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Abstract— Accurate query performance prediction (QPP) is
central to effective resource management, query optimizationand
query scheduling. Analytical cost models, used in current gener-
ation of query optimizers, have been successful in comparing the
costs of alternative query plans, but they are poor predictors of
execution latency. As a more promising approach to QPP, this
paper studies the practicality and utility of sophisticated learning-
based models, which have recently been applied to a variety of
predictive tasks with great success, in both static (i.e., fixed) and
dynamic query workloads.

We propose and evaluate predictive modeling techniques that
learn query execution behavior at different granularities, ranging
from coarse-grained plan-level models to fine-grained operator-
level models. We demonstrate that these two extremes offer
a tradeoff between high accuracy for static workload queries
and generality to unforeseen queries in dynamic workloads,
respectively, and introduce a hybrid approach that combines their
respective strengths by selectively composing them in the process
of QPP. We discuss how we can use a training workload to (i)
pre-build and materialize such models offline, so that they are
readily available for future predictions, and (ii) build new models
online as new predictions are needed. All prediction models are
built using only static features (available prior to query execution)
and the performance values obtained from the offline execution
of the training workload.

We fully implemented all these techniques and extensions on
top of PostgreSQL and evaluated them experimentally by quan-
tifying their effectiveness over analytical workloads, represented
by well-established TPC-H data and queries. The results provide
quantitative evidence that learning-based modeling for QPP is
both feasible and effective for both static and dynamic workload
scenarios.

I. I NTRODUCTION

Modern database systems can greatly benefit from query
performance prediction (QPP), i.e., predicting the execution
latency of a query plan on a given hardware and system
configuration. For example, resource managers can utilize QPP
to perform workload allocation such that interactive behavior
is achieved or specific QoS targets are met. Optimizers can
choose among alternative plans based-on expected execution
latency instead of total work incurred.

Accurate QPP is important but also challenging: database
systems are becoming increasingly complex, with several
database and operating system components interacting in so-
phisticated and often unexpected ways. The heterogeneity of
the underlying hardware platforms adds to this complexity
by making it more difficult to quantify the CPU and I/O
costs. Analytical cost models predominantly used by the
current generation of query optimizers cannot capture these

interactions and complexity; in fact, they are not designed
to do so. While they do a good job of comparing the costs
of alternative query plans, they are poor predictors of plan
execution latency. Recent work [1] showed this result for TPC-
DS [17], and this paper does same for TPC-H [8] data and
queries.

In this paper, we utilize learning-based modeling and pre-
diction techniques to tackle QPP for analytical workloads.
Data-driven, learning-based modeling is fast emerging as an
essential ingredient of both user-facing applications, such
as predictive analytics, and system-facing applications,such
as autonomic computing and self-management. Prior work
reported evidence that such techniques can also be used
effectively for QPP, at least in constrained settings (e.g., in
static query workloads [1]). Our study substantially improves
and generalizes these results in a number of new directions,
arguing that learning-based techniques tailored to database
query execution are generally applicable to and can be highly
effective for QPP.

One of our key contributions is to show that queries can
be modeled at different granularities, each offering different
tradeoffs involving predictive accuracy and generality. If a rep-
resentative workload is available for training purposes, we can
make highly accurate predictions using coarse-grained, plan-
level models [1]. Such models, however, do not generalize
well, performing poorly for unseen or changing workloads.
For these cases, fine-grained, operator-level modeling performs
much better due to its ability to capture the behavior of
arbitrary plans, although they do not perform as well as plan-
level models for fixed workloads. We then propose a hybrid
approach that selectively composes plan- and operator-level
models to achieve high accuracy without sacrificing generality.

All these modeling techniques require a training query
workload to be executed, so that appropriate feature and
performance values are extracted and logged. Models can
then be built (i.e., trained) over these logs in offline mode,
online mode, or in conjunction. The main advantage of pre-
building and materialization is that the models are immediately
ready for use in predictions whenever needed. The challenge,
however, is to decide which models to pre-build, since it is
clearly not feasible to build all possible models in advance.
To guide this decision, we propose heuristics that rely on
estimates for additional accuracy yields and use frequencies.
The online approach, on the other hand, allows for a custom
(and potentially more accurate) model to be built for a specific



prediction task, but delays the prediction until an appropriate
model is built. Note that online building proceeds over the
already available feature data, and does not require new
sample query runs. Finally, online and offline modeling can
be seamlessly combined, with the decision of which online
models to create influenced by the pre-built models. We note
that these techniques require only static features (i.e., compile-
time features which are available prior to query execution)for
performance prediction.

Finally, we describe how all these techniques can be used
in combination to provide progressively improved predictions.
When a new QPP is needed, we can immediately use the pre-
built models to come up with an initial prediction, which we
can then continue to improve over time by building better
models online optionally with run-time features.

While we study the utility of learning-based models for
query execution latency as the performance metric of interest,
the proposed techniques are general, and thus can be used in
the prediction of other metrics such as throughput. We should
also note that this paper does not consider QPP in the presence
of concurrent execution, which is an important and challenging
problem to address, but is outside the scope of this paper.

We fully implemented these techniques and report exper-
imental results that quantify their cost and effectivenessfor
a variety of usage scenarios on top of PostgreSQL/TPC-H.
The results reveal that our novel learning-based modeling
techniques can serve as an effective QPP solution for analytical
query workloads.

The rest of the paper is organized as follows: we start with
background information on data-driven model-based predic-
tion in Section II. In Section III, we first describe our general
approach to using statistical learning techniques for QPP.Plan
and operator -level performance prediction methods are de-
scribed in Section III-A and Section III-B, respectively. Next,
in Section III-D we introduce the hybrid prediction method.
Online modeling techniques which build prediction models
at query execution time are discussed in Section IV. We
present experimental results using the TPC-H query workload
in Section V. We then end the paper with related work and
conclusion remarks in Sections VI and VII.

II. BACKGROUND: MODEL-BASED PREDICTION

We use the term model to refer to any predictive function
such as Linear and Multiple Regression, Bayesian Nets, and
Support Vector Machines. The main property of a predictive
function is learning: to generalize from the given examplesin
order to produce useful outputs for new inputs.

In the learning approach, an input data set, called the
training data, is initially used to tune the parameters of a
prediction model. This process is called training (or learning).
In general, model training involves selecting (i) a training data
set and (ii) the training features (i.e., attributes/variables), a
subset of all attributes in the data set, in addition to the learning
operation.

In some cases, a domain expert can manually specify
the training features. In other cases, this step is trivial as

the prediction attribute(s) directly determine the explanatory
features, e.g., in auto-regressive models. Alternatively, the
training features can be learned automatically viafeature
selection; however, given a set of n attributes, trying the power
set is prohibitively expensive if n is not small or training is
expensive [2], [3], [4] thereby requiring heuristic solutions.

Most approaches rank the candidate attributes (often based
on their correlation to the prediction attribute(s) using metrics
such as information gain or correlation coefficients) and use
this ranking to guide a heuristic search [4] to identify the most
predictive attributes tested over a disjoint test data set.In this
paper, we use a similarForward Feature Selectionalgorithm
based on linear correlation coefficients [4]. This algorithm
performs a best-first search in the model space. It starts
with building models using small number of high-correlation
features and iteratively builds more complex and accurate
models by using more features. The features are considered
based on their correlation ranks with the target/prediction
attribute(s).

Once a prediction model is trained, it can then be used for
predicting the unknown values of the target attributes given the
values of the explanatory attributes. Hypothesis testing and
confidence interval estimations are two common techniques
for determining the accuracy of predictions [2]. One form
of hypothesis testing that is commonly used is K-Fold Cross
Validation (K-CV). K-CV divides the training data up into
k non-overlapping partitions. One of the partitions is used as
validation data while the otherk−1 partitions are used to train
the model and to predict the data in the validation interval.
In this study, we use K-CV to estimate the accuracy of our
prediction models.

III. M ODELING QUERY EXECUTIONS

In this study, we describe QPP methods based on data-
driven statistical learning models. As is usual in most learning
approaches, all of our modeling techniques consist of two main
phases: training and testing. The high-level operations involved
in these phases are explained in Figure 2.

In the training phase, prediction models are derived from
a training data set that contains previously executed queries
(i.e., training workload) and the observed performance values
(i.e., execution times). In this phase, queries are represented as
a set of features with corresponding performance values. The
goal in training is to create an accurate and concise operational
summary of the mapping between the feature values and the
observed performance data points. The prediction models are
then used to predict the performance of unforeseen queries in
the test phase. In more complex QPP methods, the training and
testing phases can be performed continuously for improved
accuracy and adaptivity.

Our approach to QPP relies on models that use only static,
compile-time features, which allow us to produce predictions
before the execution of queries. There are several static in-
formation sources, such as the query text and execution plans,
from which query features can be extracted prior to execution.
In this study, we use features that can be obtained from the



Fig. 1. Statistical Modeling Approach to QPP.

information provided by the query optimizer. Many DBMS
provide optimizer calls that expose query-plan information
and statistical estimates such as the optimized query-plan
structure and operator selectivities (for example,EXPLAIN
in PostgreSQL andEXPLAIN PLAN in Oracle).

This paper shows that it is possible to create models at
varying granularities for query performance prediction. As
in [1], one coarse modeling method is to create a single,
plan-level prediction model that utilizes query plan features
for modeling the execution times of queries. We discuss this
approach in Section III-A. A finer grained approach would
be to model each operator type separately and use them col-
lectively through selective composition to model entire query
plans. We describe this method in Section III-B and compare
the relative advantages and drawbacks of the two approachesin
Section III-C. Next, in Section III-D, we introduce a “hybrid”
modeling approach that combines the fine and coarse grained
modeling methods to form a highly accurate and general QPP
approach.

A. Plan-level Modeling

In the plan-level modeling approach, the performance of a
query is predicted using a single prediction model. We use
the features presented in Table III-A for building plan-level
models. This set of features contains query optimizer estimates
such as operator cardinalities and plan execution costs together
with the occurrence count of each operator type in the query
plan.

As mentioned before, we need to address two main chal-
lenges when using model-based learning techniques. The first
problem,model selection, is the process of picking the right
prediction model for the given task and data set. In general,it
is not possible to identify the most accurate prediction model
without training and testing multiple models. In our study,we
show results with two types of prediction models for plan-
level modeling: a regression variant of Support Vector Ma-
chines (SVMs) [5] and Kernel Canonical Correlation Analysis
(KCCA) [6], [7]. KCCA models were recently used in [1] for
plan-level QPP over the TPC-DS analytical query workload.
Both model types provided high accuracy in our experiments.
We note that all of the approaches we present here are model-
agnostic and can readily work with different model types.

The second problem,feature selection, deals with the issue
of choosing the most predictive features from the availableset

Feature Name Description

p tot cost Estimated total plan cost
p st cost Estimated plan start cost
p rows Estimated number of output tuples
p width Estimated average size of an output

tuple (in bytes)
op count Number of query operators in the plan
row count Estimated total number of tuples input

and output to/from each operator
byte count Estimated total size (in bytes) of all

tuples input and output
<operatorname> cnt The number of<operatorname> op-

erators in the query
<operatorname> rows The total number of tuples output from

<operatorname> operators

TABLE I

Features for plan-level models− p st cost refers to the cost of
query execution until the first output tuple. <operator name>
refers to query operators (e.g., Limit, Materialize and Sort).

of features. Feature selection does not need to be performed
for all types of models. For instance, in our case we perform
feature selection for SVMs but not for KCCA as it performs
dimensionality reduction as part of its operation. However, for
many model types feature selection is an important problem.
In our experiments, we frequently observed that SVM models
using the full set of features given in Table III-A performed
less accurately than models with smaller number of features.
We use the best-first search based, forward feature selection
algorithm [4], described in Section II to perform feature
selection. This algorithm starts by building models using a
small number of features, and iteratively creates more complex
and accurate models by adding features in order of correlation
with the target variable (i.e., query execution time).

Once a plan-level prediction model is built and stored (i.e.,
materialized), it can then be used to estimate the performance
of new incoming queries based on the query-plan feature
values that can be obtained from the query optimizer without
executing the query.

B. Operator-level Modeling

We now introduce a finer-grained operator-level modeling
approach. Unlike the plan-level approach, which uses a single
prediction model, the operator-level technique relies on a
collection of models that are selectively composed for end-
to-end query performance prediction. In the operator-level
modeling approach, two separate prediction models are built
for each query operator type:

• A start-time model is used for estimating the time spent
during the execution of an operator (and in the sub-
query plan rooted at this operator) until it produces its
first output tuple. This model captures the (non-)blocking
behavior of individual operators and their interaction with
pipelined query execution.

• A run-time model is used for modeling the total exe-
cution time of query operators (and the sub-plans rooted
at these operators). Therefore, the run-time estimate of
the root operator of a given query plan is the estimated
execution time for the corresponding query.



To illustrate the semantics and the use of the start-time
model, we consider theMaterialize operator, which materi-
alizes its input tuples either to disk or memory. Assume that
in a query tree, the Materialize operator is the inner child
operator of aNested Loopjoin. Although the materialization
operation is performed only once, the join operator may
scan the materialized relation multiple times. In this case,
the start-time of the Materialize operator would correspond
to the actual materialization operation, whereas the run-time
would represent the total execution time for the materialization
and scan operations. In this manner, the parent Nested Loop
operator can use the start-time and run-time estimates to form
an accurate model of its own execution time. This technique
also allows us to transparently and automatically capture the
cumulative effects of blocking operations and other operational
semantics on the execution time.

We used a single, fixed collection of features to create
models for each query operator. The complete list of features
is given in Table II. This list includes a generic set of features
that are applicable to almost all query operators. They can also
be easily acquired from most, if not all, existing DBMSs. As in
the case of plan-level modeling approach, we use the forward
feature selection algorithm, to build accurate predictionmodels
with the relevant set of features. We used multiple linear
regression (MLR) models for the query operators. In addition
to performing accurately in our experiments, MLR models
are intuitive and easily interpretable similar to analyticcost
models.

Feature Name Description

np Estimated I/O (in number of pages)
nt Estimated number of output tuples
nt1 Estimated number of input tuples (from

left child operator)
nt2 Estimated number of input tuples (from

left right operator)
sel Estimated operator selectivity
st1 Start-time of left child operator
rt1 Run-time of left child operator
st2 Start-time of right child operator
rt2 Run-time of right child operator

TABLE II

Features for the operator-level models− Start time refers to
the time spent in query execution until the first output tuple.

The individual operator models are collectively used to
estimate the execution latency of a given query by selectively
composing them in a hierarchical manner akin to how optimiz-
ers derive query costs from the costs of individual operators.
That is, by appropriately connecting the inputs and outputsof
prediction models following the structure of query plans, it is
possible to produce predictors for arbitrary queries.

In Figure 2, we illustrate this process for a simple query
plan consisting of three operators. The performance prediction
operation works in a bottom-up manner: each query operator
uses its prediction models and feature values to produce its
start-time and run-time estimates. The estimates producedby
an operator are then fed to the parent operator, which uses
them for its own performance prediction.

Fig. 2. Operator-level query performance prediction: operator
models use operator-level features together with the predictions
of child operators for performance prediction.

C. Plan vs. Operator -level Modeling

The premise of the plan-level approach is that queries with
similar feature vectors will have similar query plans and plan
statistics, and therefore are likely to exhibit similar behavior
and performance. Such an approach is specifically targeted to
static workloadscenarios where the queries in the training and
test phases have similar execution plans (e.g., generated from
the same query templates or from the same user program).

Furthermore, this approach is based on the correlation of
the query plans and statistics with the query execution times.
This correlation is used directly in mapping query-plan based
features to execution performance. The high-level modeling
approach used in this case therefore offers the ability to capture
the cumulative effects of a set of hidden lower level factors,
such as operator interactions during query processing, on the
query execution times with a single, low complexity model.

The plan-level approach, however, is prone to failure in
some common real-world scenarios. A significant problem
exists in the case ofdynamic workloadswhere queries with
unforeseen execution plans are frequently observed. Even
worse, there can also be problems with static workloads. As
the feature values only represent a limited view of a query plan
and its execution, it is possible that different queries canbe
mapped to very similar feature values and therefore be inac-
curately modeled. While it is unlikely for completely different
queries to be mapped to identical features, similar queriescan
sometimes have different execution performance. For instance,
increasing the number of time consuming aggregate operations
in a query will not significantly change its feature vector, but
may highly increase its execution time. Adding more features
(e.g., number of aggregates and constraints) to the model
would alleviate such issues, however, each added feature
would also increase the size of the required training data.

By using multiple prediction models collectively in a hi-
erarchical manner, the operator-level prediction method is
able to produce performance predictions for arbitrary queries.
Therefore, it is a more general approach compared to the
plan-level method and has the potential to be more effective
for dynamic query workloads where unforeseen query plan
structures are common.



On the downside, the operator-level prediction method may
suffer from drawbacks similar to those that affect analytical
cost estimation methods (as both methods rely on low-level
operator-based models). A key problem is that the prediction
errors in the lower levels of a query plan are propagated to the
upper levels and may significantly degrade the end prediction
accuracy.

Another potential problem is that concurrent use of multiple
resources such as CPU and disk may not be correctly reflected
in the operator-level (or the analytical) models. For instance,
a query could be simply performing an aggregate computation
on the rows of a table that it sequentially scans from the disk.
If the per-tuple processing takes less time than reading a tuple
from the disk, then the query execution time is approximately
the same as the sequential scan time. However, if the pro-
cessing of a tuple takes longer than reading it from the disk,
then the execution time will be closer to the processing time.
As such, the interactions of the query execution system and
the underlying hardware/software platforms can get quite com-
plex. In such cases, simple operator-level modeling approaches
may fall short of accurately representing this sophisticated
behavior. Therefore, in static query workloads where training
and testing queries have similar plan structures we expect the
high-level information available in the plan-level approach to
result in more accurate predictions.

D. Hybrid Modeling

In hybrid modeling, we combine the operator and plan level
techniques to obtain an accurate and generally applicable
QPP solution. As discussed, this is a general solution that
works for both static and dynamic workloads. We note that as
long as the predictive accuracy is acceptable, operator-level
modeling is effective. However, for queries with low operator-
level prediction accuracy, we learn plan-level models for the
inaccurately modeled query sub-plans and compose both types
of models to predict the performance of entire query plans.
We argue, and later also experimentally demonstrate, that this
hybrid solution indeed combines the relative benefits of the
operator and plan level approaches by not only retaining the
generality of the former but also yielding predictive accuracy
values comparable or much better than those of the latter.

Hybrid QPP Example: To illustrate the hybrid method, we
consider the performance prediction of an example TPC-H
query (generated from TPC-H template-13), whose execution
plan is given in Figure 3. This plan is obtained from a10GB
TPC-H database installed on PostgreSQL. As we describe
in detail in the Experiments section, we build operator-level
models on a training data set consisting of example TPC-H
query executions. When we use the operator-level models for
performance prediction in this example query, we obtain a
prediction error (i.e.,|true value - estimate| / true value )
of 114%. Upon analysis of the individual prediction errors
for each operator in the query plan, we realized that the sub-
plan rooted at theMaterialize operator (highlighted sub-plan
in the figure) is the root cause of the prediction errors in the

upper level query operators. The operator-level model based
prediction error for the materialization sub-plan is97%.

Fig. 3. Hybrid QPP example: plan-level prediction is used for the
highlighted sub-plan together with operator-level prediction for
the rest of the operators to produce the end query performance
prediction.

In the hybrid approach, we build a separate plan-level
model for the highlighted sub-plan. The model is trained using
the occurrences of the highlighted sub-plan in the training
data. The hybrid method uses the plan-level model to directly
predict the execution performance of the materialization sub-
plan, while the rest of the prediction operations is unchanged,
i.e., performed with the operator-level models. The prediction
errors obtained with the hybrid approach are shown with the
red values in the figure. The new overall prediction error for
this example query drops down to14%.

Given a training data set consisting of example query
executions, the goal of the hybrid method is to accurately
model the performance of all queries in the data set using
operator-level models together with a minimal number of plan-
level models. In this way, we maximize the applicability of the
operator-level models in QPP and maintain high prediction
accuracy with the integration of plan-level models.

The hybrid performance prediction method is described in
Algorithm 1. The algorithm starts by building prediction mod-
els for each query operator based on the provided training data.
The accuracy of operator-level prediction is then estimated by
application on the training data (e.g., either through cross-
validation or holdout test data). Next, the algorithm triesto
increase the performance prediction accuracy by building plan-
level models.

Each plan-level model is used for directly modeling the
performance of a separate query plan (or sub-plan). In a query



plan withN operators, there is a maximum ofN−1 sub-plans
(e.g., in a chain of operators) for plan-level modeling. Then a
training data set withM queries can haveO(MN) candidate
sub-plans for modeling.

In theory, we could build and test plan-level models for
each distinct sub-plan (with at least a minimum number of
occurrences in the training data set) and try to find a minimal
subset of these models for which the prediction accuracy is
sufficiently high. However, this would require a large amount
of time since (i) we need to build and test models for all
candidate sub-plans, and (ii) the prediction accuracy of each
subset of models (in increasing sizes) needs to be separately
estimated with testing.

Instead, we propose heuristics that iteratively build a collec-
tion of plan-level models to maximize the expected predictive
accuracy. In each iteration, a new plan-level model is built,
tested and added to the model set, if it improves the overall
prediction accuracy (by more than a threshold value,ǫ). The
models are chosen, built and tested according toplan ordering
strategies. We consider the following strategies for the hybrid
approach:

• Size-based:order the plans by size (in increasingnumber
of operators).
The size-based strategy considers generating models for
smaller plans before larger ones. This strategy is based on
the fact that smaller plans occur more frequently (since
by definition all sub-plans of a large plan are at least
as frequent) in any data set, and therefore models for
smaller plans are more likely to appear in future queries.
In case of a tie, the more frequently occurring plan is
given priority.

• Frequency-based:order the plans in decreasingoccur-
rence frequency.
The frequency-based strategy is similar to the size-based
strategy except that it directly uses the occurrence fre-
quency of a plan from the training data for ranking. In
case the occurrence count is the same for two plans,
smaller plans are considered first. An important difference
from the size-based strategy is that when a large plan has
a high occurrence frequency, the frequency-based strategy
will consider modeling its sub-plans sequentially before
considering other plans.

• Error-based: order the plans in decreasing value of
occurrence frequency× average prediction error.
The error-based strategy considers plans with respect to
their total prediction error across all queries in the training
data. The assumption is that more accurate modeling of
such high error plans will more rapidly reduce the overall
prediction error.

In all of the above strategies, the plans for which (i) the
average prediction accuracy with the existing models is already
above a threshold, or (ii) the occurrence frequency is too low
are not considered in model generation.

In order to create the list of candidate plans (i.e.,
candidate plans) for modeling, we traverse the plans
of all queries in the training data in a depth-first manner in

Algorithm 1 Hybrid Model Building Algorithm
Input: data = example query executions
Input: strategy= plan selection strategy
Input: target accuracy= target prediction accuracy
Output: models= prediction models
Output: accuracy= estimated prediction accuracy

1. models = buildoperatormodels(data)
2. [predictions, accuracy] = applymodels(data, models)
3. candidateplans = getplan list(strategy, data, predictions)
4. while accuracy≤ targetaccuracy and not stopcond()do
5. plan = getnext(strategy, candidateplans)
6. plan model = buildplan model(data, plan)
7. [predictions, newaccuracy] = applymodels(data, mod-

els∪ plan model)
8. if new accuracy− ǫ ≤ accuracythen
9. candidateplans.remove(plan)

10. else
11. models = models∪ plan model
12. candidateplans.update(predictions, planmodel)
13. accuracy = newaccuracy

functionget plan list. During the traversal, this function
builds a hash-based index using keys based on plan tree
structures. In this way, all occurrences of a plan structure
are hashed to the same value and metrics required by the
heuristic strategies such as the occurrence frequency and
average prediction error can be easily computed.

When a new plan-level model is added to the set of chosen
models (i.e.,models), the candidate plan list is updated with
the new prediction errors and occurrence frequencies for all
plans. The occurrence frequency of a planp will change with
the addition of a model when the plan for the added model
containsp as a sub-plan (since such occurrences ofp are
consumed by the newly added model).

We can efficiently identify the set of plans for which
the prediction errors or the occurrence frequencies might
change with the addition of a model as follows: In the hash-
based index built by the getplan list function, we also store
the identifiers for the corresponding queries (which own the
plans). As such, when a new model is added, the only plans
that need to be updated are the plans that can be applied to
one or more of the queries that the newly added plan is also
applicable.

Finally, in cases where the target accuracy is unachievable,
a maximum number of iterations can be used as a stop
condition (i.e.,stop cond()) to terminate the algorithm.
Other variations for the stopping condition, such as setting a
maximum number of iterations without accuracy improvement,
are also possible but not evaluated in this study.

IV. ONLINE MODEL BUILDING

In dynamic query workloads, where queries with unforeseen
plan structures are present in the test data, the plan-levelQPP
method performs poorly due to lack of good training data. On
the other hand, operator-level and hybrid methods are designed



to be much more applicable to unforeseen plan structures. In
addition, the hybrid method will utilize its plan-level models
as much as possible to provide accuracy levels higher than
those achievable through pure operator-level modeling.

The prediction accuracy of the hybrid approach in dynamic
workload scenarios depends on the applicability of its plan-
level models to future queries. As a case study, we analyze
execution plans of TPC-H queries on a 10GB TPC-H database
running on PostgreSQL. In Figure 4(b), we show the most
common sub-plans within the execution plans of queries
generated from 14 TPC-H templates for which we could use
operator-level prediction techniques in our experiments (see
Section V). Our key observations for this data set include:

(1) Smaller sub-plans are more common across the TPC-H
query plans (see Figure 4(a)).

(2) The plans for the queries of each TPC-H template (except
template-6) share common sub-plans with the plans of
queries of at least one other TPC-H template (see Fig-
ure 4(c)).

These observations suggest that for the TPC-H workload:
(i) it is possible to create plan-level models based on the
execution plans for the queries of a TPC-H template and
utilize them in the performance prediction of queries from
other TPC-H templates, and (ii) the size-based plan ordering
strategy discussed in Section III-D will likely achieve higher
applicability compared to the other strategies in the dynamic
workload case.

However, the hybrid approach may fail to increase the
prediction accuracy for dynamic workloads in some cases.
For example, the prediction errors for some unforeseen queries
may not originate from the common sub-plans, and as a result,
plan-level models from the training data cannot reduce the
error. In other cases, the common sub-plans could actually be
the source of prediction errors, but the plan-ordering strategies
may not choose to build plan-level models for them. For
instance, some applicable plan-level models may be discarded,
because they did not improve the accuracy in training.

To address these issues, in the online modeling technique,
we build new plan-level models for QPP at run-time upon the
receipt of a query. We initially produce predictions with the
set of existing models, and then update our results after new
plan-level models are built for the received query.

Online model building is performed similarly to offline
model building described for the hybrid method. However,
in the online case, the set of candidate plans are generated
based on the set of sub-plans of the execution plan for the
newly received query. The online building of plan-level models
guarantee that if the execution plan for a test query has a
common sub-plan (with high prediction error) with the queries
in the training data, then a plan-level model will be built
and used for its prediction (if a plan-level model with higher
accuracy than the operator-level prediction method exists).

V. EXPERIMENTS

A. Setup

In our experiments, we use the TPC-H decision support
benchmark [8] implemented on top of PostgreSQL. The details
are presented below.

DBMS. We use an instrumented version of PostgreSQL
8.4.1. The instrumentation code monitored features and perfor-
mance metrics from query executions; i.e., for each query, the
execution plan, the optimizer estimates and the actual values
of features as well as the performance metrics were logged.

Data sets and workload. We created 10GB and 1GB TPC-
H databases according to the specification. The primary key
indices as indicated in the TPC-H specification were created
for both databases. We enforced a limit of one hour execution
time (per query) to keep the overall experimentation duration
under control. This resulted in 18 of the 22 TPC-H templates
being used, as the remaining 4 templates always took longer
than 1 hour to execute in the 10GB case.

There are approximately 55 queries from each template in
both databases. With the 1GB database, all queries finish under
an hour and the data set contains 1000 queries. On the other
hand, with the 10GB database only 17 of the queries from
template-9 finished within an hour, so we have 17 template-9
queries in the 10GB data set. Thus, the resulting 10GB data
set we used contains 960 queries.

Hardware. Unless stated otherwise, all queries were exe-
cuted on a single commodity desktop with 4GB RAM running
Linux 2.6.28 and the database buffer pool size was set to 1GB
(25% of the total RAM as the rule of thumb). All queries were
executed sequentially with cold start (i.e., both filesystem and
DB buffers were flushed before the start of each query).

Predictive models. For plan-level modeling, we used Sup-
port Vector Machines (from libsvm [5]) with the nu-SVR
kernel for regression and the Kernel Canonical Correlation
Analysis (KCCA) method. We implemented KCCA using
GSL, the GNU Scientific Library. For operator-level QPP we
used multiple linear regression based models (from Shark [9]).
All models were integrated to the database as user defined
functions. Our algorithms were implemented as a combina-
tion of C-based user-defined functions in PostgreSQL and as
external applications written in C++ and Python. The feature
selection algorithm, described in Section II, was used to build
accurate models using a small number of features.

Metrics and validation. We use the mean relative error as
our error metric:

1

N

N∑

i=1

|actuali − estimatei|

actuali

This metric is useful when we would like to minimize the
relative prediction error in all queries regardless of their execu-
tion time. Non-relative error metrics such as the mean-square
error would be better for minimizing the absolute difference
(or its square) in actual and predicted execution times. Other
popular metrics includeR2 and predictive risk [1]. These
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Fig. 4. Analysis of common sub-plans for the execution plans of queries generated from 14 TPC-H Templates.

metrics measure the performance of the estimates with respect
to a point estimate (i.e., the mean). As such, in many cases,
they can have deceptively low error values even though the
actual estimates have high error, as these metrics depend on
the scale and statistical characteristics of the entire data set.

Our results, except for the dynamic workload cases, are
based on 5-fold cross validation. That is, the data is divided
into 5 equal-sized parts, 4 of which are used to build models
for prediction on the remaining part. This process is repeated 5
times, i.e., all parts are used in testing. The reported prediction
accuracy is the average of the accuracy values from the testing
of each cross-validation part. We usedstratified samplingfor
dividing the data into parts to ensure that each part contains
roughly equal number of queries from each template.

B. Prediction with Optimizer Cost Models

We start with results showing predictions on top of ana-
lytical cost models used by conventional optimizers are non-
starters for QPP. Specifically, we built a linear regression
model to predict the query execution times based on the query
optimizer cost estimates. Overall, the maximum relative error
is 1744%, the minimum relative error is 30% and the mean
relative error is 120%1.

To provide more intuition into the reasons, we show the
optimizer costs versus the query execution times for a subset
of the queries (a stratified sample) on the 10GB TPC-H data
set in Figure 5. Observe that the lower left and lower right data
points correspond to queries with roughly the same execution
times, even though their cost estimates have a magnitude
of difference. Similarly, the points on the lower and upper
right corners are assigned roughly identical plan costs by
the optimizer but differ by two orders of magnitude in their
execution times.

In this setup, most queries are I/O intensive. We expect this
to be the ideal case for predicting with analytical cost models.
The reason is that optimizer cost models generally rely on the
assumption that I/O is the most time consuming operation.
Therefore, for CPU intensive workloads, we would expect to
see even lower accuracy values.

1In this case, the predictive risk [1] is about .93, which is close to 1. This
result suggests that it performs much better compared to a pointestimate,
although the actual relative errors per query as we reportedare high.

As a concrete example, consider TPC-H template-1, which
includes an aggregate over numeric types. We observed that
evaluating aggregates over numeric types can easily become
the bottleneck, because arithmetic operations are performed in
software rather than hardware. As such, introducing additional
aggregates to a query can significantly alter the execution time
even though the volume of I/O (and hence the predictions with
the cost model) remains approximately constant.
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Fig. 5. Optimizer Cost vs Query Execution Time (log-log plot)

C. Predicting for Static Workloads

Results for the plan-level and operator-level methods are
given in Figure 6 both for the 10GB and 1GB TPC-H scenar-
ios. These results were obtained using estimate-based features
both in training and testing. The use of actual (observed)
values as features is discussed in Section V-C.3.

1) Plan-level Modeling:Plan-level prediction is performed
on all the 18 TPC-H templates. Overall, using SVMs we
obtained on average 6.75% and 17.43% prediction errors
for the 10GB and 1GB databases, respectively (Figure 6(a)-
(c)). The prediction errors with KCCA modeling in the same
scenarios were 2.1% and 3.1% (Figure 6(d)-(f)). The high
accuracy results imply that plan-level modeling can be very
effective for static workloads.

To understand the difference in accuracy between the two
model types, here we briefly describe their characteristics.



With SVMs, the general approach is to map the query features
to a high dimensional space and perform regression in that
space. In KCCA, the query features and the target values
are projected to separate subspaces such that their projections
are maximally correlated. Prediction with KCCA is then
performed using a nearest neighbor strategy. As such the
predictions of KCCA use all of the training data, whereas
SVM results are only based on a subset of the points (support
vectors). In addition, it is important to note that for SVMs
we perform a heuristic based search resulting inhard feature
selection (i.e., choose a fixed subset of features and discard the
other features), whereas KCCA as part of its execution, per-
formssoft feature selection (i.e., all features are represented
in the projected feature subspace).

With SVM-based modeling, queries from template-9 stand
out as the worst predicted queries. We note that template-
9 queries take much longer than the queries of the other
templates. As the number of instances of template 9, and
therefore of longer running queries, is relatively few in both
data sets, the prediction models may not fit well. To alleviate
this problem, we built a separate SVM-based model for
template-9 for the 10GB case, which reduced its error to 7%.

2) Operator-level Modeling:We now discuss operator-level
prediction results on 14 of the 18 TPC-H templates2.

For the 10GB case, in 11 of the 14 templates the operator-
level prediction method performed better than 20% error
(Figure 6(g)). For these 11 templates the average error is
7.30%. The error, however, goes up to 53.92% when we
consider all the 14 templates, a significant degradation.

For the 1GB scenario, we show the results of operator-level
prediction for the 14 TPC-H templates in Figure 6(i). In this
case, for 8 of the templates the average error is below 25%
and the mean error is 16.45%. However, the mean error for
all the 14 TPC-H templates is 59.57%.

We see that operator-level prediction produces modest errors
for many cases, but also does perform poorly for some. We
analyzed the set of templates that belongs to the latter case,
and noticed that they commonly exhibit one or more of the
following properties:

• (Estimation errors) the optimizer statistic estimates are
significantly inaccurate.

• (I/O-compute overlap) there is significant computation
and I/O overlap in the query. The end-effect of such
concurrent behavior on execution time is difficult to
capture due to pipelining.

• (Operator interactions) The operators of the same query
heavily interact with each other (e.g., multiple scans on
the same table that use the same cached data).

Next, we discuss the practical impact of statistics estimation
errors on accuracy. We then turn to the latter two issues
that represent the fundamental limitations of operator-level

2The execution plans for the queries of the remaining 4 templates contain
PostgreSQL-specific structures, namely INITPLAN and SUBQUERY, which
lead to non-standard (i.e., non tree-based) execution plans with which our
current operator-level models cannot cope at present.

modeling; such models learn operator behavior “in isolation”
without representing the context within which they occur.

3) Impact of Estimation Errors:We tried all the combina-
tions of actual and estimate feature values for training andtest-
ing for (SVM-based) plan-level and operator-level prediction.
The results are given in Figure 7(a) for the 10GB scenario. For
further detail, we also show the prediction errors grouped by
TPC-H templates in Figure 7(b) for the actual/actual case and
plan-level prediction (over the 10GB scenario). These results
are to be compared with those in Figure 6(a).

(a) Prediction with Actual
Values vs Estimates
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Fig. 7. Impact of Estimation Errors on Prediction Accuracy in
Static Workload Experiments

Unsurprisingly, the best results are obtained in the ac-
tual/actual case (i.e., training/testing with actual feature val-
ues), which is not a viable option in practice due to the
unavailability of the actual values without running the queries.
The next best results are obtained with the estimate/estimate
option, the option that we used in the rest of the paper. Finally,
the results obtained with actual/estimate (i.e., trainingon actual
values and testing on estimates) are much worse than the other
two, primarily due to optimizer estimation errors that are not
taken into account during training.

To provide a sense of the magnitude of the estimation errors
made by the optimizer, consider template-18, which is one of
the templates that exhibit the biggest error in operator-level
prediction with actual/estimate model building. Instances of
template-18 include the followinggroup by clause on table
lineitem:

group by lorderkey having sum(lquantity)> 314

There are 15 million distinctl orderkey values in
lineitem (out of approximately 60 million tuples). The
estimated number of groups satisfyingsum(l quantity)
> 314 is 399521, whereas the actual number is 84. The
PostgreSQL query optimizer computes this estimate using
histograms (with 100 bins) for each column based on the
attribute independence assumption. The results are later fed
into a Hash-Semi-Join, whose cost estimate is correspondingly
very much off the mark.

Comparing the actual/actual against the estimate/estimate
results, we observe that optimization estimate errors leadto,
perhaps surprisingly, only a modest degradation in prediction
accuracy. This result is due to the ability of the models to also
integrate error corrections during learning. Thus, while better
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(a) SVM-based plan-level modeling, errors by tem-
plate (10GB)
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(b) SVM-based plan-level prediction (10GB)
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(c) SVM-based plan-level modeling, errors by tem-
plate (1GB)
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(d) KCCA-based plan-level modeling, errors by
template (10GB)
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(e) KCCA-based plan-level prediction (10GB)
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(f) KCCA-based plan-level modeling, errors by
template (1GB)
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(g) Operator-level, Errors by Template (10GB)
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(h) Operator-level Prediction (10GB)
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Fig. 6. Static workload experiments with plan-level (using SVMs and KCCA models) and operator-level modeling in 1GB and 10GB
TPC-H databases. Error values in bar-plots are capped at 50%. Larger error values are printed next to the corresponding bars.

estimations generally mean better results, it is possible to
produce highly accurate predictions even with rather mediocre
estimations (as in the case of PostgreSQL).

4) Hybrid Prediction Method:We now present comparative
results of the three plan ordering strategies (see Section III-
D) discussed for offline hybrid model selection. The results,
shown in Figure 8, were obtained with the 14 TPC-H templates
used in operator-level modeling and the 10 GB database.

As described earlier, we first create an ordered list of query
sub-plans based on the chosen plan ordering strategy, leaving
out sub-plans with average error lower than a given threshold
(.1 in this experiment) for the size-based and frequency-based
strategies. Then, at each iteration (x-axis), we create a (SVM-
based) model for the next plan in the ordered list, add this
model to the current model set and then re-evaluate prediction
error on the test workload (y-axis). The step behavior is
observed when a newly created model decreases the error.

We observe that the size-based and error-based strategies
quickly reduce the error rate. The size-based strategy takes
longer to reach the minimum error level, as in some cases
larger sub-plans should be modeled for reducing the error and
it takes time for this strategy to reach those plans.

The frequency-based strategy initially takes longer to reduce
the error. The reason is that this strategy can easily get stuck
in a relatively large sub-plan that has a high occurrence rate,
since it needs to explore all the sub-plans involved in the
larger sub-plan (starting from the smallest sub-plan) until it
decreases the error rate. As discussed earlier, all such sub-plans
are by definition at least as frequent, hence need to be explored
with this heuristic. Overall, the error-based strategy provides
a well balanced solution, quickly and dramatically reducing
the prediction errors only with a small number of additional
models. We also note that the final accuracy obtained with the
hybrid-method approaches to that of the KCCA-based model.
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Fig. 8. Hybrid Prediction Plan Ordering Strategies

D. Predicting for Dynamic Workload

The results so far have shown that for known, static work-
loads, plan-level modeling performs well. They also revealed
that hybrid models offer similar accuracy to plan-level models
for static workloads. Next, we present results demonstrating
that plan-level modeling has serious limitations for dynamic
workloads, whereas hybrid modeling still continues to provide
high accuracy. We also report comparative results for online
model building (Section IV) that creates custom hybrid models
for a given query from the training data.

For this experiment, we used the 12 templates shown
in Figure 9. For each template we build and test separate
prediction models using only the training data from the other
templates. The two other TPC-H templates were excluded
because they include specific operators exclusively found in
those templates, and thus cannot be modeled with our current
setup. We show results for KCCA and SVM -based plan-
level, operator-level, hybrid (with error-based and size-based
strategies) and online modeling algorithms.

As expected, plan-level models perform poorly across the
board and thus do not offer much value in dynamic work-
loads. However, SVM-based plan models perform better than
the KCCA-based approach. We also observe that the online
(hybrid) modeling algorithm performs best in all cases, except
for template-7. Further investigation reveals that the training
data lacks a specific sub-plan that is the root cause of the
error on template-7. These results confirm the ability of online
modeling to identify the models that are very likely to help by
utilizing the knowledge of a given query plan. Such models
can be eliminated by offline strategies if they do not help
improve training accuracy.

Another interesting observation is that the size-based hybrid
strategy performs somewhat better than the error-based strat-
egy in these experiments. This can be explained by the ability
of the former to favor models for smaller sub-plans that are
more likely to occur in unseen queries.

E. Platform Independence

In this experiment, we apply our QPP techniques on a
different hardware platform to demonstrate its applicability in
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Fig. 9. Dynamic Workload Prediction Results

different environments. We show results from a 10GB TPC-H
experiment executed on a 2.8GHz machine with 8GB RAM.
The database buffer pool size was set to 2GB. We used the
same queries that were used in the 10GB experiment. Plan-
level prediction results (following a static workload scenario)
using SVMs and KCCA are shown in Figures 10(a)-(b).

The average prediction errors are slightly lower than the
errors obtained in the previous 10GB experiment. On this new
platform the TPC-H queries execute faster than on the previous
platform. For instance, template-9 queries finish under 20
minutes instead of an hour. As such the query run times are
less divergent. This is because of the higher disk speed in
the new platform, 83MB/sec sustained read rate (versus the
55MB/sec read rate before) as well as the faster CPU and
increased RAM size. In addition, there is much less variance
on the execution times of queries in this setup. We attributethis
to the higher disk speed and to the increased RAM size in the
new platform. Since 80% of the database can fit into memory,
the number of duplicate reads from the disk are significantly
reduced (due to the filesystem and database caches). The lower
variance of query execution times observed in this data set
enables improved accuracy on the predictions.

In Figure 10(c), we show QPP results (based on the static
workload scenario) using hybrid modeling with different plan
ordering strategies. As before, the error-based strategy reduces
the prediction error faster than the other strategies. Whilethe
error and frequency -based strategies converge to the same
prediction error, the size-based method resulted in a slightly
higher error value. This is possible since each plan-ordering
strategy considers plan-level models in different order and the
initially chosen models may cause the later plan-level models
to be discarded. Finally, we note that the accuracy obtained
with the hybrid method (using SVM-based plan-level models)
is higher than the accuracy of SVM-based plan-level modeling
and close to the accuracy of KCCA-based model.

VI. RELATED WORK

Plan-level predictions have recently been studied [1]. In
[1], authors consider KCCA-based plan-level QPP for the
following static workloads: the TPC-DS query benchmark and
a query workload obtained from a customer database. They
report that they can predict execution times within 20% of
the actual time for 85% of their test queries. In addition to
execution time, estimation of other performance metrics such
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(a) SVM-based plan-level modeling, errors
by template (10GB)
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(b) KCCA-based plan-level modeling, errors by
template (10GB)
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Fig. 10. QPP Platform Independence

as disk I/O and message bytes is also considered.
In previous work, machine learning techniques have been

used in the context of query optimizers [10], [11], [12]. In
the learning optimizer (LEO) [10], [11] project, model-based
techniques are used to create a self-tuning query optimizer.
The goal in [10], [11] is to produce better cost estimates
for use in query optimization. The approach taken is to
compare the estimates of the query optimizer with the actual
values observed during query execution to repair the inaccurate
estimates. In [12], a statistical technique calledtransform
regressionis used to create cost models for XML operators.

Recently, there have been successful applications of learning
techniques in self-managing systems. In [13], authors present a
statistics-driven modeling framework for data-intensiveCloud
applications. KCCA-based techniques are used for predicting
the performance of Hadoop jobs. In [16], a statistics-driven
workload generation framework is presented for the purpose
of identifying suggestions (e.g., scheduling and configuration)
to improve the energy efficiency of MapReduce systems.

In [14], [15] authors describe an experimental modeling
approach for capturing interactions inquery mixes, i.e., con-
currently running queries. Given a query workload, the goal
is to come up with an execution schedule that minimizes
the total execution time. The query interactions are modeled
using statistical models based on selectively chosen sample
executions of query mixes.

VII. C ONCLUSIONS

This paper studied techniques for learning-based QPP over
analytical workloads. We proposed novel modeling techniques
and demonstrated their general applicability and effectiveness
with implementation on PostgreSQL and TPC-H data and
queries. We provide the most comprehensive work on this
topic to date, and show highly accurate and general results.

Learning-based QPP is a fertile research area, with many
open opportunities and challenges to be explored. One im-
mediate idea is to supplement the static models studied in
this paper with additional run-time features. The values for
such features can be obtained during the early stages of query
execution, and used to create richer models that yield higher
predictive accuracy with modest delays in prediction.

As mentioned earlier, this paper does not address QPP in
the presence of concurrent query execution. There is already

some promising work addressing this problem [14], [15], [20],
and we believe the techniques proposed here can be extended
to provide an alternative perspective to this challenge. Asyet
another direction, our techniques can be adapted to work in
platforms such as MapReduce/Hadoop [18] and Dryad [19].

REFERENCES

[1] Ganapathi, A. et al. Predicting multiple performance metrics for queries:
Better decisions enabled by machine learning. ICDE 2009.

[2] Makridakis, S., Wheelwright S., and Hyndman, R. Forecasting Methods
and Applications. Third Edition. John Wiley & Sons, Inc. 1998.

[3] M. Hall and G. Holmes. Benchmarking attribute selection techniques
for discrete class data mining. IEEE Trans. on Knowledge and Data
Engineering, 15(3), Nov. 2003.

[4] I. H. Witten and E. Frank. Data Mining: Practical MachineLearning
Tools and Techniques. Morgan Kaufmann, second edition, June2005.

[5] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library forsupport
vector machines, 2001. http://www.csie.ntu.edu.tw/cjlin/libsvm.

[6] S. Akaho. A Kernel Method For Canonical Correlation Analysis.
IMPS2001.

[7] Francis R. Bach, Michael I. Jordan. Kernel Independent Component
Analysis. Journal of Machine Learning Research, 3, pp.1-48, 2002.

[8] TPC-H benchmark specification, http://www.tpc.org/tpch/
[9] Christian Igel, Verena Heidrich-Meisner, and Tobias Glasmachers.

Shark. Journal of Machine Learning Research 9, pp. 993-996,2008.
[10] Volker Markl, G. M. Lohman and V. Raman. LEO: An Autonomic Query

Optimizer for DB2. IBM Systems Journal Special Issue on Autonomic
Computing, January 2001.

[11] M. Stillger, G. M. Lohman, V. Markl and M. Kandil. LEO - DB2’s
LEarning Optimizer. VLDB 2001.

[12] Zhang, N., et al. Statistical learning techniques for costing XML queries.
VLDB 2005.

[13] Ganapathi, A., Yanpei Chen, Fox, A., Katz, R., Patterson, D. Statistics-
driven workload modeling for the Cloud. Data Engineering Workshops
(ICDEW), 2010 pp.87-92, 1-6 March 2010.

[14] Ahmad, M., Aboulnaga, A., Babu, S., and Munagala, K. Modeling and
exploiting query interactions in database systems. In Proceeding of the
17th ACM Conference on Information and Knowledge Management
(Napa Valley, California, USA, October 26 - 30, 2008). CIKM ’08.
ACM, New York, NY, 183-192.

[15] M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala. Qshuffler: Getting
the query mix right. In ICDE, 2008.

[16] Chen, Y., Ganapathi, A. S., Fox, A., Katz, R. H., Patterson, D. A. Statis-
tical workloads for energy efficient mapreduce. Tech. Rep. UCB/EECS-
2010-6, EECS Department, University of California, Berkeley, Jan 2010.

[17] R. Othayoth and M. Poess, The making of tpc-ds, in VLDB 06:
Proceedings of the 32nd international conference on Very large data
bases. VLDB Endowment, 2006, pp. 10491058.

[18] Hadoop MapReduce web site. http://hadoop.apache.org/mapreduce/
[19] Michael Isard et al. Dryad: Distributed Data-ParallelPrograms from

Sequential Building Blocks. EuroSys, Portugal, March 21-23, 2007.
[20] Modeling and Prediction of Concurrent Query Performance. J. Duggan,

U. Cetintemel, O. Papaemmanouil, E. Upfal. In SIGMOD’11.


