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Abstract— Accurate query performance prediction (QPP) is interactions and complexity; in fact, they are not designed
central to effec_tive resource management, query_optimizatioand to do so. While they do a good job of comparing the costs
query scheduling. Analytical cost models, used in current gener- of alternative query plans, they are poor predictors of plan

ation of query optimizers, have been successful in comparing the . .
costs of alternative query plans, but they are poor predictors b execution latency. Recent work [1] showed this result fo€TP

execution latency. As a more promising approach to QPP, this DS [17], and this paper does same for TPC-H [8] data and
paper studies the practicality and utility of sophisticated learning- queries.

based models, which have recently been applied to a variety of |n this paper, we utilize learning-based modeling and pre-
predictive tasks with great success, in both static (i.e., fixed)nal diction techniques to tackle QPP for analytical workloads.

dynamic query workloads. . . Lo .
We propose and evaluate predictive modeling techniques that Data-driven, learning-based modeling is fast emergingras a

learn query execution behavior at different granularities, ranging  ©ssential ingredient of both user-facing applicationschsu
from coarse-grained plan-level models to fine-grained operator- as predictive analytics, and system-facing applicaticugh

level models. We demonstrate that these two extremes offer as autonomic computing and self-management. Prior work
a tradeoff between high accuracy for static workload queries reported evidence that such techniques can also be used

and generality to unforeseen queries in dynamic workloads, . . . . .
respectively, and introduce a hybrid approach that combines thig effectively for QPP, at least in constrained settings (&ry.

respective strengths by selectively composing them in the proge  Static query workloads [1]). Our study substantially imee
of QPP. We discuss how we can use a training workload to (i) and generalizes these results in a number of new directions,

pre-build and materialize such models offline, so that they are arguing that learning-based techniques tailored to databa

readily available for future predictions, and (ii) build new models uerv execution are aenerally applicable to and can beighl
online as new predictions are needed. All prediction models are q y. g y app Yig
effective for QPP.

built using only static features (available prior to query execution) o . .
and the performance values obtained from the offline execution ~ One of our key contributions IS to show that queries can
of the training workload. be modeled at different granularities, each offering défe

We fully implemented all these techniques'and extensions on tradeoffs involving predictive accuracy and generality tep-
top of PostgreSQL and evaluated them experimentally by quan-  rasentative workload is available for training purposes,oan

tifying their effectiveness over analytical workloads, represeted . L . -
by well-established TPC-H data and queries. The results provide make highly accurate predictions using coarse-graineah-pl

quantitative evidence that learning-based modeling for QPP is level models [1]. Such models, however, do not generalize
both feasible and effective for both static and dynamic workload well, performing poorly for unseen or changing workloads.
scenarios. For these cases, fine-grained, operator-level modelirfignoes
much better due to its ability to capture the behavior of
arbitrary plans, although they do not perform as well as-plan
Modern database systems can greatly benefit from quésyel models for fixed workloads. We then propose a hybrid
performance prediction (QPP), i.e., predicting the exeout approach that selectively composes plan- and operatel-lev
latency of a query plan on a given hardware and systamodels to achieve high accuracy without sacrificing geitgral
configuration. For example, resource managers can utilized Q All these modeling techniques require a training query
to perform workload allocation such that interactive bébiav workload to be executed, so that appropriate feature and
is achieved or specific QoS targets are met. Optimizers ga@rformance values are extracted and logged. Models can
choose among alternative plans based-on expected executizen be built (i.e., trained) over these logs in offline mode,
latency instead of total work incurred. online mode, or in conjunction. The main advantage of pre-
Accurate QPP is important but also challenging: databalseilding and materialization is that the models are immigdija
systems are becoming increasingly complex, with severalady for use in predictions whenever needed. The challenge
database and operating system components interacting in lsowever, is to decide which models to pre-build, since it is
phisticated and often unexpected ways. The heterogengityctearly not feasible to build all possible models in advance
the underlying hardware platforms adds to this complexifjo guide this decision, we propose heuristics that rely on
by making it more difficult to quantify the CPU and I/Oestimates for additional accuracy yields and use fregesnci
costs. Analytical cost models predominantly used by thEhe online approach, on the other hand, allows for a custom
current generation of query optimizers cannot captureethggsnd potentially more accurate) model to be built for a djeci
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prediction task, but delays the prediction until an appiedpr the prediction attribute(s) directly determine the explany
model is built. Note that online building proceeds over thieatures, e.g., in auto-regressive models. Alternativéig
already available feature data, and does not require nawaining features can be learned automatically feéature
sample query runs. Finally, online and offline modeling caselection however, given a set of n attributes, trying the power
be seamlessly combined, with the decision of which onlireet is prohibitively expensive if n is not small or training i
models to create influenced by the pre-built models. We nagpensive [2], [3], [4] thereby requiring heuristic sobuis.

that these techniques require only static features (oenpde- Most approaches rank the candidate attributes (often based
time features which are available prior to query executfon) on their correlation to the prediction attribute(s) usingtrnts
performance prediction. such as information gain or correlation coefficients) and us

Finally, we describe how all these techniques can be usthis ranking to guide a heuristic search [4] to identify thesin
in combination to provide progressively improved predios. predictive attributes tested over a disjoint test datalsetis
When a new QPP is needed, we can immediately use the greper, we use a simildforward Feature Selectioalgorithm
built models to come up with an initial prediction, which webased on linear correlation coefficients [4]. This algarith
can then continue to improve over time by building bettgyerforms a best-first search in the model space. It starts
models online optionally with run-time features. with building models using small number of high-correlatio
While we study the utility of learning-based models fofeatures and iteratively builds more complex and accurate
guery execution latency as the performance metric of isteremodels by using more features. The features are considered
the proposed techniques are general, and thus can be useobged on their correlation ranks with the target/predictio
the prediction of other metrics such as throughput. We shoudttribute(s).
also note that this paper does not consider QPP in the pesendOnce a prediction model is trained, it can then be used for
of concurrent execution, which is an important and chalilegg predicting the unknown values of the target attributesgive
problem to address, but is outside the scope of this paper.values of the explanatory attributes. Hypothesis testind a
We fully implemented these techniques and report exp@enfidence interval estimations are two common techniques
imental results that quantify their cost and effectivenfess for determining the accuracy of predictions [2]. One form
a variety of usage scenarios on top of PostgreSQL/TPC-#f. hypothesis testing that is commonly used is K-Fold Cross
The results reveal that our novel learning-based modelivglidation (K-CV). K-CV divides the training data up into
techniques can serve as an effective QPP solution for acellyt £ non-overlapping partitions. One of the partitions is used a
query workloads. validation data while the othér—1 partitions are used to train
The rest of the paper is organized as follows: we start withe model and to predict the data in the validation interval.
background information on data-driven model-based predia this study, we use K-CV to estimate the accuracy of our
tion in Section II. In Section IIl, we first describe our gealer prediction models.
approach to using statistical learning techniques for @i
and operator -level performance prediction methods are de-
scribed in Section IlI-A and Section IlI-B, respectivelyei, In this study, we describe QPP methods based on data-
in Section 11I-D we introduce the hybrid prediction methoddriven statistical learning models. As is usual in mostrieay
Online modeling techniques which build prediction modelgpproaches, all of our modeling techniques consist of twim ma
at query execution time are discussed in Section V. Wehases: training and testing. The high-level operatiovisived
present experimental results using the TPC-H query wodklotn these phases are explained in Figure 2.
in Section V. We then end the paper with related work and In the training phase, prediction models are derived from
conclusion remarks in Sections VI and VII. a training data set that contains previously executed eseri
(i.e., training workload) and the observed performanceesl
(i.e., execution times). In this phase, queries are reptedeas
We use the term model to refer to any predictive functioa set of features with corresponding performance values. Th
such as Linear and Multiple Regression, Bayesian Nets, agwhl in training is to create an accurate and concise opeti
Support Vector Machines. The main property of a predictivsummary of the mapping between the feature values and the
function is learning: to generalize from the given examptes observed performance data points. The prediction models ar
order to produce useful outputs for new inputs. then used to predict the performance of unforeseen queries i
In the learning approach, an input data set, called tliee test phase. In more complex QPP methods, the training and
training data, is initially used to tune the parameters of tasting phases can be performed continuously for improved
prediction model. This process is called training (or léagh accuracy and adaptivity.
In general, model training involves selecting (i) a tragohata Our approach to QPP relies on models that use only static,
set and (ii) the training features (i.e., attributes/Malea), a compile-time features, which allow us to produce preditio
subset of all attributes in the data set, in addition to therlimg before the execution of queries. There are several static in
operation. formation sources, such as the query text and executiors,plan
In some cases, a domain expert can manually specffpm which query features can be extracted prior to exenutio
the training features. In other cases, this step is trivial & this study, we use features that can be obtained from the

I11. M ODELING QUERY EXECUTIONS

Il. BACKGROUND: MODEL-BASED PREDICTION



Feat ure Nane

Descri ption

Training

p_tot_cost Estimated total plan cost
Data Collection: Data Extraction: Model Building via p_st.cost Estimated plan start cost
Query Execution |:> Collecting Query |:> Feature Selection, p_rows Estimated number of output tuples
Featuresand Cross-Validation p_width Estimated average size of an output
Execution Times tuple (in bytes)
op-count Number of query operators in the plan
Prediction Models and row_count Estimated total number of tuples input
Testing Accuracy Estimates and output to/from each operator
byte count Estimated total size (in bytes) of all
Query Planning: Feature Extraction: Model-based Prediction: tuples input and output
Execution Compute Query Estimate Query <operatorname>_cnt The number of<operatorame> op-
Plan Generation Features Performance erators in the query
<operatorname>_rows | The total number of tuples output from
Fig. 1. Statistical Modeling Approach to QPP. <operatorname> operators

. . . L. TABLE |
information provided by the query optimizer. Many DBMSFeatures for plan-level models— p_st_cost refers to the cost of

provide optimizer calls that expose query-plan Ir]fommt'oquery execution until the first output tuple. <operator_name>

and statistical estimates such as the optimized query-plafye,s 1o query operators (e.g., Limit, Materialize and Sort).
structure and operator selectivities (for examixPLAI N

in PostgreSQL and&EXPLAI N PLAN in Oracle).

This paper shows that it is possible to create models @it features. Feature selection does not need to be performed
varying granularities for query performance predictions Afor all types of models. For instance, in our case we perform
in [1], one coarse modeling method is to create a singl@ature selection for SVMs but not for KCCA as it performs
plan-level prediction model that utilizes query plan featu dimensionality reduction as part of its operation. Howgfer
for modeling the execution times of queries. We discuss thizany model types feature selection is an important problem.
approach in Section IllI-A. A finer grained approach wouldh our experiments, we frequently observed that SVM models
be to model each operator type separately and use them esling the full set of features given in Table IlI-A performed
lectively through selective composition to model entireigu less accurately than models with smaller number of features
plans. We describe this method in Section 1lI-B and compaWe use the best-first search based, forward feature selectio
the relative advantages and drawbacks of the two approatheslgorithm [4], described in Section Il to perform feature
Section 1lI-C. Next, in Section IlI-D, we introduce a “hydfi selection. This algorithm starts by building models using a
modeling approach that combines the fine and coarse graisetkll number of features, and iteratively creates more dexnp
modeling methods to form a highly accurate and general QRRd accurate models by adding features in order of coroelati

approach. with the target variable (i.e., query execution time).
. Once a plan-level prediction model is built and stored (i.e.
A. Plan-level Modeling materialized), it can then be used to estimate the perfareman

In the plan-level modeling approach, the performance ofai new incoming queries based on the query-plan feature
query is predicted using a single prediction model. We uselues that can be obtained from the query optimizer without
the features presented in Table IlI-A for building plandkv executing the query.
models. This set of features contains query optimizer egém .
such as operator cardinalities and plan execution costtheg B. Operator-level Modeling
with the occurrence count of each operator type in the queryWe now introduce a finer-grained operator-level modeling
plan. approach. Unlike the plan-level approach, which uses desing

As mentioned before, we need to address two main charediction model, the operator-level technique relies on a
lenges when using model-based learning techniques. The fi@llection of models that are selectively composed for end-
problem, model selectionis the process of picking the rightto-end query performance prediction. In the operatortleve
prediction model for the given task and data set. In genigralmodeling approach, two separate prediction models are buil
is not possible to identify the most accurate prediction ehodfor each query operator type:
without training and testing multiple models. In our study « A start-time model is used for estimating the time spent
show results with two types of prediction models for plan-  during the execution of an operator (and in the sub-
level modeling: a regression variant of Support Vector Ma- query plan rooted at this operator) until it produces its
chines (SVMs) [5] and Kernel Canonical Correlation Anadysi first output tuple. This model captures the (non-)blocking
(KCCA) [6], [7]- KCCA models were recently used in [1] for behavior of individual operators and their interactionhwit
plan-level QPP over the TPC-DS analytical query workload. pipelined query execution.

Both model types provided high accuracy in our experiments.s A run-time model is used for modeling the total exe-
We note that all of the approaches we present here are model- cution time of query operators (and the sub-plans rooted
agnostic and can readily work with different model types. at these operators). Therefore, the run-time estimate of

The second problenieature selectiondeals with the issue the root operator of a given query plan is the estimated
of choosing the most predictive features from the available execution time for the corresponding query.



To illustrate the semantics and the use of the start-tir Query Performance
model, we consider th&laterialize operator, which materi- Prediction
alizes its input tuples either to disk or memory. Assume th: T
in a query tree, the Materialize operator is the inner chil Limit np,nt,.. U Predictionsof Operator
operator of aNested Loogoin. Although the materialization { child Operator} Models
operation is performed only once, the join operator ma ﬂ
scan the _materialized relat.io_n multiple times. In this c¢ast - U Predictionsof Operator
the start-time of the Materialize operator would corregpon Sort P e Child Operator [~ Models
to the actual materialization operation, whereas the ime-t T
would represent the total execution time for the matedaian ﬂ
and scan operations. In this manner, the parent Nested Lc Seq Scan np, nt, ... b —s Operator
operator can use the start-time and run-time estimatesto fo Models
an accurate model of its own execution time. This technique

; Fig. 2. Operator-level query performance prediction: operator
also allows us to transparently and automatically capibee tmodels use operator-level features together with the prediction

cumulative effects of blocking operations and other op@nal  of child operators for performance prediction.
semantics on the execution time.

We used a single, fixed collection of features to creafe Plan vs. Operator -level Modeling
models for each query operator. The complete list of feature The premise of the plan-level approach is that queries with
is given in Table II. This list includes a generic set of feats similar feature vectors will have similar query plans andmpl
that are applicable to almost all query operators. They tsm astatistics, and therefore are likely to exhibit similar beilor
be easily acquired from most, if not all, existing DBMSs. As iand performance. Such an approach is specifically targeted t
the case of plan-level modeling approach, we use the forwastétic workloadscenarios where the queries in the training and
feature selection algorithm, to build accurate predictiwdels test phases have similar execution plans (e.g., genenated f
with the relevant set of features. We used multiple linedne same query templates or from the same user program).
regression (MLR) models for the query operators. In additio Furthermore, this approach is based on the correlation of
to performing accurately in our experiments, MLR modelthe query plans and statistics with the query executiongime
are intuitive and easily interpretable similar to analytmst This correlation is used directly in mapping query-plandahs
models. features to execution performance. The high-level modelin
approach used in this case therefore offers the ability ptuca

Feature Nane | Description the cumulative effects of a set of hidden lower level fagtors

np Estimated 1/O (in number of pages) . . . .
nt Estimated number of output tuples such as operator interactions during query processinghen t
ntl Estimated number of input tuples (from guery execution times with a single, low complexity model.
left child operator) The plan-level approach, however, is prone to failure in
nt2 Estimated number of input tuples (from . L
left right operator) some common real-world scenarios. A significant problem
sel Estimated operator selectivity exists in the case aflynamic workloadsvhere queries with
stl Start-time of left child operator unforeseen execution plans are frequently observed. Even
rtl Run-time of left child operator h .
st2 Start-time of right child operator worse, there can also be problems with static workloads. As
r2 Run-time of right child operator the feature values only represent a limited view of a queay pl
TABLE I and its execution, it is possible that different queries ban

Features for the operator-level models— Start time refers to ~ Mapped to very similar feature values and therefore be inac-
the time spent in query execution until the first output tuple. ~ curately modeled. While it is unlikely for completely difeert
gueries to be mapped to identical features, similar queaes

The individual operator models are collectively used tsometimes have different execution performance. Forncsta
estimate the execution latency of a given query by seldgtivéncreasing the number of time consuming aggregate opesatio
composing them in a hierarchical manner akin to how optimim a query will not significantly change its feature vectaut b
ers derive query costs from the costs of individual opesatomay highly increase its execution time. Adding more feature
That is, by appropriately connecting the inputs and outpiits (e.g., number of aggregates and constraints) to the model
prediction models following the structure of query plaridsi would alleviate such issues, however, each added feature
possible to produce predictors for arbitrary queries. would also increase the size of the required training data.

In Figure 2, we illustrate this process for a simple query By using multiple prediction models collectively in a hi-
plan consisting of three operators. The performance piiedic erarchical manner, the operator-level prediction methed i
operation works in a bottom-up manner: each query operatisle to produce performance predictions for arbitrary igser
uses its prediction models and feature values to produce Tiserefore, it is a more general approach compared to the
start-time and run-time estimates. The estimates prodhbgedplan-level method and has the potential to be more effective
an operator are then fed to the parent operator, which uges dynamic query workloads where unforeseen query plan
them for its own performance prediction. structures are common.



On the downside, the operator-level prediction method maypper level query operators. The operator-level model base
suffer from drawbacks similar to those that affect analtic prediction error for the materialization sub-plan9ig’.
cost estimation methods (as both methods rely on low-level

operator-based models). A key problem is that the predictic Limit 14%  select c_count, count(*) as custdist from
errors in the lower levels of a query plan are propagatedéo tl 4 ( select c_custkey, count{o_orderkey)
upper levels and may significantly degrade the end predictic ) from customer left outer join orders
accuracy. Sort  14% on ¢_custkey = oicustkey and
. . . T o_comment not like

Another potential problem is that concurrent use of mustipl 14% %4pending%accounts%
resources such as CPU and disk may not be correctly reflect Hash Aggregate group by ¢_custkey )
in the operator-level (or the analytical) models. For insiy T asc_orders (c_custkey, c_count)
a query could be simply performing an aggregate computatic 4.5%  groupby c_count

on the rows of a table that it sequentially scans from the.dis Group Aggregate order by custdist desc, ¢_count desc

limit all;
If the per-tuple processing takes less time than readingla tu \ 2 9% e

from the disk, then the query execution time is approxinyatel Merge Left Join

the same as the sequential scan time. However, if the pr

cessing of a tuple takes longer than reading it from the dis 19% - ~~ 2%

then the execution time will be closer to the processing time |dex Scan Materialize
As such, the interactions of the query execution system al T 97%
the underlying hardware/software platforms can get quita-c

plex. In such cases, simple operator-level modeling aphes Sort o
may fall short of accurately representing this sophistidat T 25%
behavior. Therefore, in static query workloads where ingjn Seq Scan
and testing queries have similar plan structures we expect t 19%
high-level information available in the plan-level appcbao ~—

result in more accurate predictions.
Fig. 3. Hybrid QPP example: plan-level prediction is used for the
D. Hybrid Modeling highlighted sub-plan together with operator-level prediction for

. . . the rest of the operators to produce the end query performane
In hybrid modeling, we combine the operator and plan levgtediction.

techniques to obtain an accurate and generally applicable
QPP solution. As discussed, this is a general solution thatin the hybrid approach, we build a separate plan-level
works for both static and dynamic workloads. We note that asodel for the highlighted sub-plan. The model is traineagsi
long as the predictive accuracy is acceptable, operatet-lethe occurrences of the highlighted sub-plan in the training
modeling is effective. However, for queries with low operat data. The hybrid method uses the plan-level model to directl
level prediction accuracy, we learn plan-level models fa t predict the execution performance of the materializatiob- s
inaccurately modeled query sub-plans and compose botk typén, while the rest of the prediction operations is uncleaing
of models to predict the performance of entire query planise., performed with the operator-level models. The prialic
We argue, and later also experimentally demonstrate, tiigt terrors obtained with the hybrid approach are shown with the
hybrid solution indeed combines the relative benefits of thred values in the figure. The new overall prediction error for
operator and plan level approaches by not only retaining ttiés example query drops down 1d%.
generality of the former but also yielding predictive a@myr Given a training data set consisting of example query
values comparable or much better than those of the latter. executions, the goal of the hybrid method is to accurately
model the performance of all queries in the data set using
Hybrid QPP Example: To illustrate the hybrid method, we operator-level models together with a minimal number ohpla
consider the performance prediction of an example TPC{elvel models. In this way, we maximize the applicability bét
query (generated from TPC-H template-13), whose executioperator-level models in QPP and maintain high prediction
plan is given in Figure 3. This plan is obtained froml@GB accuracy with the integration of plan-level models.
TPC-H database installed on PostgreSQL. As we describeThe hybrid performance prediction method is described in
in detail in the Experiments section, we build operatoelevAlgorithm 1. The algorithm starts by building prediction dio
models on a training data set consisting of example TPC#ts for each query operator based on the provided trainiteg da
query executions. When we use the operator-level models fidre accuracy of operator-level prediction is then estichéte
performance prediction in this example query, we obtain application on the training data (e.g., either through sros
prediction error (i.e.|true value - estimate/ true value) validation or holdout test data). Next, the algorithm trtes
of 114%. Upon analysis of the individual prediction errorsncrease the performance prediction accuracy by buildiag-p
for each operator in the query plan, we realized that the subvel models.
plan rooted at theMaterialize operator (highlighted sub-plan Each plan-level model is used for directly modeling the
in the figure) is the root cause of the prediction errors in thgerformance of a separate query plan (or sub-plan). In ayquer



plan with N operators, there is a maximum &f— 1 sub-plans Algorithm 1 Hybrid Model Building Algorithm
(e.g., in a chain of operators) for plan-level modeling. e Input: data= example query executions
training data set with\/ queries can hav®(M N) candidate Input: strategy= plan selection strategy
sub-plans for modeling. Input: targetaccuracy= target prediction accuracy

In theory, we could build and test plan-level models foDutput: models= prediction models
each distinct sub-plan (with at least a minimum number &utput: accuracy= estimated prediction accuracy
occurrences in the training data set) and try to find a minimal. models = buildoperatormodels(data)
subset of these models for which the prediction accuracy is. [predictions, accuracy] = applyodels(data, models)
sufficiently high. However, this would require a large amboun 3. candidateplans = getplan list(strategy, data, predictions)
of time since (i) we need to build and test models for all4. while accuracy< targetaccuracy and not stogond()do
candidate sub-plans, and (i) the prediction accuracy ohea 5.  plan = getnext(strategy, candidajgans)
subset of models (in increasing sizes) needs to be separatg). plan.model = buildplanmodel(data, plan)

estimated with testing. 7. [predictions, newaccuracy] = applynodels(data, mod-
Instead, we propose heuristics that iteratively build decel els U planmodel)
tion of plan-level models to maximize the expected predicti g if new.accuracy— e < accuracythen
accuracy. In each iteration, a new plan-level model is puiltg. candidateplans.remove(plan)
tested and added to the model set, if it improves the overal) e|se
prediction accuracy (by more than a threshold vak)eThe 11, models = models) planmodel
models are chosen, built and tested accordingldo ordering 12, candidateplans.update(predictions, plamodel)
strategies We consider the following strategies for the hybrid; 3. accuracy = nevaccuracy
approach:
« Size-basedorder the plans by size (in increasingmber
of operators. functionget _pl an_l i st . During the traversal, this function

The size-based strategy considers generating models {ofids a hash-based index using keys based on plan tree
smaller plans before larger ones. This strategy is basedQfctures. In this way, all occurrences of a plan structure
the fact that smaller plans occur more frequently (SinGge hashed to the same value and metrics required by the
by definition all sub-plans of a large plan are at leagfeyristic strategies such as the occurrence frequency and
as frequent) in any data set, and therefore models féi\Ferage prediction error can be easily computed.

smaller plans are more likely to appear in future queries. when a new plan-level model is added to the set of chosen
In case of a tie, the more frequently occurring plan igodels (i.e.nodel s), the candidate plan list is updated with

given priority. . . the new prediction errors and occurrence frequencies for al
« Frequency-based:order the plans in decreasimgcur- plans. The occurrence frequency of a pfawill change with
rence frequency the addition of a model when the plan for the added model

The frequency-based strategy is similar to the size-bas(%htainsp as a sub-plan (since such occurrencespaddre
strategy except that it directly uses the occurrence fregnsumed by the newly added model).

quency of a plan from the training data for ranking. In \we can efficiently identify the set of plans for which
case the occurrence count is the same for two plaRge prediction errors or the occurrence frequencies might
smaller plans are considered first. An importantdi1‘feren<‘é1>,ange with the addition of a model as follows: In the hash-
from the size-based strategy is that when a large plan hggsed index built by the gefanlist function, we also store

a high occurrence frequency, the frequency-based stratggy igentifiers for the corresponding queries (which own the
will consider modeling its sub-plans sequentially beforgans)' As such, when a new model is added, the only plans

considering other plans. . _ that need to be updated are the plans that can be applied to
- Error-based: order the plans in decreasing value Ofne or more of the queries that the newly added plan is also
occurrence frequency average prediction error applicable.

The error-based strategy considers plans with respect iGinally, in cases where the target accuracy is unachieyable
their total prediction error across all queries inthe ir@IN 5 maximum number of iterations can be used as a stop
data. The assumption is that more accurate modeling ndition (i.e.,st op_cond()) to terminate the algorithm.
such high error plans will more rapidly reduce the overaghiher variations for the stopping condition, such as sgttin

prediction error. maximum number of iterations without accuracy improvement

In all of the above strategies, the plans for which (i) thgre also possible but not evaluated in this study.
average prediction accuracy with the existing models eaaly

above a threshold, or (ii) the occurrence frequency is teo lo IV. ONLINE MODEL BUILDING

are not considered in model generation. In dynamic query workloads, where queries with unforeseen
In order to create the list of candidate plans (i.eplan structures are present in the test data, the plan-(g@wé

candi dat e_pl ans) for modeling, we traverse the plansmethod performs poorly due to lack of good training data. On

of all queries in the training data in a depth-first manner ithe other hand, operator-level and hybrid methods are dedig



to be much more applicable to unforeseen plan structures. In V. EXPERIMENTS
addition, the hybrid method will utilize its plan-level meld

. . . A. Setup
as much as possible to provide accuracy levels higher than

those achievable through pure operator-level modeling. In our experiments, we use the TPC-H decision support

- ) ) benchmark [8] implemented on top of PostgreSQL. The details
The prediction accuracy of the hybrid approach in dynamig. presented below.

workload scenarios depends on the applicability of its plan DBMS We use an instrumented version of PostgreSQL

level models to future queries. As a case study, we analygg ) The jnstrumentation code monitored features arfoper
exec_ut|on plans of TPC-H queries on a 10GB TPC-H datab%%nce metrics from query executions; i.e., for each qubegy, t
running on PostgreSQL. In Figure 4(b), we show the mOglqc ion plan, the optimizer estimates and the actuaksalu
common sub-plans within the execution plans of qUEries teatures as well as the performance metrics were logged.
generated from 14 _TPC-H tem_plates_for which we could US€hata sets and workloadWe created 10GB and 1GB TPC-
oper_ator-level prediction tech_nlques In our expenr_nelstse( H databases according to the specification. The primary key
Section V). Our key observations for this data set include: indices as indicated in the TPC-H specification were created
for both databases. We enforced a limit of one hour execution
(1) Smaller sub-plans are more common across the TPGiRhe (per query) to keep the overall experimentation darati
query plans (see Figure 4(a)). under control. This resulted in 18 of the 22 TPC-H templates
(2) The plans for the queries of each TPC-H template (exceRling used, as the remaining 4 templates always took longer
template-6) share common sub-plans with the plans @f3n71 hour to execute in the 10GB case.
queries of at least one other TPC-H template (see Fig-There are approximately 55 queries from each template in
ure 4(c)). both databases. With the 1GB database, all queries finisérund
an hour and the data set contains 1000 queries. On the other
These observations suggest that for the TPC-H worklogghnd, with the 10GB database only 17 of the queries from
(i) it is possible to create plan-level models based on themplate-9 finished within an hour, so we have 17 template-9
execution plans for the queries of a TPC-H template apfleries in the 10GB data set. Thus, the resulting 10GB data
utilize them in the performance prediction of queries fromget we used contains 960 queries.
other TPC-H templates, and (i) the size-based plan orderin {ardware Unless stated otherwise, all queries were exe-
strategy discussed in Section 1lI-D will likely achieve h&d ,ted on a single commodity desktop with 4GB RAM running
applicability compared to the other strategies in the dyinam_jyyx 2.6.28 and the database buffer pool size was set to 1GB
workload case. (25% of the total RAM as the rule of thumb). All queries were

However’ the hybnd approach may fail to increase tl’@(ecuted Sequentia”y with cold start (i.e., both flleSly‘Sm’ld
prediction accuracy for dynamic workloads in some casd3B buffers were flushed before the start of each query).
For example, the prediction errors for some unforeseeriepier Predictive modelsFor plan-level modeling, we used Sup-
may not originate from the common sub-plans, and as a res@®/t Vector Machines (from libsvm [5]) with the nu-SVR
plan-level models from the training data cannot reduce tkernel for regression and the Kernel Canonical Correlation
error. In other cases, the common sub-plans could actuallyAnalysis (KCCA) method. We implemented KCCA using
the source of prediction errors, but the plan-orderingsgias GSL, the GNU Scientific Library. For operator-level QPP we
may not choose to build plan-level models for them. Fdtsed multiple linear regression based models (from Shayk [9
instance, some applicable plan-level models may be disdardAll models were integrated to the database as user defined

because they did not improve the accuracy in training_ functions. Our algorithms were implemented as a combina-
tion of C-based user-defined functions in PostgreSQL and as

| lan.level Is § : H&ternal applications written in C++ and Python. The featur
we build new plan-level models for QPP at run-time upon the, o i aigorithm, described in Section 11, was used fabu

receipt of a query. We initially produce predictions witheth accurate models using a small number of features.

set of existing models, and then update our results after N®\1etrics and validation We use the mean relative error as
plan-level models are built for the received query. our error metric:

To address these issues, in the online modeling technig

Online model building is performed similarly to offline
model building described for the hybrid method. However, 1 |actual; — estimate;|
99
=1

in the online case, the set of candidate plans are generated
based on the set of sub-plans of the execution plan for the
newly received query. The online building of plan-level ralsd ~ This metric is useful when we would like to minimize the
guarantee that if the execution plan for a test query hasredative prediction error in all queries regardless oftlegecu-
common sub-plan (with high prediction error) with the gesri tion time. Non-relative error metrics such as the mean+squa
in the training data, then a plan-level model will be builerror would be better for minimizing the absolute differenc
and used for its prediction (if a plan-level model with highe(or its square) in actual and predicted execution timeseOth
accuracy than the operator-level prediction method exists popular metrics include?? and predictive risk [1]. These

actual;
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Fig. 4. Analysis of common sub-plans for the execution plans of queries gerated from 14 TPC-H Templates.

metrics measure the performance of the estimates withecespe As a concrete example, consider TPC-H template-1, which
to a point estimate (i.e., the mean). As such, in many casexludes an aggregate over numeric types. We observed that
they can have deceptively low error values even though teealuating aggregates over numeric types can easily become
actual estimates have high error, as these metrics dependhenbottleneck, because arithmetic operations are peeidim
the scale and statistical characteristics of the entira dat.  software rather than hardware. As such, introducing aufthfi

Our results, except for the dynamic workload cases, aaggregates to a query can significantly alter the execuitioa t
based on 5-fold cross validation. That is, the data is diovideven though the volume of I1/0 (and hence the predictions with
into 5 equal-sized parts, 4 of which are used to build modédlse cost model) remains approximately constant.
for prediction on the remaining part. This process is regubat
times, i.e., all parts are used in testing. The reportedigtied 10*
accuracy is the average of the accuracy values from thegesti
of each cross-validation part. We ussitatified samplingfor o
dividing the data into parts to ensure that each part costain
roughly equal number of queries from each template.

B. Prediction with Optimizer Cost Models

We start with results showing predictions on top of ana-
lytical cost models used by conventional optimizers are-non
starters for QPP. Specifically, we built a linear regression
model to predict the query execution times based on the query %
optimizer cost estimates. Overall, the maximum relativerer
is 1744%, the minimum relative error is 30% and the mean 10"
relative error is 120% 0 Optimizer Cost Estimate 0

To provide more intuition into the reasons, we show the
optimizer costs versus the query execution times for a $ub&i- 5. Optimizer Cost vs Query Execution Time (log-log plot)
of the queries (a stratified sample) on the 10GB TPC-H data o )
setin Figure 5. Observe that the lower left and lower righiadaC: Predicting for Static Workloads
points correspond to queries with roughly the same exetutio Results for the plan-level and operator-level methods are
times, even though their cost estimates have a magnitugieen in Figure 6 both for the 10GB and 1GB TPC-H scenar-
of difference. Similarly, the points on the lower and uppebs. These results were obtained using estimate-basattdeat
right corners are assigned roughly identical plan costs bgth in training and testing. The use of actual (observed)
the optimizer but differ by two orders of magnitude in theiyalues as features is discussed in Section V-C.3.
execution times. 1) Plan-level Modeling:Plan-level prediction is performed

In this setup, most queries are 1/O intensive. We expect thig all the 18 TPC-H templates. Overall, using SVMs we
to be the ideal case for predicting with analytical cost n@de obtained on average 6.75% and 17.43% prediction errors
The reason is that optimizer cost models generally rely en tfor the 10GB and 1GB databases, respectively (Figure 6(a)-
assumption that 1/O is the most time consuming operatiog)). The prediction errors with KCCA modeling in the same
Therefore, for CPU intensive workloads, we would expect t§cenarios were 2.1% and 3.1% (Figure 6(d)-(f)). The high
see even lower accuracy values. accuracy results imply that plan-level modeling can be very

. o _ o _effective for static workloads.

In this case, the predictive risk [1] is about .93, which igse to 1. This . .
result suggests that it performs much better compared to a petithate, To understand the difference in accuracy between the two
although the actual relative errors per query as we repantechigh. model types, here we briefly describe their characteristics

[N
o
™
T

Query Execution Time (sec)




With SVMs, the general approach is to map the query featune®deling; such models learn operator behavior “in isofétio
to a high dimensional space and perform regression in theithout representing the context within which they occur.
space. In KCCA, the query features and the target values3) Impact of Estimation ErrorsWe tried all the combina-
are projected to separate subspaces such that their pwocttions of actual and estimate feature values for trainingtastd
are maximally correlated. Prediction with KCCA is thering for (SVM-based) plan-level and operator-level predict
performed using a nearest neighbor strategy. As such thiee results are given in Figure 7(a) for the 10GB scenario. Fo
predictions of KCCA use all of the training data, whereafeirther detail, we also show the prediction errors groupgd b
SVM results are only based on a subset of the points (Supp®RC-H templates in Figure 7(b) for the actual/actual cask an
vectors). In addition, it is important to note that for SVMslan-level prediction (over the 10GB scenario). Theseltesu
we perform a heuristic based search resultingam d feature are to be compared with those in Figure 6(a).

selection (i.e., choose a fixed subset of features and dislcar

other features), whereas KCCA as part of itS eXecution, P€ ¥ pequs for 14 et templates 5 B
formssof t feature selection (i.e., all features are representt Results for 18TPcH “ —— Avg, Ertor

in the projected feature subspace). Traln/ | Planlevel | Operator-

With SVM-based modeling, queries from template-9 stan| acvact | %395t | oq1 g5+
out as the worst predicted queries. We note that templat 340
9 queries take much longer than the queries of the oth| "“*" | %1t | weos®
templates. As the number of instances of template 9, a| &yest | %e7s o392 -
therefore of longer running queries, is relatively few irttbo %5.95* 1254567 89 10nk ks
dé.lta sets, the pred|ct|9n models may not fit well. To alle”%} Prediction with Actual (b) Plan-level Modeling with Actual Val-
this problem, we built a separate SVM-based model i es vs Estimates ues (10GB)
template-9 for the 10GB case, which reduced its error to 7%. o o _

2)_O_perator-level ModelingWe now discuss operator-levelg'?étﬁ:' V\I/gqrpk%;dog)fps)g:{]nig?l?s Errors on Prediction Accuracy in
prediction results on 14 of the 18 TPC-H templétes o . .

For the 10GB case, in 11 of the 14 templates the operator-Unsurprisingly, the best results are obtained in the ac-
level prediction method performed better than 20% err@f@l/actual case (i.e., training/testing with actual featval-
(Figure 6(g)). For these 11 templates the average error!@S), Which is not a viable option in practice due to the
7.30%. The error, however, goes up to 53.92% when Wwdavailability of the actual value_s W|th9ut running the ges.
consider all the 14 templates, a significant degradation. Thg next best_results are obtal_ned with the estlmate/eu_alma

For the 1GB scenario, we show the results of operator-ley¥tion. the option that we used in the rest of the paper. kinal
prediction for the 14 TPC-H templates in Figure 6(). In thithe results obta_lned with gctual/esnmate (i.e., traimngctual
case, for 8 of the templates the average error is below 23GHU€s and testing on estimates) are much worse than the othe
and the mean error is 16.45%. However, the mean error f§f0; Primarily due to optimizer estimation errors that act n
all the 14 TPC-H templates is 59.57%. taken mto. account during tralnlngl. . .

We see that operator-level prediction produces modestserro To provide a sense of the magmtude of the estlr'nau'on errors
for many cases, but also does perform poorly for some. \Rade by the opt|m|zer,_c_0n3|der_template-18,_ which is one of
analyzed the set of templates that belongs to the latter cadl€ templates that exhibit the biggest error in operatogtie

and noticed that they commonly exhibit one or more of th%rediction with actual/estimate model building. Instead
following properties: template-18 include the followingr oup by clause on table

_— - - . lineitem
o (Estimation errors) the optimizer statistic estimates are

significantly inaccurate. group by Lorderkey having sumg@uantity) > 314
o (I/0O-compute overlap) there is significant computatloq,here are 15 million distinct! -

. order key values in
and /O overlap n the query. The _end-e_ffec_t _Of SUCPi nei t em (out of approximately 60 million tuples). The
concurrent behavior on execution time is difficult tg

capture due to pipelining. estimated number of groups satisfyisgin( | _quantity)

0 tor int i Th i f th > 314 is 399521, whereas the actual number is 84. The
+ (Operator interactions) The operators of the same quq%stgreSQL query optimizer computes this estimate using

?heawly mtsrgr:t tvr\:mt] eacf;hother (eg. rlﬂtgl? scans 0r'ﬂstograms (with 100 bins) for each column based on the
€ sam.e avle tha use. e. same cac e. .aa). _ attribute independence assumption. The results are later f
Next, we discuss the practical impact of statistics estonat into a Hash-Semi-Join, whose cost estimate is correspglydin
errors on accuracy. We then turn to the latter two issu@gry much off the mark.
that represent the fundamental limitations of operateelle  Comparing the actual/actual against the estimate/estimat
results, we observe that optimization estimate errors tead
5 2The Sxecution plans for the queries Olf’\ltIhTePfLeA“;lai”"c“g ( jemplatetain perhaps surprisingly, only a modest degradation in priedict
ostgreSQL-specific structures, namely and SUB®YEwhic accuracy. This result is due to the ability of the models tmal

lead to non-standard (i.e., non tree-based) executiorsphdtn which our ¢ - ) ) )
current operator-level models cannot cope at present. integrate error corrections during learning. Thus, whigdtdr
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estimations generally mean better results, it is possible t We observe that the size-based and error-based strategies
produce highly accurate predictions even with rather madio quickly reduce the error rate. The size-based strategystake
estimations (as in the case of PostgreSQL). longer to reach the minimum error level, as in some cases

4) Hybrid Prediction Method\We now present comparative!argir sup—ple;ns SthUId be modeled Lorhredumrg the errdr an
results of the three plan ordering strategies (see Section [t takes time for this strategy to reach those plans.

D) disc_uss_ed for offline hybrid moplel selection. The results The frequency-based strategy initially takes longer taiced
shown in Figure 8, were obtained with the 14 TPC-H templatgse error. The reason is that this strategy can easily gek stu
used in operator-level modeling and the 10 GB database. j, g relatively large sub-plan that has a high occurrence, rat
As described earlier, we first create an ordered list of quesince it needs to explore all the sub-plans involved in the
sub-plans based on the chosen plan ordering strategynteavarger sub-plan (starting from the smallest sub-plan)lunti
out sub-plans with average error lower than a given threshalecreases the error rate. As discussed earlier, all sueplanb
(.1 in this experiment) for the size-based and frequency-basae by definition at least as frequent, hence need to be explor
strategies. Then, at each iteration (x-axis), we createVdfS with this heuristic. Overall, the error-based strategyvjutes
based) model for the next plan in the ordered list, add théswell balanced solution, quickly and dramatically redgcin
model to the current model set and then re-evaluate predictthe prediction errors only with a small number of additional
error on the test workload (y-axis). The step behavior models. We also note that the final accuracy obtained with the
observed when a newly created model decreases the erromybrid-method approaches to that of the KCCA-based model.
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different environments. We show results from a 10GB TPC-H
experiment executed on a 2.8GHz machine with 8GB RAM.
The database buffer pool size was set to 2GB. We used the
same queries that were used in the 10GB experiment. Plan-
D. Predicting for Dynamic Workload level prediction results (following a static workload sa€n)
. using SVMs and KCCA are shown in Figures 10(a)-(b).
The results so far have shown that for known, static work- o ;
loads, plan-level modeling performs well. They also reedal The average _predlctlon_errors are sllghFIy lower tha_n the
errors obtained in the previous 10GB experiment. On this new

that hypnd models offer similar accuracy to plan-level reisd .platform the TPC-H queries execute faster than on the pusvio
for static workloads. Next, we present results demonsigati . : -
platform. For instance, template-9 queries finish under 20

that plan-level modeling has serious limitations for dyimam™ . . .
workloads, whereas hybrid modeling still continues to jmev minutes instead of an hour. As such the query run times are
' less divergent. This is because of the higher disk speed in

high accuracy. We also report comparative results for enli .
model building (Section IV) that creates custom hybrid riadeNe new platform, 83MB/sec sustained read rate (versus the

. - 55MB/sec read rate before) as well as the faster CPU and
for a given query from the training data.

For this experiment, we used the 12 templates ShoV|vr}]creased RAM size. In addition, there is much less variance

n Foe . For ach tempite we buld and test sepadle1E BT S heres e seur, heae |
prediction models using only the training data from the oth 9 P

. 0 o
templates. The two other TPC-H templates were excludag§W platform. Since 80% of the database can fit into memory,

because they include specific operators exclusively found ﬁpe number of duplicate reads from the disk are significantly

those templates, and thus cannot be modeled with our curr(reenq,uced (due to the filesystem and database caches). The lowe

setup. We show results for KCCA and SVM -based play2ance of query execution times observed in this data set

level, operator-level, hybrid (with error-based and dizsed enlab:gs |mp;%ved accurhacy onP'::r)le prelijlctlt())ns. d the stati
strategies) and online modeling algorithms. n Figure 10(c), we show QPP resuits (based on the static

As expected, plan-level models perform poorly across tI;{\é\orkload scenario) using hybrid modeling with differengpl

board and thus do not offer much value in dynamic Woﬂgrdering_st_rategies. As before, the error-based st_ramxj;;cx_es
loads. However, SVM-based plan models perform better thH?'ne prediction error faster than the o.ther strategies. Wthide

the KCCA-based approach. We also observe that the onlifid®" a_nd frequency -.based strategies converge .to the. same
(hybrid) modeling algorithm performs best in all cases egtc prediction error, the size-based method resulted in atligh

for template-7. Further investigation reveals that théning h'lghter error \{glue. -Il-h'sl's pl)oss:;)Ielz s_mggﬁeacrl plzgﬁerl
data lacks a specific sub-plan that is the root cause of fheategy considers plan-ievel modeis in difterent or

error on template-7. These results confirm the ability ofrenl nitially _chosen models may cause the later plan-level rhz)(_je
modeling to identify the models that are very likely to heip pio be dlscarQed. Finally, we note that the accuracy obtained
utilizing the knowledge of a given query plan. Such mode ith the hybrid method (using SVM-based plan-level models)

can be eliminated by offline strategies if they do not hel glgrlner thtant;[]he accuracy c;f}?é:llc\:/l'&bssed dplan-c;e\llel mogelin
improve training accuracy. nd close to the accuracy o -based model.

Another interesting observation is that the size-basedithyb Vi
strategy performs somewhat better than the error-basat str o )
egy in these experiments. This can be explained by the yabilit Plan-level predictions have recently been studied [1]. In

of the former to favor models for smaller sub-plans that atél, authors consider KCCA-based plan-level QPP for the
more likely to occur in unseen queries. following static workloads: the TPC-DS query benchmark and

a query workload obtained from a customer database. They

report that they can predict execution times within 20% of
In this experiment, we apply our QPP techniques on the actual time for 85% of their test queries. In addition to

different hardware platform to demonstrate its applidggbih  execution time, estimation of other performance metricshsu

0 5 10 15 20 25 30
Iteration Number

Fig. 8. Hybrid Prediction Plan Ordering Strategies

. RELATED WORK

E. Platform Independence



@
S

@
S

76.8

IS
[l
IS
o

Il Template Error
Avg. Error

IS
S
IS
S

w
S &
W W
S &

Relative Error (%)
n
&

NN W
o

S
Relative Error (%)

=
a
N
)

15

N
o

o

1234567 8 9101112131415181922

TPC-H Template TPC-H Template

(a) SVM-based plan-level modeling, errors

by template (10GB) template (10GB)

Il Template Error
—— Avg. Error

(b) KCCA-based plan-level modeling, errors by

—S— error-based
- > - size-based
—H— frequency-based

Relative Error (%)

12345678 9101112131415181922 0 10 20 30 40 50 60

Iteration Number

(c) Hybrid QPP

Fig. 10. QPP Platform Independence

as disk I/O and message bytes is also considered.

some promising work addressing this problem [14], [15]]]20
In previous work, machine learning techniques have beand we believe the techniques proposed here can be extended

used in the context of query optimizers [10], [11], [12]. Irto provide an alternative perspective to this challengeyéts
the learning optimizer (LEO) [10], [11] project, model-leds another direction, our techniques can be adapted to work in
techniques are used to create a self-tuning query optimizelatforms such as MapReduce/Hadoop [18] and Dryad [19].

The goal in [10], [11] is to produce better cost estimates
for use in query optimization. The approach taken is tq
compare the estimates of the query optimizer with the actuéﬁ]
values observed during query execution to repair the imateu [2]
estimates. In [12], a statistical technique callgdnsform
regressionis used to create cost models for XML operators.
Recently, there have been successful applications ofitearn
techniques in self-managing systems. In [13], authorseptess (4]
statistics-driven modeling framework for data-intens®eud 5,
applications. KCCA-based techniques are used for predicti
the performance of Hadoop jobs. In [16], a statistics-drive [6]
workload generation framework is presented for the purpose,
of identifying suggestions (e.g., scheduling and confitjond
to improve the energy efficiency of MapReduce systems. [8]
In [14], [15] authors describe an experimental modelindgl
approach for capturing interactions query mixesi.e., con- [10]
currently running queries. Given a query workload, the goal
is to come up with an execution schedule that minimizqﬁ]
the total execution time. The query interactions are matlele
using statistical models based on selectively chosen samipfl
executions of query mixes. [13]
VII. CONCLUSIONS

This paper studied techniques for learning-based QPP oyg;
analytical workloads. We proposed novel modeling techesqu
and demonstrated their general applicability and effectéss
with implementation on PostgreSQL and TPC-H data and
queries. We provide the most comprehensive work on this;)
topic to date, and show highly accurate and general results.

Learning-based QPP is a fertile research area, with m
open opportunities and challenges to be explored. One im-
mediate idea is to supplement the static models studied [l
this paper with additional run-time features. The values fo
such features can be obtained during the early stages of ques)
execution, and used to create richer models that yield high&d]
predictive accuracy with modest delays in prediction.

As mentioned earlier, this paper does not address QPP in
the presence of concurrent query execution. There is alread

)
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