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Abstract. Non-degenerate directed hypergraphs, i.e., directed hyper-
graphs where a node cannot be both in the tail and the head of a hyper-
edge, model important scenarios, from contact networks for analyzing the
spread of information or diseases, to bill cosponsoring graphs for study-
ing the bipartisanship of elected representatives. Existing null models for
dihypergraphs allow degeneracy, and most samples drawn from them are
degenerate, even when the starting network is not, making these mod-
els unrealistic in many cases. An inappropriate null model may lead to
wrongly accepting/rejecting a hypothesis when performing statistical hy-
pothesis testing. We introduce the first null models for non-degenerate
dihypergraphs, and present DiNgHy, a suite of Markov-Chain-Monte-
Carlo algorithms to sample from them. The Markov chain underlying
our algorithm is not irreducible in general, so we give mild sufficient con-
ditions for irreducibility. We show that existing methods cannot be used
to sample from our null models, and evaluate our algorithms on real and
artificial dihypergraphs, comparing the results of hypothesis tests when
using our null models versus existing ones that allow degeneracy, and
measuring their empirical mixing time.
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1 Introduction

Hypergraphs overcome the limitations of dyadic (i.e., “classic”) graphs to model
“more-than-binary” relationships between entities [2, 3]. Such relationships are
omnipresent in real scenarios, from co-authorship networks [16], to protein in-
teractions [9], to contact networks [4]. There are many data analysis tasks and
corresponding algorithms whose input is one or more hypergraphs [14].

The goal of knowledge discovery from data is to use results obtained from
data to identify new facts about the Data Generating Process (DGP), of which
the available data is only a limited, noisy, random sample [21]. In the framework
of statistical hypothesis testing [15], one first formulates a hypothesis, usually ex-
pressed as whether known properties of the DGP can sufficiently explain a result



2 M. Abuissa et al.

obtained from the available data. The hypothesis is then tested by comparing
the observed result to the distribution of results over the datasets the DGP may
produce. When there is a low probability that the DGP produces datasets with
as or more extreme values than the observed value, it is seen as evidence against
the hypothesis, i.e., that the known properties of the DGP cannot sufficiently
explain the observed result. The DGP is formally captured by a null model (see
Sect. 3.2 for definitions), a collection of datasets and a distribution over these
datasets. The key algorithmic challenge is to develop efficient methods to draw
samples from the collection according to the distribution. The samples create a
distribution over the value of interest, to which the observed value can be com-
pared. The modeling challenge is even more important for hypothesis testing:
the null model must be realistic, i.e., it must capture as many known properties
as possible about the DGP. In particular, it should not include any dataset that
the DGP cannot produce. Failure to do so may lead to an inaccurate distribution
of possible results, changing the outcome of hypothesis testing.

Null models for undirected hypergraphs are available (see Sect. 2), but limited
attention has been devoted to null models for directed ones (dihypergraphs);

Contributions We introduce novel realistic null models for dihypergraphs, and
give algorithms to sample from them.3

– Our null models are defined over non-degenerate dihypergraphs, i.e., dihy-
pergraphs where a node cannot be present in both the head and the tail of
the same hyperedge. This restriction is representative of many real scenar-
ios, from U.S. Congress bill sponsorship, to contagion by contact, and is not
captured by existing null models [20]. Thus, our null models are more realis-
tic. They exactly preserve the in-/out-degree and the head-/tail-hyperedge-
dimension sequences of an observed hypergraph, extending the popular mi-
crocanonical configuration model. We give null models for both edge-ordered
and edge-unordered dihypergraphs, defined in Sect. 5.

– We describe and analyze Markov-Chain-Monte-Carlo (MCMC) algorithms,
DiNgHy (edge-ordered) and DiNgHy-U (edge-unordered) (for DIrected
Non-deGenerate HYpergraphs), to sample from the hypergraph ensembles
of our null models according to any user-specified probability distribution,
which is a necessary step in statistical hypothesis testing. Our Markov chains
use simple transitions; the crux of our analysis is proving an easy-to-check
mild condition on the degree and hyperedge-dimension sequences of the ob-
served network that guarantees the irreducibility of the Markov chain.

– The results of our evaluation on real and artificial datasets highlights how the
outcome of hypothesis tests may greatly differ between our null model and
that of Preti et al. [20], We also give evidence that their algorithm cannot
be used with rejection sampling to sample non-degenerate dihypergraphs.
Finally, we show faster empirical mixing time of our algorithm compared to
a baseline derived from the algorithm by Preti et al. [20].

3 Theoretical proofs and additional experimental results are in the supplementary
materials.
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2 Related Work

Hypergraph mining has many applications in different settings. Lee et al. [14]
survey the area in depth, so here we focus on the works most related to ours.

Many null models are available for dyadic (i.e., non-hyper) graphs, preserv-
ing different properties of the observed network, either exactly (microcanonical
models) or in expectation (canonical models), together with algorithms, usually
MCMC, to sample from these graph ensembles [7, 10, and references therein].
The null model over bipartite graphs with fixed degree sequences (a.k.a. the
configuration model) has been deeply studied [10, 11]. We use pairs of bipartite
graphs to define an equivalent representation of dihypergraphs, and build on a
result by Kannan et al. [11] about the irreducibility of a Markov chain on bipar-
tite graphs to show the irreducibility of our Markov chain on dihypergraphs.

Proving irreducibility is usually the key theoretical challenge in developing
MCMC algorithms. For directed graphs, irreducibility is not guaranteed, because
edge swaps cannot directly flip a directed triangle. Lamar [13] gives tight condi-
tions on the degree sequence that imply irreducibility for digraphs. Similar issues
arise on dihypergraphs, but a novel approach, and conditions on the observed
degree and edge-dimension sequences, are required to prove irreducibility.

(Di-)hypergraphs have received relatively little attention, despite their prac-
tical importance [2, 3]. Many contributions study the configuration model for
undirected hypergraphs [5, 6, 8, 24], or define maximum entropy models [23] or
models that preserve higher order constraints [18, 19]. These approaches cannot
be adapted to dihypergraphs.

Kim et al. [12] extend the preferential attachment model on hypergraphs [8]
to dihypergraphs, preserving, in expectation, the node degrees and the hyper-
edge head- and tail- dimension sequences. As observed by Preti et al. [20], the
generated networks do not resemble real ones, despite the adopted mechanism.

Preti et al. [20] introduce two microcanonical null models for (possibly de-
generate) diypergraphs, and MCMC methods to sample from them. Both null
models allow degeneracy; the first null model maintains the same properties as
ours otherwise, and the other preserves additional constraints based on the joint
degree distribution. Many DGPs would not create degenerate dihypergraphs (see
Sect. 3.1), thus these null models would be unrealistic for such scenarios (see
Sect. 6.2), potentially leading to invalid conclusions from statistical hypothesis
tests (see Sect. 6.1).

We distinguish between edge-ordered dihypergraphs and edge-unordered di-
hypergraphs (see Sect. 3.1 for formal definitions). These concepts are not the
same as those of vertex- and stub-labeled hypergraphs [5], which relate to the
labeling of nodes. Rather, our distinction is related to the concepts of row-order-
agnostic and row-order-aware null models introduced by Abuissa et al. [1] for
transactional datasets (i.e., for binary matrices), but not immediately extendable
to dihypergraphs (see Sect. 5).
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3 Preliminaries

3.1 Directed Hypergraphs

A directed hypergraph (dihypergraph) G
.
= (N,E) has a set N =

{

n1, . . . , n|N |

}

of nodes, and a multiset (a.k.a., a bag) E =
{{

e1, . . . , e|E|

}}

of directed hyper-
edges [20], where each hyperedge ei = (t(ei), h(ei)) has a tail t(ei) ⊆ N and a
head h(ei) ⊆ N (i.e., ei ∈ 2N × 2N ). A hyperedge represents a relation from the
nodes in the tail to those in the head, matching the graphical representation of
directed edges as arrows, with the source being on the tail of the arrow, and
the destination being on the arrowhead.4 The head and tail of a hyperedge are
both sets, not multisets, and they are assumed to be non-empty. Although the
set constraint may be relaxed, to the best of our knowledge, it is not required
or even reasonable to do so in most situations modeled by dihypergraphs. We
denote the union of the head and the tail of a hyperedge e as n(e).

For each n ∈ N , the out-degree odegG(n) (resp. the in-degree idegG(n)) of n
in G is the number of hyperedges in E whose tails (resp. heads) contain n, i.e.,

odegG(n)
.
= |{e ∈ E : n ∈ t(e)}| .

(resp. idegG(n)
.
= |{e ∈ E : n ∈ h(e)}|). The degree degG(n) of n in G is the sum

of its out- and in-degrees, degG(n)
.
= odegG(n) + idegG(n).

For each hyperedge e ∈ E, the tail-dimension tdimG(e) (resp. head-dimension
hdimG(e)) of e in G is the number of nodes in its tail, i.e., tdimG(e)

.
= |t(e)| (resp.

in is head, i.e., hdimG(e)
.
= |h(e)|). The dimension or size dimG(e) of e in G is

the sum of its tail and head dimensions, dimG(e)
.
= tdimG(e) + hdimG(e).

(Non-)Degenerate Dihypergraphs We say that a dihypergraph G = (N,E)
is degenerate if there exist a node n ∈ N and a hyperedge e ∈ E s.t. n belongs to
both the tail and the head of e.5 Many natural settings impose the requirement
that dihypergraphs are not degenerate. For example, dihypergraphs can model
U.S. Congress bill sponsorships, where the sponsor is in the tail of a hyperedge,
and the cosponsor(s) are in the head [20]. The resulting dihypergraph is non-
degenerate, since a representative cannot both sponsor and cosponsor the same
bill. Similarly, when modeling contact networks in disease diffusion [20], the same
entity cannot be in both the infecting and infected groups of one interaction. On
the other hand, in a diypergraph where hyperedges represent citations between
groups of authors, degeneracy will arise whenever there are self-citations. In
this example, whether self-citation should be included depends on the analysis
to be performed. Preti et al. [20] define a null model that includes degenerate
dihypergraphs, while ours only includes non-degenerate dihypergraphs.

4 Preti et al. [20] call “head” what we call “tail” and vice versa. We follow the convention
for directed diadic graphs, due to the representation of directed edges as arrows.

5 In undirected hypergraphs, the term “degenerate” denotes that a node appears mul-
tiple times in a hyperedge [5]. Our use is related: if we transform a degenerate
dihypergraph into an undirected hypergraph by merging the head and tail of each
hyperedge, the resulting undirected hypergraph will be degenerate.
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Edge-Ordered and Edge-Unordered Dihypergraphs It is always assumed
that each node of N has a unique identifier, or label, and w.l.o.g., we can as-
sume N has a fixed, arbitrary total order. On the other hand, it may or may
not be desirable to distinguish between identical hyperedges (recall that E is a
multiset), resulting in dihypergraphs that are effectively different mathematical
objects. Assigning a unique identifier to hyperedges is equivalent to imposing
that the set of hyperedges E has a fixed, arbitrary total order, i.e., it is a se-
quence E =

〈

e1, . . . , e|E|

〉

. In this case, different orderings of E lead to different
dihypergraphs. This fact naturally leads to referring to dihypergraphs whose
hyperedges have unique identifiers as Edge-Ordered Dihypergraphs (EODs), and
therefore to dihypergraphs whose hyperedges do not have unique identifiers as
Edge-Unordered Dihypergraphs (EUDs). The choice of whether to represent a
network as an EOD or as an EUD must be deliberate, as they are different ob-
jects, which may lead to different outcomes for hypothesis tests performed on
the different models, as discussed by Abuissa et al. [1] for binary matrices.

For any EOD H, we denote with ideg(H) (resp. odeg(H)) the sequence of
the in-degrees (resp. out-degrees) of its nodes, and with tdim(H) (resp. hdim(H))
the sequence of the tail dimensions (resp. head dimensions) of its hyperedges.

3.2 Null Models and Hypothesis Testing

A null model M = (D, π) of dihypergraphs is a representation of the DGP: D is
the collection of dihypergraphs that the DGP may generate, and π is a probabil-
ity distribution over D. The DGP generates G ∈ D with probability π(G). D is
defined starting from an observed dihypergraph G̊ and a set P of functions over
the set of all dihypergraphs. P represents structural properties of the datasets
that the DGP may generate, e.g., the set of nodes, the number of hyperedges,
and/or the number of (hypergraph) triangles. D contains all and only the dihy-
pergraphs with the same values as G̊ for all properties in P, including G̊.6 M
is used to test whether the value q(G̊) of a property q /∈ P can be explained by
the properties in P, by measuring the likelihood of observing a value as or more
extreme than q(G̊) among the dihypergraphs in D. Formally, we are interested
in computing p-value of q(G̊), i.e., the probability that q(G) is as or more ex-
treme than q(G̊) when G is sampled from D according to π. When the p-value
is smaller than a critical value α chosen by the user, it allows the user to reject,
with a confidence 1− α, the hypothesis that q(G̊) is explained only by P.

The p-value is hard to compute exactly except in the most simple cases [15],
but an empirical p-value can be obtained through a Monte Carlo approach by
drawing samples from D according to π, and using the empirical distribution of
q(·) across the samples to approximate its true distribution. From a computa-
tional point of view, the key ingredient needed to obtain this approximation is
an efficient algorithm that can sample from D according to π.

Our goal in this work is to develop such an algorithm for a specific choice of
P, where D is a collection of non-degenerate EODs or EUDs.

6 D, and therefore M , depends on G̊ but the notation does not, to keep it light.
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4 A Null Model for Non-Degenerate EODs

We now introduce a null model for non-degenerate EODs, and present a Markov
Chain Monte Carlo (MCMC) algorithm to sample from this model. In Sect. 5
we do the same for EUDs.

Given an observed non-degenerate EOD G̊ = (N̊ , E̊), we define the null model
M = (D, π) where D contains all and only the EODs G = (N,E) such that:

– N = N̊ ; and

– ideg(G) = ideg(G̊) and odeg(G) = odeg(G̊), i.e., the set of vertices and the
in/out degree sequences are preserved; and

– tdim(G) = tdim(G̊) and hdim(G) = hdim(G̊), i.e., the head/tail dimension
sequences are preserved; and

– G is non-degenerate.

Although π can be any distribution over D, we focus on the uniform dis-
tribution in this paper, and present DiNgHy, an MCMC algorithm to sample
uniformly from D. This algorithm can be used to sample from D according to
any distribution by using the Metropolis-Hastings approach [17, Ex.10.12].

Preti et al. [20] introduce a null model, along with a sampling algorithm,
NuDHy, that preserves the first three properties but not the last one. Thus,
even if G̊ is non-degenerate, the null model by Preti et al. [20] may contain both
degenerate and non-degenerate dihypergraphs, which is often undesirable. A null
model should capture everything known about the DGP as closely as possible.
If it is known or assumed that the DGP would never produce a degenerate
dihypergraph, then such dihypergraphs should not be included in D, to avoid
leading to incorrect outcomes when testing hypotheses. For example, consider
the congress cosponsoring case described in Sect. 3.1, whose DGP would never
produce degenerate dihypergraphs. Assume that we are interested in studying
the likelihood that a U.S. Senator is a cosponsor of a bill whose first sponsor
is the other Senator from the same state (each state as exactly two Senators).
If we assume the null model by Preti et al. [20], the expectation over D of this
likelihood is roughly doubled, i.e., the distribution of this quantity is completely
different depending on the choice of whether to allow degeneracy in the null
model. Since the distribution is different, the results of testing the hypothesis
may also be different. In Sect. 6 we give experimental evidence of such issues.

One may be tempted to use the algorithm NuDHy by Preti et al. [20] as a
subroutine in a rejection sampling scheme to draw samples uniformly from the
space of non-degenerate dihypergraphs. This approach would not be successful,
since non-degenerate dihypergraphs are extremely sparse within the space in-
cluding degenerate dihypergraphs, as we show in Sect. 6. In fact, every sample
drawn by NuDHy is degenerate, even when G̊ is not. We therefore introduce,
in the next section, a new algorithm to sample directly from the space of non-
degenerate dihypergraphs.
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4.1 Sampling uniformly from the null model

Our MCMC algorithm DiNgHy draws uniform samples from D by running a
Markov Chain (MC) whose set of states is D and whose stationary distribution
is uniform. We start by describing the directed graph G of the states, i.e., for
which ordered pairs (G,G′) ∈ D × D the transition probability from G to G′ is
strictly positive, and we show that this graph is strongly connected (Thm. 1).
We then present an algorithm to draw the next state of the MC from the current
state, and we prove that the resulting transition probabilities lead to a uniform
stationary distribution for the MC. Before these steps, we introduce an equivalent
representation of EODs that we use throughout this section.

EODs as ordered pairs of bipartite graphs Any EOD G = (N,E) can
be represented as an ordered pair (Bt(G),Bh(G)) of bipartite graphs Bt(G) =
(N,E,Et(G)) and Bh(G) = (N,E,Eh(G)), where N and E are the two sets
of vertices of these bipartite graphs,7. There is an edge (n, e) ∈ Et(G) in the
bipartite graph Bt(G) iff n is in the tail of e, for n ∈ N and e ∈ E, and
similarly for Eh(G) and the head. Formally, Et(G)

.
= {(n, e) ∈ N × E : n ∈ t(e)}

and Eh(G)
.
= {(n, e) ∈ N × E : n ∈ h(e)}.

Fact 1 An EOD G has a unique representation as an ordered pair (Bt(G),Bh(G))
of bipartite graphs.

On the other hand, not every pair of bipartite graphs (T,H) with the same
sets of vertices is a representation of a non-degenerate EOD: the edge sets of T
and H must be disjoint for the corresponding EOD to be non-degenerate.

We can transform the set of properties P that define D into a set of properties
P ′ over pairs (T,H) of bipartite graphs which have N̊ and E̊ as their sets of left
and right vertices:

– for every n ∈ N̊ , the degree of n in T (resp. in H) is odegG̊(n) (resp.
idegG̊(n)); and

– for every e ∈ E̊, the degree of e in T (resp. in H) is hdimG̊(n) (resp.
tdimG̊(n)); and

– the EOD corresponding to (T,H) must be non-degenerate, meaning there
are no n ∈ N̊ , e ∈ E̊ such that (n, e) is an edge of both T and H.

We can then define the set DB of pairs of bipartite graphs as

DB

.
= {(Bt(G),Bh(G)) : G ∈ D} .

There is a bijection between DB and D. In the rest of this section we define
an MC on DB whose stationary distribution is uniform, since a uniform sample
from DB corresponds to a uniform sample from D.

7 To avoid confusion, we use nodes for dihypergraphs, and vertices for bipartite graphs.
Conceptually, the vertices in the bipartite graphs are the nodes in G and the iden-

tifiers of the hyperedges of G.
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The directed graph of the states To describe the directed graph G = (DB, E)
of states, we first define the swap (a.k.a. switch [11]), an operation that trans-
forms a bipartite graph B into another bipartite graph B′ with the same degree
sequences as B. We then restrict swaps to define an operation on DB that trans-
forms a pair (T,H) ∈ DB into another pair (T ′, H ′) ∈ DB.

Definition 1. Given a bipartite graph T = (V, U,W ), let v1, v2 ∈ V , v1 ̸= v2,
and u1, u2 ∈ U , u1 ̸= u2 such that e1

.
= (v1, u1), e2

.
= (v2, u2) ∈ W and e′1

.
=

(v1, u2), e
′
2
.
= (v2, u1) /∈ W . The swap sT (e1, e2) is the operation that transforms

T into the bipartite graph T ′ = (V, U,W ′) where W ′ = (W \ {e1, e2}) ∪ {e′1, e
′
2}.

We refer to sT (e1, e2) as a swap from T to T ′.

We now define the Non-Degenerating Swap (NDS) operation from DB to
itself. There are two kinds of NDSs, the the Tail-Non-Degenerating Swap (TNDS)
and the Head-Non-Degenerating Swap (HNDS).

Definition 2. Let (T,H) ∈ DB, with T = (N̊ , E,Q) and H = (N̊ , E, Z). Let
ℓ1 = (n1, e1), ℓ2 = (n2, e2) ∈ Q be two edges in T such that sT (ℓ1, ℓ2) is a
swap from T to some T ′, and such that (n1, e2), (n2, e1) /∈ Z. The Tail-Non-
Degenerating Swap (TNDS) tsT,H(ℓ1, ℓ2) is the operation that transforms (T,H)
into (T ′, H) ∈ DB by applying sT (ℓ1, ℓ2) to T .

Definition 3. Let (T,H) ∈ DB, with T = (N̊ , E,Q) and H = (N̊ , E, Z). Let
r1 = (n1, e1), r2 = (n2, e2) ∈ Z be two edges in H such that sH(r1, r2) is a
swap from H to some H ′, and such that (n1, e2), (n2, e1) /∈ Q. The Head-Non-
Degenerating Swap (HNDS) hsT,H(r1, r2) is the operation that transforms (T,H)
into (T,H ′) ∈ DB by applying sH(r1, r2) to H.

In the directed graph G = (DB, E), there is an edge from (T,H) ∈ DB to
(T ′, H ′) ∈ DB (it must hold either T = T ′ or H = H ′) if there is a NDS from
(T,H) to (T ′, H ′). It is evident there can be at most one NDS between any two
states. Any NDS is reversible, i.e., if there is a NDS q from (T,H) to (T ′, H ′),
then there is a NDS rev(q) (the reversal of q) of the same type (i.e., head- or tail-)
from (T ′, H ′) to (T,H). Thus we say that (T,H) and (T ′, H ′) are neighbors.

There exist dihypergraphs, like digraphs, where G is not strongly connected
under NDSs (consider flipping a directed triangle). Irreducibility under the edge
swap on digraphs requires complex conditions [13]. Dihypergraphs face a similar
issue, but the proof for digraphs does not extend to dihypergraphs. We use a
novel approach to show that under mild conditions, G is strongly connected,
which is necessary for the MC to have a unique stationary distribution. We first
need some technical definitions.

Let (T,H) ∈ DB, with T = (N̊ , E,W ) and H = (N̊ , E, Z). For an edge
w ∈ W (resp. z ∈ Z), let tseT,H(w) (resp. hseT,H(z)) be the set of edges w′ ∈ W
(resp. z′ ∈ Z) such that tsT,H(w,w′) is a TNDS (resp. hsT,H(z, z′) is a HNDS.)

Now let (T,H ′) ∈ DB be distinct from (T,H) (i.e., H ̸= H ′). For w ∈ W , let
ttseT,H,H′(w) be the set of edges w′ in W such that tsT,H(w,w′) is a TNDS on
(T,H) and a TNDS on (T,H ′). Let (T ′, H) ∈ DB be distinct from (T,H) (i.e.,
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T ̸= T ′). Similarly, for z ∈ Z, let hhseH,T,T ′(h) be the set of edges z′ in Z such
that hsT,H(z, z′) is a HNDS on (T,H) and a HNDS on (T ′, H).

Theorem 1. Assume that at least one of the two following pairs of conditions
hold for every (T,H) ∈ DB:

Pair 1 (1) for every edge z in H, |hseT,H(z)| ≥ 1; and (2) for every edge z in
H and for every (T,H ′) ∈ DB, |ttseT,H,H′(z)| ≥ 1.

Pair 2 (1) for every edge w in T , |tseT,H(w)| ≥ 1; and (2) for every edge w in
T and for every (T ′, H) ∈ DB, |hhseH,T,T ′(w)| ≥ 1.

Then the directed state graph is strongly connected.

The intuition behind the proof is that for any (T,H), (T ′, H ′) ∈ DB, we first
construct a sequence of NDSs, possibly a mix of TNDSs and HDNSs, from (T,H)
to some (T ′, H ′′). If H ′′ ̸= H ′, we then build another sequence of NDSs from
(T ′, H ′′) to some (T ′′′, H ′). If T ′′′ ̸= T ′, the final step is a sequence of TNDSs
from (T ′′′, H ′) to (T ′, H ′) that “undo” the TNDSs from the second phase, i.e.,
they are the reversals of TNDSs from the second phase applied in reverse order.

Proof. Let us first assume that at least the first pair of conditions hold. We later
adapt the proof to the case when only the second pair of conditions hold.

Our proof works in three phases. Given any two (T,H), (T ′, H ′) ∈ DB, we
first construct a sequence of NDSs, possibly a mix of TNDSs and HDNSs, from
(T,H) to some (T ′, H ′′). We are done iff H ′′ = H ′. Otherwise, in the second
phase, we build another sequence of NDSs, again possibly a mix of HNDSs and
TNDSs, from (T ′, H ′′) to some (T ′′′, H ′). It holds T ′′′ = T ′ iff only HNDSs
appear in this second sequence, in which case we are done. Otherwise, the third
phase involves a sequence of TNDSs from (T ′′′, H ′) to (T ′, H ′). The TNDSs in
this third sequence are the reversals of TNDSs from the second sequence, applied
in reverse order, i.e., the reversals of TNDSs that were applied later in the second
sequence are applied earlier in the third sequence.

We use a result by Kannan et al. [11] as a blackbox in the following way.
Given any two bipartite graphs B = (L,R,E) and B′ = (L,R,E′) with the
same degree sequences, Kannan et al. [11, Lemma 3.1] show how to obtain a
sequence of swaps that transforms B into B′ by moving closer to B′ at every
step, in the sense that the next swap in the sequence transforms the current
graph B′′ = (L,R,E′′) into B′′′ = (L,R,E′′′) such that |E′ ∩ E′′| < |E′ ∩ E′′′|.

If T ̸= T ′, we start our first phase, and obtain, using the method by Kannan
et al. [11], a sequence of swaps that would transform T into T ′. Let (T c, Hc)
be the current pair (at the beginning (T c, Hc) = (T,H)). As long as the next
proposed swap in the sequence is a TNDS on (T c, Hc), we apply it. If the pro-
posed swap sT ((n1, e1), (n2, e2)) is not a TNDS on (T c, Hc), then it must be
that at least one of (n1, e2) and (n2, e1), possibly both, is an edge in Hc. By
appropriately transforming Hc through one or two HNDSs, the proposed swap
will become a TNDS on (T c, Hc). Indeed, if (n1, e2) is an edge in Hc, we can
take any (n, e) ∈ hseT c,Hc((n1, e2)), which exists by the first condition in the
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hypothesis, and apply the swap sHc((n1, e2), (n, e)) to Hc. This swap is a HNDS
by definition of hseT c,Hc((n1, e2)). We proceed similarly if (n2, e1) is an edge of
Hc. The current pair (T c, Hc) is now such that the swap sT ((n1, e1), (n2, e2))
is a TNDS on (T c, Hc), so we can apply it. By repeating the process with the
next swap proposed in the sequence, we arrive at a pair (T ′, H ′′) ∈ DB. If all
the proposed swaps were TNDSs, then it must be that H ′′ = H ′, otherwise it is
possible that H ′′ ̸= H ′.

If H ′′ ̸= H ′, we enter the second phase. We obtain, using the method by
Kannan et al. [11], a sequence of swaps that would transform H ′′ into H ′. Let
(T c, Hc) be the current pair, initialized as (T c, Hc) = (T ′, H ′′) ∈ DB. As long
as the next proposed swap in the sequence is a HNDS on (T c, Hc), we apply
it. Consider now the case when the proposed swap sH((n1, e1), (n2, e2)) is not a
HNDS on (T c, Hc). It is a swap proposed by the method by Kannan et al. [11], so
at least one of (n1, e2) and (n2, e1) is an edge in H ′. Assume, w.l.o.g., that (n1, e2)
is an edge in H ′. Thus, it must be that (n1, e2) /∈ T c, because (T c, H ′) ∈ DB by
construction, and if (n1, e2) were in T c, the dihypergraph G such that Bt(G) =
T c and Bh(G) = H ′ would be degenerate, i.e., it would be (T c, H ′) /∈ DB,
which would be a contradiction. For the swap sH((n1, e1), (n2, e2)) not to be a
HNDS on (T c, Hc), it must be that (n2, e1) is an edge in T c. Let then (n, e) ∈
ttseT c,Hc,H′((n2, e1)), which exists by the second condition in the hypothesis,
and apply the swap sT c((n2, e1), (n, e)) to T c. This swap is guaranteed to be a
TNDS from the definition of ttseT c,Hc,H′((n2, e1)). The current pair (T c, Hc) is
now such that the swap sH((n1, e1), (n2, e2)) is a HNDS on (T c, Hc), so we can
apply it. By repeating the process with the next swap proposed in the sequence,
we arrive at a pair (T ′′, H ′) ∈ DB. If all the proposed swaps were HNDSs, then
it must be that T ′′ = T ′, otherwise it is possible that T ′′ ̸= T ′.

If T ′′ ̸= T ′, we enter the third phase. In this phase, we apply, in reverse
order, the reversals of the TNDSs performed in the second phase, so we end
up at (T ′, H ′). Consider the ordered sequence s = ⟨q1, . . . , qℓ⟩ of the TNDSs
performed in the second phase (if we are in the third phase, this sequence must
be nonempty), and now consider the sequence rs of TNDSs obtained by flipping
the order of the sequence, and replacing each TNDSs with its reversal, i.e.,
rs = ⟨rev(qℓ), . . . , rev(q1)⟩. When we applied the TNDS qℓ during the second
phase, we moved from some (T̃ , H̃) to (T ′′, H̃). The TNDS qℓ = tsT̃ ,H̃(z, y)
belong to ttseT̃ ,H̃,H′(z), by construction. This TNDS qℓ is therefore a TNDS

on (T̃ , H̃) and on (T̃ , H ′), by definition of ttseT̃ ,H̃,H′(z). In particular, if we

applied it to (T̃ , H ′), we would move to (T ′′′, H ′). Thus, by applying rev(qℓ)
to (T ′′′, H ′), we move to (T̃ ,H ′), and rev(qℓ) is a TNDS on (T ′′, H ′) because
qℓ is a TNDS, and every NDS is reversible. We can repeat this reasoning for
qℓ−1 and rev(qℓ−1): when we apply the TNDS rev(qℓ−1) to (T̃ ,H ′) we obtain
(T̂ , H ′), where T̂ is such that during the second phase we applied qℓ−1 to (T̂ , Ĥ)
to obtain (T̃ , Ĥ). Continuing this way, when we applied q1 during the second
phase we moved from (T ′, Ȟ) to (Ť , Ȟ), hence when we apply rev(q1) to (Ť ,H ′)
we move to (T ′, H ′). Thus, there is a sequence of NDSs from any (T,H) ∈ DB
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to any other (T ′, H ′) ∈ DB if the first pair of conditions in the hypothesis holds,
i.e., in this case the graph is strongly connected.

When only the second pair of conditions holds, we can adapt the proof by
first “fixing” H to go to (T ′′, H ′), then move to (T ′, H ′′) in the second phase,
and finally to (T ′, H ′) in the third phase. ⊓⊔

The following result gives an easy-to-compute condition on the degree and
hyperedge dimension sequences of the observed non-degenerate EOD G̊ for the
hypothesis of Thm. 1 to hold. It is a corollary of the four technical lemmas that
are stated and proved in the supplementary materials. The quantities odeg(·)
and ideg(·) can be switched to obtain another sufficient condition.

Corollary 1. Let n∗ be the node with maximum degree in G̊, and e∗ be the
hyperedge with maximum dimension in G̊. If the following condition holds:

(dimG̊(e
∗)− 1)(2degG̊(n

∗)− 1) + 1 <
∥

∥

∥
ideg(G̊)

∥

∥

∥

1
; and

2(dimG̊(e
∗)− 1)(2degG̊(n

∗)− 1) + 1 <
∥

∥

∥
odeg(G̊)

∥

∥

∥

1
;

then the condition from Thm. 1 holds.

Our analysis is constrained by the path proposed by Kannan et al. [11]. As
a result, we conjecture that the conditions of both Thm. 1 and Corol. 1 could
be tightened using a more carefully tailored sequence of switches.

Drawing the next state of the Markov Chain We now present an algorithm
that, given a pair (T,H) ∈ DB representing the current state of the MC, draws a
neighbor (T ′, H ′) ∈ DB of (T,H). We then show that the transition probabilities
resulting from this algorithm lead to a uniform stationary distribution over DB.

The pseudocode of the algorithm is presented in Alg. 1. We start by drawing
an unordered pair of distinct hyperedges (e1, e2) ∈ E × E uniformly at random
(u.a.r.) from the set of such pairs (Alg. 1). We then decide whether to perform
a HNDS or a TNDS involving these hyperedges, by flipping a biased coin with
a probability of heads b, a user-specified parameter (Alg. 1).8 If the outcome
is heads, and there is at least one HNDS involving e1 and e2 on (T,H), we
select one by first drawing a node n1 u.a.r. from h(e1) \ n(e2) (Alg. 1), and
then similarly drawing n2 u.a.r. from h(e2) \ n(e1) (Alg. 1). The sets we draw
from ensure that the resulting swap is a HNDS. We then perform the HNDS
hsT,H((n1, e1), (n2, e2)) on (T,H) to obtain (T ′, H ′), which is returned (Alg. 1).
If there is no HNDS involving e1 and e2, we take a self-loop from the state
(T,H) to itself (Alg. 1). If the outcome of the biased coin was tails, we proceed
in a similar fashion with a TNDS (lines 10–16). Any neighbor of (T,H) can be
returned in output by Alg. 1.

8 In our experiments we use b =
∥

∥

∥
odeg(G̊)

∥

∥

∥

1

/(
∥

∥

∥
odeg(G̊)

∥

∥

∥

1

+
∥

∥

∥
ideg(G̊)

∥

∥

∥

1

), which is a

heuristic value to roughly balance the number of HNDSs and TNDSs performed.
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Algorithm 1: Drawing the next state of the MC

Input: the current state (T,H) ∈ DB, with T = (N̊ , E,W ), and
H = (N̊ , E, Z), the coin heads probability b

Output: the next state (T ′, H ′) ∈ DB

1 (e1, e2)← unordered pair of distinct hyperedges in E chosen u.a.r.
2 flip← outcome of a flip a biased coin with heads probability b
3 if flip is heads then

4 if h(e1) \ n(e2) ̸= ∅ and h(e2) \ n(e1) ̸= ∅ then

5 n1 ← node drawn u.a.r. from h(e1) \ n(e2)
6 n2 ← node drawn u.a.r. from h(e2) \ n(e1)
7 (T,H ′)← result of applying hsT,H((n1, e1), (n2, e2)) on (T,H)
8 return (T,H ′)

9 else return (T,H)

10 else

11 if t(e1) \ (h(e2) ∪ t(e2)) ̸= ∅ and t(e2) \ (h(e1) ∪ t(e1)) ̸= ∅ then

12 n1 ← node drawn u.a.r. from t(e1) \ n(e2)
13 n2 ← node drawn u.a.r. from t(e2) \ n(e1)
14 (T ′, H)← result of applying tsT,H((n1, e1), (n2, e2)) on (T,H)
15 return (T ′, H)

16 else return (T,H)

Stationary distribution This result shows that the transition probabilities
arising from Alg. 1 allow us to sample uniformly from DB. It relies on the tran-
sition matrix being doubly-stochastic.

Theorem 2. The unique stationary distribution of the MC is uniform over DB.

We can then use the MC as part of our MCMC algorithm DiNgHy to sample
uniformly from D, by running the MC starting from G̊ until it mixes, and taking
the state of the MC at that point as the sample from D.

5 A Null Model for Non-Degenerate Edge-Unordered

Hypergraphs

We extend the null model introduced in Sect. 4 to non-degenerate EUDs, to
obtain a null model (DU, π), where DU is the set of all the non-degenerate EUDs
with the same in-/out-degree and head-/tail-hyperedge dimension sequence as
the observed non-degenerate EUD G̊. The algorithm DiNgHy presented in
Sect. 4.1 is easily modified as follows, to obtain an algorithm DiNgHy-U for
sampling uniformly from DU.

There is a surjective function o2u(·) from D to DU, mapping any EOD G ∈ D
to the EUD o2u(G) ∈ DU obtained by removing the hyperedge identifiers from
G. For any EUD G′, we denote with o2u−1(G′) the inverse image of G′ through
o2u(), i.e., o2u−1(G′) = {EOD G : o2u(G) = G′}. The following result gives an
expression for

∣

∣o2u−1(G′)
∣

∣.
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Lemma 1. Let G = (N,E) be a EUD. Let t∗
.
= maxe∈E tdimG(e) and h∗ .

=
maxe∈E hdimG(e). For 1 ≤ i ≤ t∗ and 1 ≤ j ≤ h∗, let Ei,j

.
= {{e ∈ E :

tdimG(e) = i ∧hdimG(e) = j}} be the multiset of hyperedges with tail dimension
i and head dimension j. Let Ēi,j

.
=

{

ei,j,1, . . . , ei,j,ui,j

}

be the set of such hyper-
edges, and Ē be the set version of E. For 1 ≤ k ≤ ui,j, let wi,j,k

.
= mE(ei,j,k)

be the multiplicity of ei,j,k in E. Then, the number
∣

∣o2u−1(G)
∣

∣ of edge-labeled
hypergraphs mapped to G by o2u(·) is

∣

∣o2u−1(G)
∣

∣ =

t∗
∏

i=1

h∗

∏

j=1

(

|Ei,j |

wi,j,1, . . . , wi,j,ui,j

)

=

∏t∗

i=1

∏h∗

j=1|Ei,j |!
∏

e∈Ē mG(e)!
. (1)

We can use Lemma 1 and the Metropolis-Hastings (MH) approach to modify
the stationary distribution π of the MC over EODS from Sect. 4.1, so that, for
every EOD G ∈ D, it holds

π(G) =
1

|DU|
∣

∣o2u−1(o2u(G))
∣

∣

. (2)

The MC is modified as follows to achieve the above. At every step, an EOD B
is proposed as the next state of the MC by drawing it from the neighbors of the
current state A wrt the original transition probabilities of the MC. B is accepted
as the next state of the MC with probability

min

{

1,
π(B)pB,A

π(A)pA,B

}

= min

{

1,

∣

∣o2u−1(o2u(A))
∣

∣

∣

∣o2u−1(o2u(B))
∣

∣

}

,

as, per Thm. 2, the transition probabilities are symmetric in our original MC
(i.e., pB,A = pA,B). The correctness of the MH approach guarantees that the
stationary distribution of this modified MC is as in eq. (2). Thus we can sample
an EOD G ∈ D using this modified MC, and consider the EUD o2u(G) as a
uniform sample from DU, because for every EUD G′ ∈ DU the probability that
it is sampled is

∑

G∈o2u−1(G′)

π(G) =
1

|DU|
.

6 Experimental Evaluation

The goal of our experimental evaluation is threefold:

– assess the structural differences between the space of non-degenerate EODS
we introduce and the space where degeneracy is allowed, proposed by Preti
et al. [20]. In particular, we aim to understand the presence and amount of
degeneracy in samples from the latter, and whether the outcome of hypoth-
esis tests differ depending on which null model is used (results in Sect. 6.1);

– study the behavior of NuDHy [20] when the observed EOD is non-degenerate,
to evaluate the possibility of using this algorithm as a subroutine in a rejec-
tion sampling scheme to sample non-degenerate EOD (results in Sect. 6.1);

– evaluate the empirical mixing time of our algorithm DiNgHy, compared to
NuDHy and a baseline DiNgHy-B (results in Sect. 6.2)
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Fig. 1: Mean percentage (over 33 samples, 95% confidence interval shaded) of
degenerate hyperdeges as function of the number of steps of the Markov chain.

Implementation and datasets We use Preti et al.’s publicly available implementa-
tion of NuDHy [20] (specifically, the NudHy-Degs variant), which is a standard
swap chain on the bipartite representation of a dihypergraph. Off of this code-
base, we implement our algorithm DiNgHy, and a baseline DiNgHy-B used
to evaluate the mixing time.9 DiNgHy-B uses the same approach as NuDHy

with the additional constraint that swaps do not cause degeneracy (i.e., they are
NDSs). DiNgHy takes a novel approach to select NDSs (see Sect. 4.1).

We use datasets used by Preti et al. [20] and synthetic datasets.10

6.1 Difference between the null models

For all datasets, we measured the percentage of samples with at least one degen-
erate edge on 500 samples from the space that allows degeneracy, drawn using
NuDHy. For every dataset, all 500 samples included degeneracy, even when the
dataset was non-degenerate.

Figure 1 shows the percentage of hyperedges that are degenerate as a func-
tion of the number of steps taken by the Markov chain when starting from the
observed network. This quantity increases sharply by the first measurement, and
stabilizes soon after, without ever disappearing, i.e., at every measurement, the
current state of the Markov chain was a degenerate EOD.

For each sample, we also count the degenerate hyperedges, and the nodes that
participate in any degenerate hyperedge. Results are in Table 1. Samples where
G̊ was a real dataset have up to 10% degenerate hyperedges, and up to 99%
of nodes participating in degenerate edges. The synthetic datasets demonstrate
that high density networks exhibit higher degeneracy.

All these results indicate that the two sample spaces, thus the null models, are
very different, which was the first goal of our experimental evaluation (more evi-
dence is given below). In particular, non-degenerate EODs are extremely sparse
in the sample space that includes degenerate ones. Thus, one cannot use NuDHy

as a rejection sampling subroutine to produce non-degenerate samples, which was

9 Implementation available from https://github.com/acdmammoths/dinghy-code
10 Details in the supplementary materials.

https://github.com/acdmammoths/dinghy-code
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Table 1: Median amount of degeneracy in 33 samples per observed network,
obtained by NuDHy.

Degenerate edges Nodes in degenerate edges

Dataset Count Normalized Count Normalized

congress 178 9.55% 100 99.01%
iaf1260b 129 6.19% 247 14.81%
ijo1366 152 6.75% 294 16.29%

ecoli (nd) 29 3.17% 60 8.55%
cit-sw 179 0.34% 806 4.87%

dblp-9 (nd) 272 0.29% 1023 4.87%
enron 379 0.25% 1859 3.28%

math (nd) 58 0.06% 228 0.66%
ord (nd) 378 0.08% 722 0.11%

synthetic 160 1274 99.53% 1280 100%
synthetic 80 927 72.42% 1280 100%
synthetic 40 351 27.42% 1280 100%
synthetic 20 96 7.5% 1000 78.12%
synthetic 10 27 2.11% 227 17.73%

our second goal, and justifies the need to develop our new algorithm DiNgHy

to sample directly from the space of non-degenerate EODs.

To further evaluate the importance of using the right null model when per-
forming statistical hypothesis testing, we compare the distributions of the num-
bers of directed cycles of sizes 2 and 3 in the digraph projections of samples
obtained with NuDHy and with DiNgHy.11 Figure 2 shows the distributions
of the number of directed 3-cycles for some of the datasets. Results for other
datasets are in the supplementary materials, and are qualitatively similar. For
all datasets, the distributions are clearly different. For iaf1260b and ijo1366,
this difference leads to opposite outcomes of hypothesis tests. We compute the
empirical p-value of a quantity q(G̊) as the ratio of sampled dihypergraphs G
where |q(G)− µ| ≥ |q(G̊)− µ|, where µ is the mean value of q over the samples.
The number of directed 3-cycles in iaf1260b and ijo1366 is marked as non-
signicant under the degeneracy-allowed null model (NuDHy), with p-values of
0.97 and 0.73 respectively. Under our more appropriate null model, the p-values
are 0 and 0.33 respectively, indicating that existing knowledge about the DGP
does not explain the observed number of directed 3-cycles. The p-values for other
real datasets is zero under both null models, since the observed value is outside
both distributions, but the distributions are still distinct.

11 For this experiment, we exclude enron, ord (nd), math (nd), and dblp-9 (nd)
due to a prohibitive runtime of more than 22 hours per dataset. Corollary 1 does not
hold on some of the dihypergraphs we consider, because it is not tight. We conjecture
that the MCs for these cases are still irreducible. If not, the distribution would be
uniform over the strongly connected component that includes the observed network.
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(a) Results on a subset of datasets used for experiments in [20].

(b) Results on synthetic datasets, identified by their edge size.

Fig. 2: Empirical distributions of the number of 3-cycles in 33 samples. The
observed value is omitted when far from both empirical distributions.

On synthetic datasets with higher density, and therefore degeneracy, the dis-
tributions are more distinct. On all but the least dense synthetic dataset, the
observed number of 3-cycles is found to be significant under the degeneracy-
allowed null model, and non-significant under our null model. Results for directed
2-cycles are similar (see the supplementary materials).

In all cases the distributions over the two null models are different, so there
exist critical thresholds for which a hypothesis would be rejected under one
null model but not under the other. This fact stresses the profound difference
between our null models and that of Preti et al. [20], emphasizing the importance
of choosing the appropriate null model when testing hypotheses.

6.2 Convergence

The perturbation score [22] is a popular measure for the empirical mixing time of
MCMC algorithms that sample from null models over dyadic graphs and binary
matrices. Given two binary matrices, it is defined as the fraction of entries with
value 1 in one matrix that have value 0 in the other. We extend the perturbation
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score between two dihypergraphs G̊ and G as the average of the perturbation
score between the incidence matrices of Bt(G̊) and Bt(G), and the perturbation
score between the incidence matrices of Bh(G̊) and Bh(G).
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Fig. 3: Perturbation score as function of the steps on the Markov chain. In each
case, the curves for NuDHy and DiNgHy-B perfectly overlap.

On the datasets satisfying Corol. 1, we use the same number of steps s as Preti
et al. [20] to take a single sample for each dataset (details in the supplementary
materials), and we measure the perturbation score between G̊ and the current
state of the Markov Chain every s

100 steps, for a total of 100 measurements.
Figure 3 shows the perturbation score as function of the number of steps.

DiNgHy converges faster than DiNgHy-B and NuDHy, with the latter two
showing identical behavior (overlapping curves). Thus, the different approach to
choosing NDSs taken by DiNgHy is to be preferred, as it leads to faster mixing.

7 Conclusion

We introduce the first null models for edge-ordered and edge-unordered non-
degenerate dihypergraphs, capturing important properties of the observed net-
work. By preserving non-degeneracy, our models are more realistic than existing
ones in many scenarios, and thus should be preferred for statistical hypothe-
sis testing. Our MCMC algorithms sample from the null models according to
any user-specified distribution, and converge quickly. Directions for future work
include strengthening the sufficient conditions for irreducibility (Thm. 1 and
Corol. 1), and developing more descriptive null models for dihypergraphs, and
efficient algorithms to sample from them.
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1 Derivation of sufficient conditions for irreducibility

The following set of lemmas lead to Corollary 1 from the main text. Lemma 1
and Lemma 3 imply Corollary 1 as stated, while Lemma 2 and Lemma 4 imply
the unstated version of the Corollary 1 where the roles of T and H are reversed.

Lemma 1. Let n∗ be the node with maximum degree in G̊, and e∗ be the hyper-

edge with maximum dimension in G̊. If

(dim
G̊
(e∗)− 1)(2deg

G̊
(n∗)− 1) + 1 <

∥

∥

∥ideg(G̊)
∥

∥

∥

1
,

then, for every (T,H) ∈ DB, and every edge q ∈ H, it holds hseT,H(q) ≥ 1.

Proof. Let (T,H) ∈ DB, with T = (N̊ , E,W ) and H = (N̊ , E, Z). For any edge
z = (n, e) ∈ Z, define

Nn,e
.
=

{

n′ ∈ N̊ \ {n} : (n′, e) ∈ W ∪ Z
}

as the set of nodes other than n that connect to e in either T or H (i.e., that
belong to either the head or the tail of e in the non-degenerate EOD G ∈ D such
that T = Bt(G), and H = Bh(H)). It holds |Nn,e| = dimG(e)− 1.

Let also, for any z = (n, e) ∈ Z,

En,e
.
= {e′ ∈ E \ {e} : (n, e′) ∈ W ∪ Z}

be the set of hyperedges other e that form an edge n in either T or H (i.e., of
which n belongs to the head or tail in G). It holds |En,e| = degG(n)− 1.

Denote with hseT,H(z) = Z \ hseT,H(z) the set of all edges in H that do not

form a HNDS with z. It holds

hseT,H(z) ={z} ∪ {(n′, e′) ∈ Z : n′ ∈ Nn,e ∨ e′ ∈ En,e}

={z} ∪





⋃

e′∈En,e

{

(n′′, e′) ∈ Z : n′′ ∈ N̊
}





∪





⋃

n′∈Nn,e

{(n′, e′′) ∈ Z : e′′ ∈ E}



 .
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Thus,

∣

∣hseT,H(z)
∣

∣ ≤ 1 +
∑

e′∈En,e

tdimG(e
′) +

∑

n′∈Nn,e

idegG(n
′)

≤ 1 + |En,e|(dimG̊
(e∗)− 1) + |Nn,e|degG̊(n

∗)

= 1 + (deg
G̊
(n)− 1)(dim

G̊
(e∗)− 1) + (dim

G̊
(e)− 1)deg

G̊
(n∗)

≤ 1 + (dim
G̊
(e∗)− 1)(2deg

G̊
(n∗)− 1)

<
∑

n′∈N̊

ideg
G̊
(n′) = |Z|,

where the last inequality follows from the hypothesis. hseT,H(z) and hseT,H(z)
partition Z, so it must be |hseT,H(z)| ≥ 1. ⊓⊔

The proof for the following lemma proceeds similarly to the previous proof.

Lemma 2. Let n∗ and e∗ be as in Lemma 1. If

(dim
G̊
(e∗)− 1)(2deg

G̊
(n∗)− 1) + 1 <

∥

∥

∥odeg(G̊)
∥

∥

∥

1
,

then, for every (T,H) ∈ DB, and every edge q ∈ H, it holds tseT,H(q) ≥ 1.

Lemma 3. Let v∗ and e∗ be as in Lemma 2. If

2(dim
G̊
(e∗)− 1)(2deg

G̊
(n∗)− 1) + 1 <

∥

∥

∥
odeg(G̊)

∥

∥

∥

1
,

then, for every (T,H) and (T,H ′) ∈ DB, and every edge z in T , it holds

|ttseT,H,H′(e)| ≥ 1.

Proof. Let T = (N̊ , E,W ), H = (N̊ , E, Z), z = (n, e) ∈ Z, Nn,e, and En,e be

as in the proof for Lemma 1. Let H ′ = (N̊ , E, Y ), and define N ′

n,e and E′

n,e

similarly as Nn,e and En,e but on (T,H ′).

Denote with ttseT,H,H′(z) = W \ ttseT,H,H′(z) the set of all edges in W that
do not form a TNDS with z in both (T,H) and (T ′, H ′). It holds

ttseT,H,H′(z) ={z} ∪
{

(n′, e′) ∈ W : n′ ∈ Nn,e ∪N ′

n,e ∨ e′ ∈ En,e ∪ E′

n,e

}

={z} ∪





⋃

e′∈En,e∪E′

n,e

{

(n′′, e′) ∈ W : n′′ ∈ N̊
}





∪





⋃

n′∈Nn,e∪N ′

n,e

{(n′, e′′) ∈ W : e′′ ∈ E}



 .
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Thus,

|ttseT,H,H′(z)| ≤1 +
∑

e′∈En,e∪E′

n,e

∣

∣

∣

{

(n′′, e′) ∈ W : n′′ ∈ N̊
}∣

∣

∣

+
∑

n′∈Nn,e∪N ′

n,e

|{(n′, e′′) ∈ W : e′′ ∈ E}|

≤1 +
∑

e′∈En,e∪E′

n,e

tdim
G̊
(e′) +

∑

n′∈Nn,e∪N ′

n,e

odeg
G̊
(n′)

≤1 + (|En,e|+
∣

∣E′

n,e

∣

∣)(dim
G̊
(e∗)− 1) + (|Nn,e|+

∣

∣N ′

n,e

∣

∣)(deg
G̊
(n∗))

≤1 + 2(deg
G̊
(n∗)− 1)(dim

G̊
(e∗)− 1) + 2(dim

G̊
(e∗)− 1)deg

G̊
(n∗)

<
∑

n′∈N̊

odeg
G̊
(n′) = |W |,

where the last inequality follows from the hypothesis. Because ttseT,H,H′(z) and
ttseT,H,H′(z) partition W , the last inequality implies |ttseT,H,H′(z)| ≥ 1. ⊓⊔

The proof for the following lemma proceeds similarly to the previous proof.

Lemma 4. Let v∗ and e∗ be as in Lemma 2. If

2(dim
G̊
(e∗)− 1)(2deg

G̊
(n∗)− 1) + 1 <

∥

∥

∥ideg(G̊)
∥

∥

∥

1
,

then, for every (T ′, H) and (T,H) ∈ DB, and every edge z in H, it holds

|hhseH,T,T ′(e)| ≥ 1.

2 Proof of stationary uniform distribution

This result is Theorem 2 in the main text.

Theorem 1. The unique stationary distribution of the MC is uniform over DB.

Proof. We start by showing that the transition probabilities are symmetric, i.e.,
the probability pS,S′ of moving from S = (T,H) to S′ = (T ′, H ′) in one step is
the same as the probability pS′,S of moving from S′ to S in one step.

Clearly the transition probabilities are zero if S and S′ are not neighbors.
Assume now that there is a HNDS q = hsT,H((n̄1, ē1), (n̄2, ē2)) on (T,H) leading
to (T ′, H ′). The proof for the case when there is a TNDS between two neighbors
follows the same steps. Since a HNDS only changes the second bipartite graph,
it must be T ′ = T .

The probability that the MC moves from (T,H) to (T,H ′) is the probability
that q is performed by our algorithm (Algorithm 1 in the main text). This
probability is

pS, S′ =

(

|E|

2

)−1

b
1

|h(ē1) \ n(ē2)|

1

|h(ē2) \ n(ē1)|
,

as it is the product of:
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1. the probability of drawing ē1 and ē2 as e1 and e2 on line 1 of Algorithm 1;
2. the probability that the coin flip is heads (line 2);
3. the probability of drawing n̄1 as n1 (line 5);
4. the probability of drawing n̄2 as n2 (line 6);

When q is performed on (T,H) to obtain (T ′, H ′), the hyperedge ē1 is mod-
ified to become ē′1 = (t(ē1), (h(ē1) \ {n̄1}) ∪ {n̄2}),

3 and the hyperedge ē2 is
modified to become ē′2 = (t(ē2), (h(ē2) \ {n̄2}) ∪ {n̄1}). The probability that the
MC moves from (T,H ′) to (T,H) is the probability that the HNDS rev(q), the
reversal of q, is performed by Algorithm 1. This probability is

pS′,S =

(

|E|

2

)−1

b
1

|h(ē′1) \ n(ē
′

2)|

1

|h(ē′2) \ n(ē
′

1)|
.

We want to show that pS,S′ = pS′,S . From the definition of ē′1 and ē′2 above, and
the fact that n(ē′2) = h(ē′2) ∪ t(ē′2) and these two sets are disjoint or we would
have degeneracy, we get

h(ē′1) \ ē
′

2 = (h(ē′1) \ h(ē
′

2)) \ t(ē
′

2)

= (((h(ē1) \ {n̄1}) ∪ {n̄2}) \ ((h(ē2) \ {n̄2}) ∪ {n̄1})) \ t(ē2)

= (((h(ē1) \ h(ē2)) \ {n̄1}) ∪ {n̄2}) \ t(ē2) .

Since n̄1 ∈ h(ē1) \ h(ē2), while n̄2 /∈ h(ē1) \ h(ē2), then

|((h(ē1) \ h(ē2)) \ {n̄1}) ∪ {n̄2}| = |h(ē1) \ h(ē2)|,

which, with the fact that t(ē2) = t(ē′2), implies |h(ē′1) \ n(ē
′

2)| = |h(ē1) \ n(ē2)|,
i.e., the third factors in the expressions of p and p′ are equal. By the same
reasoning, we can show that |h(ē′2) \ n(ē

′

1)| = |h(ē2) \ n(ē1)|, concluding that
pS,S′ = pS′,S .

The transition matrix of our Markov chain, which is defined over a finite
number of states, is therefore symmetric, hence is doubly-stochastic. Markov
chains whose transition matrix is doubly-stochastic have a unique stationary
distribution, the uniform [5, Ex. 7.11]. ⊓⊔

3 Edge-unordered dihypergraphs

This result is Lemma 1 in the main text.

Lemma 5. Let G = (N,E) be a EUD. Let t∗
.
= maxe∈E tdimG(e) and h∗ .

=
maxe∈E hdimG(e). For 1 ≤ i ≤ t∗ and 1 ≤ j ≤ h∗, let

Ei,j
.
= {{e ∈ E : tdimG(e) = i ∧ hdimG(e) = j}}

3 The hyperedges ē1 and ē′1 have the same identifier, but the nodes belonging to this
hyperedge changed as a consequence of applying the NDS q.
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be the multiset of hyperedges with tail dimension i and head dimension j. Let

Ēi,j
.
=

{

ei,j,1, . . . , ei,j,ui,j

}

be the set of such hyperedges, labeled arbitrarily, and

Ē be the set version of E. For 1 ≤ k ≤ ui,j, let wi,j,k
.
= mE(ei,j,k) be the mul-

tiplicity of ei,j,k in E. Then, the number
∣

∣o2u−1(G)
∣

∣ of edge-labeled hypergraphs

mapped to G by o2u(·) is

∣

∣o2u−1(G)
∣

∣ =

t∗
∏

i=1

h∗

∏

j=1

(

|Ei,j |

wi,j,1, . . . , wi,j,ui,j

)

=

∏t∗

i=1

∏h∗

j=1|Ei,j |!
∏

e∈Ē mG(e)!
. (1)

Proof. The argument follows the same structure as the proof for [1, Lemma 3].

Let G∗ be any EOD in o2u−1(G). Any other G′ ∈ o2u−1(G) can be obtained
by appropriately permuting the hyperedge identifiers of G∗. Of all the possible
permutations, some only differs from each other by the permutation of identifiers
of identical hyperedges, resulting in the same G′. Thus the total number of
permutations (the numerator in eq. (1)) must be divided by the fraction of such
identical permutations (the denominator in eq. (1)) to obtain the number of
distinct ones, i.e., the number of distinct EODs in o2u−1(G). ⊓⊔

4 Datasets

The real datasets, whose salient statistics are in Table 1, represent a variety
of applications. cit-sw [4] and dblp-9 [8] are citation hypergraphs where each
hyperedge correspond to a pair of papers where the first cites the second: the
tail is the set of authors of the first paper, and the head is the set of authors
of the second. iaf1260b and ijo1366 [4] represent chemical reactions among
genes as hyperedges, where each gene is a node. enron is a network of emails
with the sender in the tail and the recipients in the head. math [4] represents a
question-and-answer forum from MathOverflow where each hyperedge is a post,
the tail contains the question original poster, and any responders are in the
head. ecoli (nd) [7] is constructed using the pathway eco01100 of Escherichia
coli from the Kyoto Encyclopedia of Genes and Genomes (KEGG). congress is
a dihypergraph representation of sponsor-cosponsor relationship on bills in the
Senate from the 107th U.S. Congress [2]. ord [3] models chemical reactions, with
reagents in the hyperedge tail, and products in the head.

The dihypergraphs ecoli, ord, dblp-9, and math were originally degen-
erate. We remove degeneracy from them as a preprocessing step, by iterating
through the hyperedges, fixing the tail and removing any duplicate nodes from
the head. If the resulting head is empty, we remove the hyperedge. The result-
ing non-degenerate datasets have real-world structure, and represent modified
settings which are still useful for many applications. For example, dblp-9, once
degeneracy is removed, is a citation dataset where self-citations are ignored,
and math without degeneracy represents a question-and-answer forum where
self-responses are ignored. There are many applications where self-interactions
are not meaningful or impossible, thus where it would be appropriate to use
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DiNgHy. We add (nd) after a dataset name to denote that degeneracy has
been removed.

For the convergence experiment in Sect. 6.3, we further process the datasets
dblp-9 (nd), math (nd), enron to remove a few of the largest hyperedges so
the resulting datasets fulfill the condition for irreducibility from Corollary 1. We
refer to the datasets so obtained as dblp-9 (c), math (c), and enron (c) (see
also Table 1). For dblp-9 (c) and math (c), we remove the 1% of hyperedges
with highest dimension, while for enron (c) we remove 7% of edges. The re-
sulting datasets maintain sufficient real structural properties for our evaluation
of convergence to be meaningful.

Table 1: Datasets statistics. Irreducibility condition from Corollary 1. See text
for details.

Dataset |E| |V | tdim hdim odeg ideg Irreducibility s

enron 148754 56700 1.0 4.0 2.6 10.4 N 15m
enron (c) 138845 48050 1.0 3.0 2.9 8.7 Y 15m
ijo1366 2251 1805 2.3 2.0 2.8 2.5 N 194k

ecoli (nd) 914 702 2.0 2.1 2.6 2.8 N 79k
cit-sw 53177 16555 2.7 2.9 8.7 9.4 Y 6.0m

ord (nd) 478084 632245 4.5 1.0 3.4 0.8 N 53m
dblp-9 (nd) 92526 20986 2.4 2.4 10.7 10.6 N 9.3m
dblp-9 (c) 91636 20614 2.3 2.4 10.4 10.5 Y 9.3m
congress 1864 101 1.0 8.4 18.5 154.7 N 178k
math (nd) 90689 34578 1.0 1.8 2.6 4.6 N 5.2m
math (c) 89791 33271 1.0 1.6 2.7 4.3 Y 5.2m
iaf1260b 2083 1668 2.2 2.0 2.8 2.5 N 178k

In addition to the real and modified datasets, we use five synthetic dihyper-
graphs to perform the difference in the outcomes of hypothesis tests when using
our null models vs. the one by Preti et al. [6]. These dihypergraphs each have
a 1280 hyperedges and 1280 nodes, and the hyperedge size is varied to produce
different densities. We refer to each of these datasets as synthetic n, where n
is a hyperedge size in {10, 20, 40, 80, 160}. In synthetic n, all the hyperedges
have tail dimension and head dimension n

2 , and the nodes have in-degree and
out-degree n

2 , so a larger n means higher density.

5 Additional Experiments

We include the results from all experiments on all relevant datasets in this sec-
tion. See Section 6 in the main text for a discussion of the experimental results.

We show the incidence of degeneracy measured over the course of drawing a
single sample for all datasets in Fig. 1.
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Fig. 1: Shows the percentage of degenerate edges on the y-axis and the number of
steps in the Markov Chain on the x-axis. The line is the mean over the samples
and the shaded region represents a 95% confidence interval.

We performed the same experiment as the one for directed triangles but to
measure reciprocity, or directed 2-cycles. The results are similar, as shown in
Fig. 2.

We include exact p-values for the synthetic data in Table 2. All nonzero
p-values for real datasets are discussed in the main text.
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(a) Results on datasets used for experiments in [6].

(b) Results on synthetic datasets, identified by their edge size, which corresponds to
density.

Fig. 2: Histogram that shows the frequency of the number of directed 2-cycles,
or reciprocity, in 33 samples from NuDHy and DiNgHy for each dataset. The
value of the observed dataset is shown by a black dashed vertical line or omitted
when it is extremely far from both sample distributions.

Table 2: P-values for the number of triangles and reciprocity of nondegenerate
synthetic datasets compared to 33 samples from NuDHy or DiNgHy.

Triangles p-values Reciprocity p-values

Dataset DiNgHy NuDHy DiNgHy NuDHy

synthetic 160 0.45 0 0.61 0
synthetic 80 0.06 0 0.79 0
synthetic 40 0.76 0 0.21 0.09
synthetic 20 0.30 0.03 0.15 0.15
synthetic 10 0.30 0.39 0.61 0.55
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