Let A be an R-round MR(m,M)-algorithm com-
puting C = A · B. We prove that R = Ω(P/(M

√
m)).

Consider the r-th round, with 1 ≤ r ≤ R, and let k be an
arbitrary key in Ur and Kr = |Ur|. We denote with or,k the
space taken by the output of ρr(Wr,k) which contributes ei-
ther to Or or to Wr+1, and with mr,k the space needed to
compute ρr(Wr,k) including the input and working space but
excluding the output. Clearly, mr,k ≤ m,

∑
k∈Ur

mr,k ≤ M ,

and
∑

k∈Ur
or,k ≤ õ ≤ M .

Suppose M/Kr ≥ m. By Lemma 2, the reducer ρr with
input Wr,k can compute at most m

√
or,k elementary prod-

ucts, since NA, NB ≤ m and NC ≤ or,k, where NA and
NB denote the entries of A and B used in ρr(Wr,k) and NC

the entries of C for which contributions are computed by
ρr(Wr,k). Then, the number of terms computed in the r-
th round is at most

∑
k∈Ur

m
√
or,k ≤ m

√
MKr ≤ M

√
m,

since Kr ≤ M/m and the summation is maximized when
or,k = M/Kr for each k ∈ Ur.
Suppose now that M/Kr < m. Partition the keys in Ur

into K′
r sets S0, . . . SK′

r−1 such that m ≤∑k∈Sj
mr,k ≤ 2m

for each 0 ≤ j < K′
r (the lower bound may be not satis-

fied for j = K′
r − 1). Clearly, ⌊M/2m⌋ ≤ K′

r ≤ ⌈M/m⌉.

By Lemma 2, the number of elementary products computed
by all the reducers ρr(Wr,k) with keys in a set Sj is at most∑

k∈Sj
(mr,kmr,kor,k)

1/2. Since (xyz)1/2+(x′y′z′)1/2 ≤ ((x+

x′)(y + y′)(z + z′))1/2 for each non negative assignment of
the x, y, z, x′, y′, z′ variables and since

∑
k∈Sj

mr,k ≤ 2m,

it follows that at most 2m
√

Or,j elementary products can
be computed using keys in Sj , where Or,j =

∑
k∈Sj

or,k.

Therefore, the number of elementary products computed in

the r-th round is at most
∑K′

r−1
j=0 2m

√
Or,j ≤ 2m

√
MK′

r ≤
2M

√
2m, since K′

r ≤ ⌈M/m⌉ and the sum is maximized
when Or,j = M/K′

r for each 0 ≤ j < K′
r.

Therefore, in each round O (M
√
m) nonzero elementary

products can be computed, and then R = Ω(⌈P/M√
m⌉).

The second term of the lower bound follows since there is
at least one entry of C given by the sum of P/õ nonzero
elementary products.

We now specialize the above lower bound for algorithms
for generic dense-dense and sparse-sparse matrix multiplica-
tion.

Corollary 3. Consider a conventional sparse MR(m,M)-
algorithm A for multiplying two

√
n×√

n matrices. For in-

put matrices with at most ñ nonzero entries each, the round

complexity of A is

Ω

(⌈
ñmin{ñ,√n}

M
√
m

⌉
+ logm ñ

)
.

Proof. Consider two matrices with ñ nonzero entries
each. Depending on which of the two terms in the com-
plexity dominates, we can distribute the nonzero entries in
the input matrices so that P = ñmin{ñ,√n} or P/õ =
Ω(ñ).

All deterministic algorithms provided in this section com-
ply with the hypotheses of the lower bound, hence the above
corollary applies (even in the dense-dense case, by setting
ñ = n). Thus, the algorithm for dense-dense matrix mul-
tiplication described in Section 3.1 is optimal for any value
of the parameters. On the other hand, the deterministic al-
gorithm D2 for sparse-sparse matrix multiplication given in
Section 3.2.2 is optimal whenever ñ ≥ √

n, õ = O (ñ) and m
is polynomial in M .

4. APPLICATIONS
We now apply the algorithms presented in Section 3 to de-

rive efficient algorithms for inverting a square matrix and for
solving several variants of the matching problem in a graph.
For specific values of m and M , these MR-algorithms com-
plete in O (log n) rounds, whereas the corresponding PRAM
algorithms [15, 25], simulated using the technique from [16,
Theorem 7.1], take O

(
log2 n

)
rounds.

As done in other parallel models (see e.g. [15]), we assume
that each memory word is able to store any value that occurs
in the computation. Detailed descriptions of the algorithms
and proofs of the theorems will appear in the full version of
the paper.

4.1 Inverting a lower triangular matrix
In this section we study the problem of inverting a lower

triangular matrix A of size
√
n×√

n. We adapt the simple
recursive algorithm which leverages on the easy formula for

inverting a 2× 2 lower triangular matrix [15, Sect. 8.2]. We
have

[
a 0
b c

]−1

=

[
a−1 0

−c−1ba−1 c−1

]
. (1)

Since Equation (1) holds even when a, b, c are matrices, it
is possible to derive a simple recursive algorithm for invert-
ing a lower triangular matrix. Such an algorithm is easily
implemented on MR(m,M) by partitioning A into square
matrices of size

√
m×√

m and proceed from the bottom up.
The following theorem formalizes the complexity of such an
algorithm.

Theorem 8. The above recursive algorithm computes the

inverse of a nonsingular lower triangular
√
n × √

n matrix

A in

O

(
n3/2

M
√
m

+
log2 n

logm

)

rounds on MR(m,M).

When M
√
m is Ω

(
n3/2

)
and m = Ω(nǫ) for some con-

stant ǫ, the complexity reduces to O (log n) rounds.
It is also possible to compute A−1 using the closed formula

derived by unrolling a blocked forward substitution. In gen-
eral, the closed formula contains an exponential number of
terms. There are nonetheless special cases of matrices for
which a large number of terms in the sum are zero and only
a polynomial number of terms is left. This is, for instance,
the case for triangular band matrices. A

√
n×√

n lower tri-
angular band matrix A with bandwidth b <

√
n is a matrix

such that for all entries ai,j with |i− j| ≥ b or i < j we have
ai,j = 0. Note that the inverse of a triangular band matrix
is triangular but not necessarily a triangular band matrix.
It is possible to compute the inverse of these matrices in a
constant number of rounds, as formalized by the following
theorem.

Theorem 9. Let A be a
√
n × √

n triangular band ma-

trix with bandwidth b = nǫ, for a constant ǫ ∈ (0, 1/2).
Then, if m = Ω

(
n2ǫ+α

)
for any constant α ∈ (0, 1 − 2ǫ)

and M = Ω
(
n3/2−ǫ

)
, computing A−1 takes O(1) rounds in

MR(m,M).

4.2 Inverting a general matrix
Building on the inversion algorithm for triangular matri-

ces presented in the previous subsection, and on the dense-
dense matrix multiplication algorithm, in this section we de-
velop an MR(m,M)-algorithm to invert a general

√
n×√

n
matrix A. Let the trace tr(A) of A be defined as

∑n−1
i=0 ai,i,

where ai,i denotes the entry of A on the i-th row and i-
th column. The algorithm is based on the following known
strategy (see e.g., [15, Sect. 8.8]).

1. Compute the powers A2, . . . , A
√
n−1.

2. Compute sk =
∑√

n
i=1tr(A

k), for 1 ≤ k ≤ √
n− 1.

3. Compute the coefficients ci of the characteristic poly-
nomial of A by solving a lower triangular system of

√
n

linear equations involving the values sk (the system is
specified below).

4. Compute A−1 = −(1/c0)
∑√

n
i=1 ciA

i−1.

We now provide more details on the MR implementation

of above strategy. The algorithm requires M = Ω
(
n3/2

)
,

which ensures that enough aggregate memory is available to
store all the

√
n powers of A. In Step 1, the algorithm

computes naively the powers in the form A2i , 1 ≤ i ≤
log

√
n, by performing a sequence of log

√
n matrix multi-

plications using the algorithm in Section 3.1. Then, each
one of the remaining powers is computed using M/

√
n ≥ n

aggregate memory and by performing a sequence of at most

log
√
n multiplications of the matrices A2i obtained earlier.

In Step 2, the
√
n values sk are computed in parallel using a

prefix-like computation, while the coefficients ci of the char-
acteristic polynomial are computed in Step 3 by solving the
linear system L · C = −S (i.e., computing C = −L−1S). L
is a lower triangular matrix whose elements are ℓi,j = si−j ,
for 0 ≤ j < i <

√
n, and ℓi,i = i+1 for 0 ≤ i <

√
n, C is the

vector of the unknown coefficient ci, and S is the vector of
the values sk. In order to compute the coefficients in C the
algorithm inverts the

√
n×√

n lower triangular matrix L as
described in Section 4.1, and computes the product between
L−1 and S, to obtain C. Finally, Step 4 requires a prefix-like
computation. We have the following theorem.

Theorem 10. The above algorithm computes the inverse

of any nonsingular
√
n×√

n matrix A in

O

(
n2 log n

M
√
m

+
log2 n

logm

)

rounds on MR(m,M), with M = Ω
(
n3/2

)
.

If M
√
m is Ω

(
n2 log n

)
and m = Ω(nǫ) for some constant

ǫ, the complexity reduces to O (log n) rounds.

4.3 Approximating the inverse of a matrix
The above algorithm for computing the inverse of any

nonsingular matrix requires M = Ω
(
n3/2

)
. In this sec-

tion we provide an MR(m,M)-algorithm providing a strong
approximation of A−1 only assuming the natural constraint
M = Ω(n). A matrix B is a strong approximation of the in-

verse of an
√
n×√

n matrix A if ‖B−A−1‖/‖A−1‖ ≤ 2−nc

,
for some constant c > 0. The norm ‖A‖ of a matrix A is
defined as

‖A‖ = max
x 6=0

‖Ax‖2/‖x‖2

where ‖ · ‖2 denotes the Euclidean norm of a vector. The
condition number κ(A) of a matrix A is defined as κ(A) =
‖A‖‖A−1‖.

An iterative method to compute a strong approximation
of the inverse of a

√
n × √

n matrix A is proposed in [15,
Sect. 8.8.2]. The method works as follows. Let B0 be a√
n×√

n matrix satisfying the condition ‖I√n − B0A‖ = q
for some 0 < q < 1 and where I√n is the

√
n×√

n identity
matrix. For a

√
n×√

n matrix C let r(C) = I√n −CA. We
define Bk = (I√n + r(Bk−1))Bk−1, for k > 0. We have

‖Bk −A−1‖
‖A−1‖ ≤ q2

k

.

By setting B0 = αAT where

α = max
i

{
√
n−1∑

j=0

|ai,j |}max
j

{
√
n−1∑

i=0

|ai,j |},

we have q = 1−1/(κ(A)2n) [26]. Then, if κ(A) = O (nc) for
some constant c ≥ 0, Bk provides a strong approximation
when k = Θ(log n). From the above discussion, it is easy to
derive an efficient MR(m,M)-algorithm to compute a strong
approximation of the inverse of a matrix using the algorithm
for dense matrix multiplication in Section 3.1.

Theorem 11. The above algorithm provides a strong ap-

proximation of the inverse of any nonnegative
√
n×√

n ma-

trix A in

O

(
n3/2 log n

M
√
m

+
log2 n

logm

)

rounds on MR(m,M) when κ(A) = O (nc) for some con-

stant c ≥ 0.

If M
√
m is Ω

(
n3/2 log n

)
and m = Ω(nǫ) for some con-

stant ǫ, the complexity reduces to O (log n) rounds.

4.4 Matching of general graphs
Given a graph G = (V,E), with |V | =

√
n and |E| =

k, a matching is a set of edges without common vertices.
Matching problems are natural and ubiquitous in computer
science. In this section we present an algorithm to compute,
with high probability, a perfect matching of a general graph.
A perfect matching is defined as a matching containing an
edge for each vertex in V . The following strategy to compute
a perfect matching with probability at least 1/2 is presented
in [25]:

1. Let the input of the algorithm be the adjacency matrix
A of a graph G = (V,E) with

√
n vertices and k edges.

2. Let B be the matrix obtained from A by substituting
the entries ai,j = aj,i = 1 corresponding to edges in the
graph with the integers 2wi,j and −2wi,j respectively,
for 0 ≤ i < j <

√
n, where wi,j is an integer chosen

independently and uniformly at random from [1, 2k].
We denote the entry on the ith row and jth column of
B as bi,j .

3. Compute the determinant det(B) of B and the greatest
integer w such that 2w divides det(B).

4. Compute adj(B), the adjugate matrix ofB, and denote
the entry on the ith row and jth column as adj(B)i,j .

5. For each edge (vi, vj) ∈ E, compute

zi,j =
bi,j · adj(B)i,j

2w
.

If zi,j is odd, then add the edge (vi, vj) to the match-
ing.

An MR(m,M)-algorithm for perfect matching easily fol-
lows from the above strategy. To obtain B (Step 2), A is
partitioned into square

√
m × √

m submatrices Aℓ,h, 0 ≤
ℓ, h <

√
n/m, and then each pair of submatrices (Aℓ,h, Ah,ℓ)

is assigned to a different reducer. This assignment ensures
that each pair of entries (ai,j , aj,i) of A is sent to the same
reducer. The reducer receiving the pair (Aℓ,h, Ah,ℓ) (i.e., re-
ceiving the pairs (ai,j , aj,i), where ℓ

√
m ≤ i < (ℓ + 1)

√
m,

h
√
m ≤ j < (h + 1)

√
m), chooses a wi,j independently and

uniformly at random from [1, 2k] for each pair (ai,j , aj,i)
such that ai,j = aj,i = 1, and sets bi,j to 2wi,j and bj,i to
−2wi,j . For all the other entries ai,j = aj,i = 0, the reducer
sets bi,j = bj,i = 0. Let ck, 0 ≤ k ≤ √

n be the coefficients of
the characteristic polynomial of B, which can be computed

as described in Section 4.2. Using the fact that the deter-
minant of B is c0 and adj(B) = −(c1I + c2B+ c3B

2 + · · ·+
c√nB

√
n−1), it is easy to implement Steps 3 and 4. Finally

(Step 5), matrices B and adj(B) are partitioned in square
submatrices of size

√
m×√

m, and corresponding submatri-
ces assigned to the same reducer, which computes the values
zi,j for the entries in its submatrices and outputs the edges
belonging to the matching.

Executing this procedure Θ (log n) times in parallel allows
us to obtain a perfect matching with high probability, as
formalized by the following theorem.

Theorem 12. The above algorithm computes, with high

probability, a perfect matching of the vertices of a graph G,

in

O

(
n2 log n

M
√
m

+
log2 n

logm

)

rounds on MR(m,M), where M = Ω
(
n3/2 log n

)
.

Our algorithm can be extended (as in [25]) to other vari-
ants of the matching problem like minimum weight perfect
matching and maximum matching. The maximum matching
problem in particular was already studied in the MapReduce
framework in [19]. The authors of this work present an algo-
rithm to obtain, with high probability, an 8-approximation
to the maximum matching in a graph with k = n(1−c) for
some constant c. Their algorithm runs in a constant (4)

number of rounds if m = n1/2+1/(3−6c) and M = k. In com-
parison our algorithm runs in O (log n) rounds if M

√
m is

Ω
(
n2 log n

)
and m = Ω(nǫ) for some constant ǫ, but com-

putes an exact solution with high probability.

5. CONCLUSIONS
In this paper, we provided a formal specification of a

computational model for the MapReduce paradigm which
is parametric in the local and aggregate memory sizes
and retains the functional flavor originally intended for the
paradigm. Performance in the model is represented by the
round complexity, which is consistent with the idea that
when processing large data sets the dominant cost is the
reshuffling of the data. The two memory parameters fea-
tured by the model allow the algorithm designer to explore
a wide spectrum of tradeoffs between round complexity and
memory availability. In the paper, we covered interesting
such tradeoffs for the fundamental problem of matrix multi-
plication and some of its applications. The study of similar
tradeoffs for other important applications (e.g., graph prob-
lems) constitutes an interesting open problem.

6. ACKNOWLEDGMENTS
The work of Pietracaprina, Pucci and Silvestri was sup-

ported, in part, by MIUR of Italy under project AlgoDEEP,
by the University of Padova under the Strategic Project
STPD08JA32 and Project CPDA099949/09, and by Ama-
zon Web Services in Education grant. The work of Riondato
and Upfal was supported, in part, by NSF award IIS-0905553
and by the University of Padova through the Visiting Scien-
tist 2010/2011 grant.

7. REFERENCES

[1] R. Amossen, A. Campagna, and R. Pagh. Better size
estimation for sparse matrix products. In
Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques, volume
6302 of Lecture Notes in Computer Science, pages
406–419, 2010.

[2] Z. Bar-Yossef, T. S. Jayram, R. Kumar,
D. Sivakumar, and L. Trevisan. Counting distinct
elements in a data stream. In Proc. of the 6th Intl.

Workshop on Randomization and Approximation

Techniques, pages 1–10, 2002.

[3] G. Bilardi and A. Pietracaprina. Theoretical models of
computation. In D. Padua, editor, Encyclopedia of

Parallel Computing, pages 1150–1158. Springer, 2011.

[4] A. Buluç and J. R. Gilbert. Challenges and advances
in parallel sparse matrix-matrix multiplication. In
Proc. of 37th Intl. Conference on Parallel Processing,
pages 503–510, 2008. See also CoRR abs/1006.2183.

[5] F. Chierichetti, R. Kumar, and A. Tomkins.
Max-cover in Map-Reduce. In Proc. of the 19th World

Wide Web Conference, pages 231–240, 2010.

[6] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Communications of

the ACM, 51(1):107–113, 2008.

[7] J. Feldman, S. Muthukrishnan, A. Sidiropoulos,
C. Stein, and Z. Svitkina. On distributing symmetric
streaming computations. ACM Transactions on

Algorithms, 6(4), 2010.

[8] J. Gilbert, V. Shah, and S. Reinhardt. A unified
framework for numerical and combinatorial
computing. Computing in Science Engineering,
10(2):20–25, 2008.

[9] M. Goodrich, N. Sitchinava, and Q. Zhang. Sorting,
searching, and simulation in the MapReduce
framework. In Proc. of the 22nd International Symp.

on Algorithms and Computation, 2011. See also CoRR
abs/1004.470.

[10] M. T. Goodrich. Communication-efficient parallel
sorting. SIAM Journal on Computing, 29(2):416–432,
1999.

[11] G. Greiner and R. Jacob. The I/O complexity of
sparse matrix dense matrix multiplication. In Proc. of

9th Latin American Theoretical Informatics, volume
6034, pages 143–156, 2010.

[12] F. G. Gustavson. Two fast algorithms for sparse
matrices: Multiplication and permuted transposition.
ACM Transactions on Mathematical Software,
4(3):250–269, 1978.

[13] J. W. Hong and H. T. Kung. I/O complexity: The
red-blue pebble game. In Proceedings of the 13th ACM

Symp. on Theory of Computing, pages 326–333, 1981.

[14] D. Irony, S. Toledo, and A. Tiskin. Communication
lower bounds for distributed-memory matrix
multiplication. Journal of Parallel and Distributed

Computing, 64(9):1017–1026, 2004.

[15] J. JáJá. An Introduction to Parallel Algorithms.
Addison Wesley Longman Publishing Co., Inc., 1992.

[16] H. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for MapReduce. In Proc. of the 21st

ACM-SIAM Symp. On Discrete Algorithms, pages
938–948, 2010.

[17] L. R. Kerr. The Effect of Algebraic Structure on the

Computational Complexity of Matrix Multiplication.
PhD thesis, Cornell University, 1970.

[18] C. P. Kruskal, L. Rudolph, and M. Snir. Techniques
for parallel manipulation of sparse matrices.
Theoretical Computer Science, 64(2):135–157, 1989.

[19] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii.
Filtering: a method for solving graph problems in
MapReduce. In Proc. of the 23rd ACM Symp. on

Parallel Algorithms and Architectures, pages 85–94,
2011.

[20] J. Lin and C. Dyer. Data-Intensive Text Processing

with MapReduce. Morgan & Claypool, 2010.

[21] G. Manzini. Sparse matrix computations on the
hypercube and related networks. Journal of Parallel
and Distributed Computing, 21(2):169–183, 1994.

[22] W. F. McColl and A. Tiskin. Memory-efficient matrix
multiplication in the BSP model. Algorithmica,
24(3):287–297, 1999.

[23] M. Middendorf, H. Schmeck, H. Schröder, and
G. Turner. Multiplication of matrices with different
sparseness properties on dynamically reconfigurable
meshes. VLSI Design, 9(1):69–81, 1999.

[24] M. Mitzenmacher and E. Upfal. Probability and

Computing: Randomized Algorithms and Probabilistic

Analysis. Cambridge University Press, Cambridge
MA, 2005.

[25] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani.
Matching is as easy as matrix inversion.
Combinatorica, 7(1):105–113, 1987.

[26] V. Pan and J. Reif. Efficient parallel solution of linear
systems. In Proc. of the 17th ACM Symp. on Theory

of Computing, pages 143–152, 1985.

[27] G. Penn. Efficient transitive closure of sparse matrices
over closed semirings. Theoretical Computer Science,
354(1):72–81, 2006.

[28] C. Tsourakakis, U. Kang, G. Miller, and C. Faloutsos.
DOULION: counting triangles in massive graphs with
a coin. In Proc. of the 15th ACM SIGKDD Intl.

Conference on Knowledge Discovery and Data Mining,
pages 837–849, 2009.

[29] L. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, Aug.
1990.

[30] R. Yuster and U. Zwick. Detecting short directed
cycles using rectangular matrix multiplication and
dynamic programming. In Proc. of 15th ACM-SIAM

Symp. On Discrete Algorithms, pages 254–260, 2004.

[31] R. Yuster and U. Zwick. Fast sparse matrix
multiplication. ACM Transactions on Algorithms,
1(1):2–13, 2005.

	Introduction
	Previous work
	New results
	Organization of the paper

	Model definition and basic primitives
	Sorting and prefix sum computations

	Matrix multiplication
	Dense-Dense Matrix Multiplication
	Sparse-Sparse Matrix Multiplication
	Deterministic algorithm D1
	Deterministic algorithm D2
	Randomized algorithm R1
	Evaluation of the number of nonzero entries

	Sparse-Dense matrix multiplication
	Lower bounds

	Applications
	Inverting a lower triangular matrix
	Inverting a general matrix
	Approximating the inverse of a matrix
	Matching of general graphs

	Conclusions
	Acknowledgments
	References

