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Markov Chain Monte Carlo (MCMC) algorithms are commonly used to sample from graph en-
sembles. Two graphs are neighbors in the state space if one can be obtained from the other with
only a few modifications, e.g., edge rewirings. For many common ensembles, e.g., those preserving
the degree sequences of bipartite graphs, rewiring operations involving two edges are sufficient to
create a fully-connected state space, and they can be performed efficiently. We show that, for en-
sembles of bipartite graphs with fixed degree sequences and number of butterflies (k2,2 bi-cliques),
there is no universal constant c such that a rewiring of at most c edges at every step is sufficient for
any such ensemble to be fully connected. Our proof relies on an explicit construction of a family of
pairs of graphs with the same degree sequences and number of butterflies, with each pair indexed
by a natural c, and such that any sequence of rewiring operations transforming one graph into the
other must include at least one rewiring operation involving at least c edges. Whether rewiring these
many edges is sufficient to guarantee the full connectivity of the state space of any such ensemble re-
mains an open question. Our result implies the impossibility of developing efficient, graph-agnostic,
MCMC algorithms for these ensembles, as the necessity to rewire an impractically large number of
edges may hinder taking a step on the state space.

I. INTRODUCTION

Testing the statistical significance of properties of an
observed network is a fundamental problem in network
science [1]. The significance of the observed value is
tested against a null model, an ensemble H = (G, π) com-
posed of the set G of possible graphs that can be realized
under the null hypothesis and a probability distribution
π over G. One typically selects some descriptive char-
acteristics of the observed network, and either defines G
and π in such a way that the expectations w.r.t. π of these
characteristics over G are the same as the observed ones
(a.k.a. the canonical model), or defines G as the set of
all and only the graphs with exactly the same values for
the characteristics as the observed network, and π can be
any distribution, often the uniform. Once the null model
is defined, one proceeds by sampling several graphs from
this ensemble. These graphs are used to approximate the
distribution of the test statistic of interest under the null
hypothesis. By comparing the observed statistic to this
distribution one can compute an empirical p-value.
For example, the widely used “configuration model” [2]

considers the set of graphs with the same degree sequence
as the observed network and the uniform distribution.
This model has been instrumental in determining that
clustering, assortativity, and community structure in real
networks are not solely dependent on node degrees, hence
highlighting their significance [3]. However, the configu-
ration model fails to generate graphs with a local struc-
ture similar to the observed graph [4]. Researchers have
thus explored alternative null models that sample from
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graph families defined by more complex characteristics of
the observed graph, such as joint degree distribution [4–
7], core-value sequence [8], and local triangle-count se-
quence [9].

In this work, we focus on bipartite graphs, i.e., net-
works whose nodes can be partitioned into two classes
such that all edges go from one class to the other. For-
mally, a bipartite graph is a tuple G ≐ (L,R,E), where
L and R are disjoint sets of nodes called left and right
nodes, respectively, and E ⊆ L ×R is a set of edges con-
necting nodes in L to nodes in R. We consider undirected
bipartite graphs, but for ease of presentation, we denote
any edge (u, a) so that u ∈ L and a ∈ R. For any vertex v ∈
L∪R we denote with ΓG(v) the set of neighbors of v, i.e.,
the vertices to which v is connected by an edge in G, and
we define the degree dG(v) of v in G as dG(v) ≐ ∣ΓG(v)∣.
Assuming an arbitrary but fixed labeling u1, . . . , u∣L∣
(resp. a1, . . . , a∣R∣) of the nodes in L (resp. R), the vec-
tor ⟨dG(u1), . . . ,dG(u∣L∣)⟩ (resp. ⟨dG(a1), . . . ,dG(a∣R∣)⟩)
is known as the left (resp. right) degree sequence of G.

Bipartite networks occur naturally in many applica-
tions: when representing words and documents [10],
items and itemsets [11], higher-order networks such as hy-
pergraphs and simplicial complexes [12], and many more.
Null models and graph ensembles can also be defined on
bipartite graphs [11, 13, 14]. For example, Preti et al. [11]
introduce a null model that preserves the bipartite joint
adjacency matrix (i.e., the matrix whose (i, j)-th entry
is the number of edges connecting nodes from L with
degree i to nodes in R with degree j), of an observed
network (thus the degree sequences and the number of
caterpillars, i.e., paths of length 3), and give Markov
Chain Monte Carlo (MCMC) algorithms to sample from
this null model. Null models for bipartite graphs are also
of particular interest because they align with null models
for 0–1 binary matrices [15, Ch. 6]. For example, preserv-

mailto:giulia.preti@centai.eu
mailto:gdfm@acm.org
mailto:mriondato@amherst.edu


2

ing the degree sequences in a bipartite graph corresponds
to preserving the row and column marginals of the cor-
responding bi-adjacency matrix, and several MCMC al-
gorithms have been developed to sample from this null
model [16–20].

We consider graph ensembles for which G is the set
of all bipartite graphs G ≐ (L,R,E) that share the same
degree sequences and the same number of butterflies, i.e.,
k2,2 bi-cliques, defined as follows.

Definition 1 (Butterfly). Let G ≐ (L,R,E) be a bipar-
tite graph. Two distinct nodes u, v ∈ L and two distinct
nodes a, b ∈ R belong to the butterfly A = {u, v, a, b} in
G if and only if {(u, a), (u, b), (v, a), (v, b)} ⊆ E.

The following result, whose proof is immediate, gives
an expression for the number of butterflies to which two
nodes both belong.

Fact 1. Let G ≐ (L,R,E) be a bipartite graph, and let
u and v be distinct nodes in L. The number bG(u, v) of
butterflies in G to which both u and v belong is

bG(u, v) = (∣ΓG(u) ∩ ΓG(v)∣
2

) ,

where we assume (0
2
) = (1

2
) = 0. A similar result holds for

any two distinct nodes in R.

For u ∈ L, we denote with bG(u) the number of but-
terflies in G to which u belongs. It holds

bG(u) = ∑
v∈L
v≠u

bG(u, v) . (1)

The total number b(G) of butterflies in G is then

b(G) ≐ 1

2
∑
u∈L

bG(u) . (2)

The butterfly, being the smallest complete subgraph
in a bipartite graph, is the most basic building block for
composing more complex structures, analogous to the tri-
angle in unipartite graphs. Consequently, preserving the
number of butterflies emerges as a natural choice when
defining null models that retain more graph properties
beyond just the degree sequences. This concept finds
applications in studying, e.g., clustering patterns [21].
MCMC methods are a popular approach to sample

from an ensemble H = (G, π). They define a suitable
Markov chain on the space G of all possible graphs, such
that, after a sufficient burn-in period, the state of the
Markov chain is approximately distributed according to
π. The correctness of this process requires the Markov
chain to be finite, irreducible, and aperiodic [2]. Efficient
sampling requires not only that the Markov chain has a
fast mixing time, but also that the space can be explored
quickly, i.e., that obtaining a neighbor from the current
state is efficient. The double edge swap technique, also
known as degree-preserving rewiring [22], checkerboard

swap [23], or tetrad [17], is a simple yet fundamental
randomization technique used to generate a new graph
with the same degree sequence as a given graph. Its effi-
ciency stems from the fact that it involves the rewiring of
a small number of edges. In bipartite graphs, the most
basic rewiring technique is known as the bipartite swap
operation (BSO).

Definition 2 (BSO). Let G ≐ (L,R,E) be a bipartite
graph and u ≠ v ∈ L, a ≠ b ∈ R such that (u, a), (v, b) ∈ E
and (u, b), (v, a) ∉ E. The BSO involving (u, a) and (v, b)
removes (u, a) and (v, b) from E, and adds (u, b) and
(v, a) to E. The resulting bipartite graph G′ = (L,R, (E∖
{(u, a), (v, b)}) ∪ {(u, b), (v, a)}) has the same left and
right degree sequence of G.

A more sophisticated operation is the q-edge bipartite
swap operation (q-BSO), which may involve the simul-
taneous swapping of multiple edges, potentially between
a large set of nodes, similar to the q-switch operation
defined by Tabourier et al. [24].

Definition 3 (q-BSO). Let G ≐ (L,R,E) be a bipar-
tite graph and q ∈ N+. A q-BSO is a pair sw

q ≐ (S,σ)
with S = ⟨e1, . . . , eq⟩ being a vector of q distinct edges
ei ≐ (ui, ai) ∈ E, and σ being a derangement of [q], i.e.,
a permutation of [q] with no element in its original po-
sition, s.t. (uj , aσ(j)) ∉ E for each j ∈ [1, q]. Replac-
ing each ej with (uj , aσ(j)) generates a bipartite graph

G′ = (L,R, (E ∖ S) ∪ {(uj , aσ(j)) for j ∈ [1, q]}) with the
same left and right degree sequence as G.

According to this definition, a BSO involv-
ing (u, a) and (v, b) can be seen as the 2-BSO
(⟨(u, a), (v, b)⟩, (2 1)). Algorithms such as Verhelst’s [17]
and Curveball [20] aim to speed up the sampling from
the ensemble of bipartite graphs with fixed degree
sequences. They execute multiple BSO operations at
each step by selecting nodes u and v from L (or R) and
exchanging multiple edges originating from u with edges
originating from v. Conversely, a q-BSO may involve
the simultaneous swapping of multiple edges originating
from multiple source nodes. Thus, the moves considered
by Curveball and Verhelst’s can be expressed as q-BSOs,
but q-BSOs are more expressive, in the sense that there
are q-BSOs that do not correspond to possible moves for
these algorithms.

II. CONNECTIVITY OF THE STATE SPACE

A key requirement to use an MCMC method for sam-
pling from a graph ensemble is that the state space, where
each state corresponds to a graph in the ensemble, is
strongly connected, i.e., for any two states G′ and G′′

there is a sequence ⟨ρ1, ρ2, . . . , ρℓ⟩ of graph-transforming
operations for some ℓ (which may depend on the chosen
G′ and G′′), such that ρ1 transforms G′ into some G1

that belongs to the state space, ρi for 1 < i < ℓ trans-
forms Gi into Gi+1 that also belongs to the state space,
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and ρℓ transforms Gℓ−1 into G′′. In other words, a class C
of graph-transforming operations defines a neighborhood
structure of the state space as follows: given any G in
the state space, a neighbor of G is any state that can be
obtained by applying a single operation from C, provided
that the operation is applicable to G. With this neigh-
borhood structure, the state space is strongly connected
if there is a path from any state to any other state.

We can immediately see that the state space G we con-
sider is strongly connected by sequences of q-BSOs when
q is large enough, for any left and right degree sequences,
and any number of butterflies (see also [24, Sect. 3.2.2]).
In fact, there is always a ∣E′ ∖E′′∣-BSO that transforms
any bipartite graph G′ ≐ (L,R,E′) into another bipar-
tite graph G′′ ≐ (L,R,E′′) with the same left and right
degree sequences, and number of butterflies (see Supple-
mentary Material [25] for details). While this fact ensures
the strong connectivity of the state space via the union
of all q-BSOs for q = 2, . . . , ∣E′∣, it has little practical rel-
evance, as we now explain. If we use all these q-BSOs to
define the neighborhood structure of the state space, the
resulting space would be a complete graph, i.e., a clique.
Consequently, drawing, according to any distribution, a
neighbor of a given state would require a procedure to
build an entirely new bipartite graph with the same de-
gree sequences and the same number of butterflies from
scratch. Developing such a procedure seems even harder
than the problem we are attempting to solve, in the same
way as devising algorithms for building a bipartite graph
with prescribed degree sequences from scratch [26–30] is
much harder than devising algorithms for sampling such
a graph using MCMC approaches starting from an exist-
ing one [16–20].

The correct question to ask is therefore the following:
is there a fixed, universal, constant q∗ such that, for any
left and right degree sequences, and any number of but-
terflies, any two bipartite graphs with those left and right
degree sequences, and that number of butterflies, are con-
nected by sequences ⟨swp1

1 = (S1, σ1), . . . , swpz

z = (Sz, σz)⟩
of pi-BSOs, with pi ≤ q∗, i = 1, . . . , z, where z may depend
on the two graphs? By “universal”, we mean a quantity
that in no way depends on properties of the ensemble
(G, π), including properties of the observed network.

Asking this question is reasonable: it is known that
q∗ = 2 when one is only interested in preserving the degree
sequences [15, Ch. 6], and it is also known that q∗ =
2 for the case of preserving the degree sequences and
the number of paths of length 3 (a.k.a. caterpillars), in
which case the rewiring operations slightly differ from the
traditional BSOs [11, 31].

Additionally, we would like q∗ to be small, because
sampling a q-BSO is not necessarily efficient: the näıve
approach of independently sampling q edges and then
verifying whether they form a valid q-BSO has an in-
creasing probability of failure as q increases [24]. As a
result, the Markov chain would exhibit a high probability
of staying in the same state for many consecutive steps,
greatly increasing the mixing time.

For unipartite graphs, it has been proved that q∗ = 2
is not always sufficient to ensure strong connectivity of
spaces of graphs that share more complex properties [24,
31]. In this work, we demonstrate the nonexistence of a
fixed, universal, constant q∗ for the ensemble of bipartite
graphs with the same left and right degree sequences and
the same number of butterflies.
Let us give some intuition with an example, which

shows that it cannot be q∗ < 4. Figure 1 shows two
bipartite graphs G1 (upper) and G2 (lower) with the
same left and right degree sequences, and the same
number of butterflies b(G1) = b(G2) = 10. There is
no sequence of q-BSOs for q < 4 that, when applied
to G1, generates a graph isomorphic to G2: any q-
BSO for q < 4 applied to G1 either generates a graph
with a different number of butterflies, or generates a
graph isomorphic to G1. On the other hand, the 4-BSO
([(x1, y5), (x5, y1), (x6, y10), (x10, y6)], σ) with σ(1) = 3,
σ(2) = 4, σ(3) = 1, and σ(4) = 2 ensures that the
two butterflies {x1, x5, y1, y5} and {x6, x10, y6, y10} disap-
pear, while the two new butterflies {x1, x10, y1, y10} and
{x5, x6, y5, y6} appear, hence preserving the total count
b(G1).

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

x6 x7 x8 x9 x10

y6 y7 y8 y9 y10

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

FIG. 1. Graphs that are not connected by q-BSOs for q < 4.

Our main result is the following theorem (proof in Sup-
plementary Material [25]).

Theorem 1. For any q̄ ∈ N with q̄ > 1, there exist
two non-isomorphic bipartite graphs Gb and Ge with the
same left and right degree sequences, and b(Gb) = b(Ge),
such that for any sequence ⟨swp1

1 = (S1, σ1), . . . , swpz

z =
(Sz, σz)⟩ of pi-BSOs with pi ∈ N+, i = 1, . . . , z, that trans-
forms Gb into Ge, there exists ℓ ∈ {1, . . . , z} with pℓ ≥ q̄.

Our proof consists of two parts. First, we construct
two bipartite graphs Gb and Ge with the same left and
right degree sequences (which will depend on q̄ as the
second largest left degree will be greater than q̄), and
the same number of butterflies. Second, we demonstrate
that any sequence of q-BSOs applied to Gb to obtain a
graph isomorphic to Ge must involve at least one q-BSO
for q > q̄. Since q̄ can be arbitrarily large, a universal
constant q∗ as above cannot exist.
This theorem proves that it is impossible to design ef-

ficient MCMC algorithms that sample from ensembles
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x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6 y7 y8 y9

x7

y10

x8

y11

x9

y12

x10

y13

x11

y14 y15

x1 x2 x3 x4 x5 x6

y12 y1 y14 y3 y4 y7 y8 y9 y10

x7

y11

x8

y6

x11

y2

x10

y13

x9

y5y15

FIG. 2. Bipartite graphs generated by our algorithm (see
Supplementary Material [25]) for s = 2 and t = 3.

H = (G, π) of bipartite graphs with the same degree se-
quences and the same number of butterflies, because the
state space is not strongly connected by edge swap oper-
ations that involve only up to a fixed, universal, number
of edges, as is instead the case for simpler null models.
Rather, the minimum number of edges that must be in-
volved depends on properties of the state space G, not
just of the observed network. These may not be easily
computable, as they may not depend just on the observed
network, if any.
This result has profound implications for the design of

network null models and for network science in general.
If it is unfeasible to preserve the occurrences of the sim-
plest building block of bipartite graphs (the butterfly), it
becomes unfeasible to preserve larger structures. When
dealing with bipartite graphs and complex observed char-
acteristics, ensembles with “soft” constraints, where the
constraints are retained on average over all the graphs
sampled from the ensemble [32], might be the only vi-
able option.
The algorithm to construct the graphs Gb and Ge is

delineated in the Supplementary Material [25]. We now
describe the main characteristics of such graphs.
Let s and t be two naturals with s > t ≥ 2 and

2(s − 1) > k. We define n ≐ (s
2
) + (t

2
) and a ≐ ((s +

1) mod 2) + ((t + 1) mod 2). The graphs Gb and Ge

output by the algorithm with inputs s and t have the
following properties:

1. Gb and Ge have 7 + a left nodes (denoted with the
letter x) and s + t + n + 2 + a right nodes (denoted
with the letter y);

2. Gb and Ge have the same left and right degree se-
quences. In particular, x1 and x2 have degree s, x3

and x4 have degree t, x5 and x6 have degree n + 1,
yi has degree 2 for 1 ≤ i ≤ s + t + n + 1, and all the
other left and right nodes have degree 1;

3. b(Gb) = b(Ge) = n + (n2);
4. ∣ΓGe

(x5) ∩ ΓGe
(x6)∣ = n + 1, which, with the pre-

vious point, implies that x5 and x6 belong to all
butterflies in Ge, and every other node y ∈ R be-
longs to no butterfly;

5. ∣ΓGb
(x5) ∩ ΓGb

(x6)∣ = n, ∣ΓGb
(x1) ∩ ΓGb

(x2)∣ = s,
∣ΓGb
(x3) ∩ ΓGb

(x4)∣ = t, which implies, with point

2, that x5 and x6 do not belong to all butterflies
in Gb.

Figure 2 shows the bipartite graphs generated for s = 2
and t = 3.

III. DISCUSSION

MCMC approaches based on swaps of pairs of edges
can efficiently sample graphs from simple ensembles,
such as those including graphs with prescribed degree
sequences, or fixed number of paths of length up to
three [11]. The correctness of these approaches relies on
the fact that pairwise edge swaps create a strongly con-
nected state space. They are efficient because proposing
a neighbor to move to is relatively easy, requiring only to
be able to efficiently sample pairs of edges.
In the case of ensembles preserving more complex prop-

erties of the networks, the strong connectivity of the state
space may require more than two edges to be swapped
at every step, i.e., performing q-switches [24], or q-BSOs,
for some value of q.
In this work, we consider the ensemble of bipartite

graphs with fixed degree sequences and fixed number of
butterflies (k2,2 bi-cliques), for its important role in a
variety of applications, e.g., investigating clustering pat-
terns [21]. We show that the state space is not strongly
connected by sequences of q-BSOs for any fixed, univer-
sal, constant q. In other words, the number of edges to
be rewired at each step is upper bounded by a quantity
that depends on properties of the graphs in the ensem-
ble. This result is in strong contrast with the cases for the
space of bipartite graphs with fixed degree sequences, and
for that of bipartite graphs with fixed degree sequences
and fixed number of paths of length three (a.k.a. cater-
pillars), where q = 2 is sufficient for all ensembles [11, 31].
This discovery has far-reaching implications for net-

work science. First and foremost, we rule out the possi-
bility of designing efficient MCMC algorithms for sam-
pling from the space of bipartite graphs with fixed de-
gree sequences and fixed number of butterflies, specifi-
cally, from the micro-canonical ensemble that maintains
these properties exactly. In fact, we demonstrate the
necessity of swaps with size dependent on the character-
istics of the graph space G, not necessarily just on the
observed network. Finding what this size q∗G is may not
even be feasible. It may perhaps be possible to develop
an efficient procedure to find this quantity, but then one
also needs an efficient procedure to, at each step of the
Markov chain, generate a q-BSO for q ≤ q∗G , to propose
a neighbor to move to. Solving both these algorithmic
questiosn seem challenging. Moreover, the lower bound q̄
to the size of the BSOs needed to connect the two graphs
Gb and Ge from Thm. 1 gives only a necessary condi-
tion for the strong connectivity of the graph space, not a
sufficient one: we only know that one of the BSOs to con-
nect these two graphs must contain more than q̄ edges,
but not how exactly how many. Even if we knew exactly
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this number q̂, there may be other pairs of graphs in the
same ensemble (i.e., with the same degree sequences and
number of butterflies) such that any sequence of BSOs
connecting these two graphs must have size even greater
than q̂. Therefore the situation might be even more dire
than our findings suggest.

Given that sampling from a null model that preserves
the number of butterflies is impractical, preserving larger
structures seems an even more unattainable task. A but-
terfly is at the same time the smallest cycle and the small-
est non-trivial bi-clique, hence it is a basic building block
of bipartite graphs. Thus, our findings present a large ob-
stacle to developing efficient algorithms to sample from
more complex ensembles, and therefore to testing net-
work properties under more descriptive null models.

What other options are then available, if any? If
one wishes to maintain the number of butterflies as a
hard constraint (i.e., to sample from the micro-canonical
ensemble), one potential approach involves avoiding
MCMC algorithms and opting for a direct-sampling algo-
rithm like stub matching [33]. However, such algorithms
are already limited to small graph instances, for the case
of sampling from the space of graphs with the same de-
gree sequence, due to their complexity scaling quadrati-

cally or cubically with the number of nodes, depending on
the graph density [34, 35]. The straightforward applica-
tion of existing stub-matching techniques may also suffer
from generating graphs with a different number of butter-
flies, thus leading to a high rejection rate. Thus, we need
to explore alternative methodologies or refine existing
stub-matching algorithms to better accommodate these
more complex constraints. Finally, implementations of
canonical methods such as the Chung-Lu model [36] offer
a more efficient alternative, albeit at the cost of impos-
ing a soft constraint. Indeed, while the ensemble average
aligns precisely with the desired value of each constraint,
individual graph instances may lie far from the desired
constraints. The canonical ensemble brings other chal-
lenges, including difficulties in generating graphs that
closely match the desired expectations for certain degree
distributions (degeneracy problem) [37–41].
Overall, our findings represent a strong negative re-

sult that the network science community needs to reckon
with. By showing that this research avenue is not fruitful,
we hope to spur alternative and innovative approaches to
designing null models for graphs, and algorithms for sam-
pling from them.
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Impossibility result for Markov Chain Monte Carlo sampling from micro-canonical

bipartite graph ensembles: Supplementary Material

I. PROOFS

Our main result, Theorem 1, relies on the following
lemma.

Lemma 1. For any bipartite graph G ≐ (L,R,E) with
dG(a) ≤ 2, for each a ∈ R, and any u ∈ L, it holds

bG(u) ≤ (dG(u)
2
),

with equality if and only if there exists v ∈ L ∖ {u}, s.t.
ΓG(u) ⊆ ΓG(v).
The meaning of this Lemma is that, when all nodes in

R have degree at most 2 , each node u ∈ L can be part of
at most one butterfly for each unordered pair (w, z) of u’s
neighbors. Specifically, if either w or v has degree 1, then
there can be no butterfly involving u, w, z and another
node in L. If both w and z have degree 2, there may be at
most one butterfly involving u, w, z and another node in
L. If any node in R has degree d > 2, a pair of neighbors
of u ∈ L could be part of more than one butterfly together
with u (at most d − 1).

We use the following technical lemma in the proof of
Lemma 1.

Lemma 2. Let d ∈ N, d ≥ 2. For any sequence a1, . . . , az
of 1 < z ≤ d strictly positive naturals s.t. ∑z

i=1 ai ≤ d, it

holds

(d
2
) > z

∑
i=1

(ai
2
) .

Proof. Assume by contradiction that there exists a se-
quence a1, . . . , az of 1 < z ≤ d strictly positive naturals
s.t. ∑z

i=1 ai ≤ d and for which

(d
2
) ≤ z

∑
i=1

(ai
2
) = 1

2

z

∑
i=1

(a2i − ai) . (3)

It holds

2(d
2
) = d2 − d ≥ ( z

∑
i=1

ai)
2

− z

∑
i=1

ai,

where the inequality comes from the fact that q2 − q ≥
g2 −g for any q ≥ 1, 0 ≤ g ≤ q. Expanding the r.h.s. of the
last inequality, we obtain

2(d
2
) ≥ z

∑
i=1

a2i + 2
z

∑
i=1

z

∑
h=i+1

aiah −
z

∑
i=1

ai

= z

∑
i=1

(a2i − ai) + 2
z

∑
i=1

z

∑
h=i+1

aiah . (4)

We can combine (3) and (4) as

z

∑
i=1

(a2i − ai) + 2
z

∑
i=1

z

∑
h=i+1

aiah ≤ 2(d
2
) ≤ z

∑
i=1

(a2i − ai),
which is clearly impossible because the ai’s are strictly
positive, thus the second term on the leftmost side is
strictly positive. Thus we reached a contradiction, and
the sequence a1, . . . , az cannot exists.

Proof of Lemma 1. We start by showing that if v as in

the thesis exists, then bG(u) = (dG(u)2
). Such a v must be

unique, due to the restrictions on the degree of the nodes
in R. It must then hold that ΓG(u)∩ΓG(w) = ∅ for any
w ∈ L ∖ {v, u}, as all a ∈ ΓG(u) have degree exactly two
and {(u, a), (v, a)} ⊆ E. From this fact and Fact 1, we
get that bG(u,w) = 0 for any w ∈ L ∖ {v, u}, and that

bG(u, v) = (dG(u)2
), as ∣ΓG(u) ∩ ΓG(v)∣ = ∣ΓG(u)∣ = dG(u)

from the hypothesis. The desired equality follows from
these facts and the definition of bG(u) from Equation (1)
in the main text.
We now show that if v as in the thesis does not exists,

it must be bG(u) < (dG(u)2
). Assume that there is exactly

one v′ ∈ L ∖ {u} s.t. ΓG(u) ∩ ΓG(v′) ≠ ∅. Then it must
be ∣ΓG(u) ∩ ΓG(v′)∣ < dG(u), otherwise v′ would be as v
in the thesis, which we just said can not happen. Then,

from Fact 1, we get bG(u, v′) < (dG(u)2
). From this fact,

the fact that bG(u,w) = 0 for any w ∈ L∖{v′, u}, and Eq.
(1) from the text, we obtain the desired result.
Assume instead that there are 1 < z ≤ d distinct nodes

v1, . . . , vz ∈ L ∖ {u} s.t. ΓG(u) ∩ ΓG(vi) ≠ ∅. The desired

result bG(u) < (dG(u)2
) follows from Lemma 2 using ai =∣ΓG(u) ∩ ΓG(vi)∣, 1 ≤ i ≤ z.

Proof of Theorem 1. LetGb andGe be the graphs output
by Alg. 1 with inputs s and t. For completeness, let us
recall the five properties satisfied by such graphs.

1. Gb and Ge have 7 + a left nodes (denoted with the
letter x) and s + t + n + 2 + a right nodes (denoted
with the letter y);

2. Gb and Ge have the same left and right degree se-
quences. In particular, x1 and x2 have degree s, x3

and x4 have degree t, x5 and x6 have degree n + 1,
yi has degree 2 for 1 ≤ i ≤ s + t + n + 1, and all the
other left and right nodes have degree 1;

3. b(Gb) = b(Ge) = n + (n2);
4. ∣ΓGe

(x5) ∩ ΓGe
(x6)∣ = n + 1, which, with the pre-

vious point, implies that x5 and x6 belong to all

butterflies in Ge, and every other node y ∈ R be-
longs to no butterfly;
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5. ∣ΓGb
(x5) ∩ ΓGb

(x6)∣ = n, ∣ΓGb
(x1) ∩ ΓGb

(x2)∣ = s,∣ΓGb
(x3) ∩ ΓGb

(x4)∣ = t, which implies, with point
2, that x5 and x6 do not belong to all butterflies
in Gb.

For each i ∈ [1, z], we denote with Gi the graph ob-
tained from the application of swp1

1
, . . . , sw

pi

i to Gb. By
definition of q-BSO, each Gi has the same left and right
degree sequences, and b(Gi) = b(Gb) = b(Ge). We set
G0 = Gb.
From properties 4 and 5 of Gb and Ge listed above,

there must be an index ℓ ∈ [1, z] s.t. in the graph Gℓ,
x5 and x6 share n + 1 neighbors. We now show that
x5 and x6 must share exactly n neighbors in Gℓ−1, i.e.,
∣ΓGℓ−1(x5) ∩ ΓGℓ−1(x6)∣ = n.
Assume by contradiction that ∣ΓGℓ−1(x5) ∩ ΓGℓ−1(x6)∣= r < n. Then, bGℓ−1(x5, x6) = (r2). From Equation (2) in

the main text, given the degree sequence of the nodes in
L, we can write

b(Gℓ−1) = 5

∑
i=1

6

∑
j=i+1

bGℓ−1(xi, xj) = n + (n
2
) . (5)

It then must be

4

∑
i=1

6

∑
j=i+1

bGℓ−1(xi, xj) = n + (n
2
) − (r

2
) . (6)

It holds

4

∑
i=1

6

∑
j=i+1

bGℓ−1(xi, xj) ≤ 4

∑
i=1

bGℓ−1(i),

as some butterflies may be counted twice in the sum on
the r.h.s.. From Lemma 1 applied to each of x1, x2, x3,
and x4, it holds that

4

∑
i=1

bGℓ−1(i) ≤ 2(s
2
) + 2(t

2
) = 2n . (7)

Consider for now the case r < n − 1. If we can show that

2n < n + (n
2
) − (r

2
) (8)

then we would have reached a contradiction, because this
inequality, together with Eq. (7), implies that Eq. (6)
cannot be true. The r.h.s. of Eq. (8) decreases as r in-
creases, so if we can show that Eq. (8) holds for the maxi-
mum value of r = n−2, then it would hold for all r ≤ n−2.
For r = n − 2, we can rewrite Eq. (8) as

2n < n + (n
2
) − (n − 2

2
), (9)

which is true for any n > 3, i.e., for all possible values of
s and t. Thus we reached a contradiction and it cannot
be r < n − 1.

Consider now the case r = n − 1. In this case,

n + (n
2
) − (r

2
) = 2n − 1 .

Using this fact and Eq. (6), we can write

2n − 1 = 3

∑
i=1

4

∑
j=i+1

bGℓ−1(xi, xj)+
4

∑
i=1

(bGℓ−1(xi, x5) + bGℓ−1(xi, x6)) .
(10)

Now, since r = n − 1 and dGℓ−1(x5) = dGℓ−1(x6) = n + 1, it
must hold

4

∑
i=1

(bGℓ−1(xi, x5) + bGℓ−1(xi, x6)) ≤ 2 (11)

because x5 and x6 can share at most two neighbors each
in R with one of x1, x2, x3, and x4. Due to the limitations
on the degree of the nodes in R, if any of xi, i = 5,6 shares
a neighbor with any xj , j = 1,2,3,4, then xi cannot share
the same neighbor with any other of {x1, x2, x3, x4} ∖{xj}. Thus, combining Eq. (10) and Eq. (11), we get
that

2n − 1 ≤ 3

∑
i=1

4

∑
j=i+1

bGℓ−1(xi, xj) + 2 . (12)

It holds

3

∑
i=1

4

∑
j=i+1

bGℓ−1(xi, xj) = 1

2

4

∑
i=1

4

∑
j=1
j≠i

bGℓ−1(xi, xj)

≤ 1

2

4

∑
i=1

bGℓ−1(xi) ≤ n,
where the last inequality comes from Eq. (7). Combining
the above with Eq. (12) we obtain

2n − 1 ≤ n + 2
which is only true for n ≤ 3. But from our hypothesis on
s and t, it must be n > 3, so we reached a contradiction,
and it cannot be r = n − 1.
Thus, it must be ∣ΓGℓ−1(x5) ∩ ΓGℓ−1(x6)∣ = n, i.e.,
bGℓ−1(x5, x6) = (n2). We now show that the remain-

ing n = (s
2
) + (t

2
) butterflies in Gℓ−1 are s.t. x1 and x2

both belong to (s
2
) of them, and x3 and x4 both be-

long to (t
2
) of them. In other words bGℓ−1(x1, x2) = (s2),

bGℓ−1(x3, x4) = (t2), and bGℓ−1(xi, xj) = 0 for any other
(i, j) ∈ {(i, j) ∶ 1 ≤ i ≤ 4, i < j ≤ 6} ∖ {(1,2), (3,4)}.
Clearly, it must hold bGℓ−1(xi, x5) = bGℓ−1(xi, x6) = 0

because x5 and x6 can each at most share one neighbor
with any of xi, 1 ≤ i ≤ 4, which is not sufficient to obtain
any butterfly to which both xi and x5 or both xi and x6

may belong. Thus, it must hold

3

∑
i=1

4

∑
j=i+1

bGℓ−1(xi, xj) = n .

We also have

3

∑
i=1

4

∑
j=i+1

bGℓ−1(xi, xj) = 1

2

4

∑
i=1

bGℓ−1(xi) ≤ n,
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where the last inequality comes from Eq. (7). To obtain
equality, it must hold

4

∑
i=1

bGℓ−1(xi) = 2(s
2
) + 2(t

2
) .

From Lemma 1, we have that

bGℓ−1(xi) ≤
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(s
2
) if i = 1,2

(t
2
) if i = 3,4

,

with equality only if each of x1, x2, x3, and x4 shares all
its neighbors with another one of them. Thus, it must
be that x1 shares all its neighbors with x2, and that
x3 shares all its neighbors with x4, leading to the de-
sired results that bGℓ−1(x1, x2) = (s2), bGℓ−1(x3, x4) = (t2),
bGℓ−1(x5, x6) = (n2), and bGℓ−1(xi, xj) = 0 for any other
(i, j) ∈ {(i, j) ∶ 1 ≤ i ≤ 5, i < j ≤ 6} ∖ {(1,2), (3,4), (5,6)}.

At step ℓ, the number of common neighbors between
x5 and x6 increases to n+1, meaning that the number of
butterflies involving the pair (x5, x6) increases by (n+12 )−(n
2
) = n. Since n = (s

2
) + (t

2
), the pℓ-BSO sw

pℓ

ℓ
≐ (Sℓ, σ)

must transform all the butterflies in Gℓ−1 to which x5

and x6 do not already belong, into an equal number of
butterflies in Gℓ to which both x5 and x6 belong.
To this end, swpℓ

ℓ
must swap at least

● 1 edge involving x5 (or x6) to connect x5 (or x6) to
a node in ΓGℓ−1(x6) ∖ ΓGℓ−1(x5) (or in ΓGℓ−1(x5) ∖
ΓGℓ−1(x6)): this way, ∣ΓGℓ−1(x5) ∩ ΓGℓ−1(x6)∣ = n + 1,
i.e., x5 and x6 will share n + 1 neighbors in Gℓ;

● s − 1 edges involving either x1 or x2 to reduce the
number of neighbors shared by these two nodes by at
least s−1: this way ∣ΓGℓ(x1) ∩ ΓGℓ(x2)∣ ≤ 1, implying
bGℓ(x1, x2) = 0; and
● t − 1 edges involving either x3 or x4 to reduce the
number of neighbors shared by these two nodes by at
least t − 1: this way ∣ΓGℓ(x3) ∩ ΓGℓ(x4)∣ ≤ 1 and thus
bGℓ(x3, x4) = 0.
Thus, Sℓ ≐ {(u1, a1), . . . , (upℓ

, apℓ
)} must have the fol-

lowing properties:

● Sℓ must contain at least s − 1 edges (ui, ai) with
ui ∈ {x1, x2} and s.t. the edge (uσ(i), aσ(i)) ∈ Sℓ has
uσ(i) ∉ {x1, x2}. Indeed if that was not the case, the

edge (ui, aσ(i)) would already exist in Gℓ−1, because,
as previously discussed, x1 and x2 share all their
neighbors in Gℓ−1. Thus, Sℓ must contain, in addition
to the s−1 edges as above, another s−1 edges whose
endpoint in L is neither x1 nor x2. Additionally, of
these s−1 edges, only at most 4 may have either x3 or
x4 as endpoint in L, as if there were more, then there
would be xi ∈ {x1, x2} and xj ∈ {x3, x4} that would

share at least two neighbors in Gℓ, and therefore it
would be bGℓ(xi, xj) > 0, which cannot be. Sℓ is only
required to have t − 1 edges in the form (ui, ai) with

ui ∈ {x3, x4}, thus really only at most min{4, t − 1}
can be as above.

● Similarly, Sℓ must contain at least t− 1 edges (ui, ai)
with ui ∈ {x3, x4} and s.t. the edge (uσ(i), aσ(i)) ∈
Sℓ has uσ(i) ∉ {x3, x4}. Indeed if that was not the

case, the edge (ui, aσ(i)) would already exist in Gℓ−1,
because, as previously discussed, x3 and x4 share all

their neighbors in Gℓ−1; Thus, Sℓ must contain, in
addition to the t−1 edges as above, another t−1 edges
whose node in L is neither x3 nor x4. Additionally, of
these t−1 edges, only at most min{4, t−1} may have
either x1 or x2 as endpoint in L, as if there were more,
then there would be xi ∈ {x1, x2} and xj ∈ {x3, x4}
that would share at least two neighbors in Gℓ, and
therefore it would be bGℓ(xi, xj) > 0, which cannot
be.

Thus, Sℓ must contain at least (2(s−1)−min(4, t−1))+
(2(t − 1) −min(4, t − 1)) edges. For any value of t, this
quantity is at least 2(s−1). We then have pℓ ≥ 2(s−1) > q̄,
where the last inequality comes from the definition of s.
This fact concludes the proof.

II. BIPARTITE GRAPH GENERATOR

We present our algorithm to generate the two bipartite
graphs Gb and Ge used in the proof of our main result.
The algorithm (pseudocode in Alg. 1) receives in in-

put two naturals s ≠ t ∈ N ∧ s, t ≥ 2, and generates two
bipartite Gb = (L,R,Eb) and Ge = (L,R,Ee) with the

same left and right degree sequence and each with (n+1
2
)

butterflies, where n = (s
2
) + (t

2
).

The algorithm starts with the creation of the set of left
nodes L (any node in this set will be denoted as xw, for
some w) and of right nodes R (any node in this set will
be denoted as yw, for some w), equal for both graphs.
Then, it populates the edge set Eb of Gb and the edge
set Ee of Ge. In Gb, the butterflies involve three pairs of
left nodes: (x1, x2), (x3, x4), and (x5, x6). Nodes x1 and
x2 have degree s and share s neighbors (line 5); nodes x3

and x4 have degree t and share t neighbors (line 6); and
nodes x5 and x6 have degree n+1 and share n neighbors
(line 7). In Ge, the butterflies involve only the left nodes
x5 and x6, which share n + 1 neighbors (line 10).
We will construct the two edge sets so that any other

pair of left nodes share at most one neighbor. Thus, it
hols that b(Gb) = (s2) + (t2) + (n2) = (n+12 ) = b(Ge). Nodes
x5 and x6 have degree n + 1 in both graphs, but, so far,
in Gb we have added only n edges to them. Similarly,
node ys+t+n+1 have degree 2 in Ge, but, so far, in Gb it
is connected to only one left node. Therefore, we insert
in Eb one edge involving x5, one edge involving x6 (we
connect them to different right nodes to avoid creating
other butterflies between them), and one edge involving
ys+t+n+1 (line 8). The construction of Eb is completed the
addition of up to s + t isolated edges, i.e., edges not con-
nected with any other edge (line 9). These edges do not
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Algorithm 1: Bipartite Graph Constructor

Input: Naturals s and t with s ≠ t ≥ 2
Output: Two bipartite graphs with the same degree

sequences and (n+1
2
) butterflies

1 n← (s
2
) + (t

2
); add← s + t − 2

2 if s is even then add← add + 1
3 if t is even then add← add + 1
4 L← [x1, . . . , x7+add]; R ← [y1, . . . , ys+t+n+2+add]

/* butterflies btw x1 and x2 */

5 Eb ← {(x1, yl), (x2, yl)} for l ∈ [1, s]
/* butterflies btw x3 and x4 */

6 Eb ← Eb ∪ {(x3, ys+l), (x4, ys+l)} for l ∈ [1, t]
/* butterflies btw x5 and x6 */

7 Eb ← Eb ∪ {(x5, ys+t+l), (x6, ys+t+l)} for l ∈ [1, n]
/* x5 and x6 have deg n + 1; ys+t+n+1 has deg 2

*/

8 Eb ← Eb ∪ {(x5, ys+t+n+1), (x6, ys+t+n+2), (x7, ys+t+n+1)}
/* auxiliary isolated edges */

9 Eb ← Eb ∪ {(x7+l, ys+t+n+2+l)} for l ∈ [1,add]
/* butterflies btw x5 and x6 */

10 Ee ← {(x5, ys+t+l), (x6, ys+t+l)} for l ∈ [1, n + 1]
/* x1,x2,x3 and x4 share at most 1 neighbor */

11 Ee ← Ee ∪ {(x1, y1), (x2, y1), (x3, ys+1), (x4, ys+1)}
12 h1 ← ⌊(s − 1)/2⌋; h2 ← ⌊(t − 1)/2⌋

/* we split s − 1 right nodes btw x1 and x2 */

13 Ee ← Ee ∪ {(x1, y1+l), (x2, y1+h1+l
)} for l ∈ [1, h1]

/* we split t − 1 right nodes btw x3 and x4 */

14 Ee ← Ee ∪ {(x3, ys+1+l), (x4, ys+1+h2+l
)} for l ∈ [1, h2]

/* x1, x2 have deg s and x3, x4 have deg t */

15 a1 ← s − (1 + h1); a2 ← t − (1 + h2)
16 Ee ← Ee ∪ {(x1, ys+t+n+2+l), (x2, ys+t+n+2+a1+l

)} for
l ∈ [1, a1]

17 Ee ← Ee ∪ {(x3, ys+t+n+2+2a1+l
), (x4, ys+t+n+2+2a1+a2+l

)}
for l ∈ [1, a2]

/* x7 and ys+t+n+2 have deg 1 */

18 Ee ← Ee ∪ {(x7, ys+t+n+2)}
/* the first (s + t) right nodes have deg 2 */

19 Ee ← Ee ∪ {(x7+l, y1+l)} for l ∈ [1, s − 1]
20 Ee ← Ee ∪ {(x7+s−1+l, ys+1+l)} for l ∈ [1, t − 1]
21 add← 0

22 if s is even then Ee ← Ee ∪ {(x7+s+t−1, ys)};
add← add + 1

23 if t is even then Ee ← Ee ∪ {(x7+s+t−1+add, ys+t)}
24 Gb ← (L,R,Eb); Ge ← (L,R,Ee)
25 return Gb, Ge

participate in any butterfly, because they involve nodes
with degree 1. They are needed to guarantee that Gb

and Ge have the same degree sequences, as it will be-
come evident as we outline the other edges included in
Ee.
We add edges to Ee in such a way that the pairs of

vertices (x1, x2) and (x3, x4) have no more than one
neighbor in common, so they do not belong to any but-
terfly. The idea is to (i) connect both x1 and x2 to
y1 (line 11), (ii) divide the remaining nodes to which
x1 is connected in Gb into two groups (y2, . . . , yh1

) and

(yh1+1, . . . , y2h1+1) with h1 = ⌊(s − 1)/2⌋, and (iii) in-
sert into Ee one edge between x1 and each node in the
first group, and one edge between x2 and each node in
the second group (line 13). Similarly, to ensure that x3

and x4 only have one neighbor in common, we (i) con-
nect both x3 and x4 to ys+1 (line 11), (ii) divide the
remaining nodes to which x3 is connected in Gb into
two groups (ys+2, . . . , ys+2+h2

) and (ys+3+h2
, . . . , ys+1+2h2

)
with h2 = ⌊(t − 1)/2⌋, and (iii) insert into Ee one edge be-
tween x3 and each node in the first group, and one edge
between x4 and each node in the second group (line 14).
So far, in Ee we have added only (1+h1) of the s neigh-
bors that x1 and x2 must have, and only (1 + h2) of the
t neighbors that x3 and x4 must have. Thus, we include
s − (1 + h1) edges to different right nodes (to avoid cre-
ating butterflies between them) for x1 and x2 (line 16),
and t − (1 + h2) edges to different right nodes for x3 and
x4 (line 17). Similarly, so far we have added only one
edge to the right nodes y2, . . . , ys−1, ys+2, . . . , ys+t−1, and
up to one edge to the right nodes ys and ys+t. In fact,
depending on the value of h1 and h2, such nodes are in-
cluded/excluded from the group of nodes connected to x2

and x4, respectively. Since all these nodes have degree
2 in Gb, we add the missing edges to Ee (lines 19–23).
Lastly, nodes x7 and ys+t+n+2 have degree 1 in Gb, and
thus they must be connected to one neighbor also in Ge

(line 18). Finally, the two graphs Gb ≐ (L,R,Eb) and
Ge ≐ (L,R,Ee) are returned.

III. CONNECTING ARBITRARY BIPARTITE

GRAPHS IN THE STATE SPACE VIA q-BSO

This section shows how to build a q-BSO that trans-
forms an arbitrary bipartite graph G′ ≐ (L,R,E′) into
another arbitrary graph G′′ ≐ (L,R,E′′) with the same
left and right degree sequences and number of butterflies.
The q-BSO needs to swap all links except those that are
in common between the two graphs, i.e., q = ∣E′ ∖ E′′∣.
Let E′ ∩ E′′ = ⟨e′

1
, . . . , e′c⟩ = ⟨e′′1 , . . . , e′′c ⟩ be the list of c

edges in common to the two graphs, E′ = ⟨e′
1
, . . . , e′∣E′∣⟩

the list of edges of G′, E′′ = ⟨e′′
1
, . . . , e′′∣E′∣⟩ the list of edges

of G′′, and q = ∣E′∣ − c the number of edges unique to G′.
We now show a q-BSO operation sw ≐ (⟨e′c+1, . . . , e′∣E′∣⟩, σ)
that transforms G′ into G′′. We build the derangement
σ incrementally, denoting with ˆIm(σ) the current (i.e.,
as σ is being built) image of σ. At the beginning of

the construction process, ˆIm(σ) = ∅, and at the end,
ˆIm(σ) = Im(σ) = {1, . . . , q}. For each i ∈ {1, . . . , q}, let
e′c+i ≐ (u, v) and k ∈ {1, . . . , q} be any index such that

k ∉ ˆIm(σ) and e′′c+k ≐ (u,w). Then, we set σ(i) ≐ k. The
index k must always exist because G′ and G′′ have the
same degree sequences.
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