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Abstract The sets of hyperlinks in web pages, relationship ties in social net-
works, or sets of recommendations in recommender systems, have a major
impact on the diversity of content accessed by the user in a browsing session.
Bias induced by the graph structure may trap a reader in a polarized bub-
ble with no access to other opinions. It is widely accepted that exposure to
diverse opinions creates more informed citizens and consumers. We introduce
the concept of the polarized bubble radius of a node, as the expected length
of a random walk from it to a node of different opinion. Using the bubble
radius, we define the measures of structural bias and diverse navigability to
quantify the effect of links and recommendations on the diversity of content
visited in a browsing session. We then propose algorithmic techniques to re-
duce the structural bias of the graph or improve the diverse navigability of
the system through minimal modifications, such as edge insertions or flipping
the order of existing links or recommendations, corresponding to switching
the edge traversal probabilities. Under mild conditions, our techniques obtain
a constant factor-approximation of their respective tasks. In our extensive ex-
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perimental evaluation, we show that our algorithms reduce the structural bias
or improve the diverse navigability faster than appropriate baselines, including
some designed with the goal of reducing the polarization of a graph.

Keywords Bias · Fairness · Polarization · Random Walks

1 Introduction

The World Wide Web contains thousands or even millions of pages on every
topic, covering the whole spectrum of opinions. The fact that diverse informa-
tion is easily available does not imply that exploring such diverse information
is easy. Exposure to diverse content is necessary to obtain a complete picture
about a topic. Such exposure depends on the hyperlinks connecting the pages
to each other. It can be argued that enabling easier access to diverse con-
tent improves society as it creates a more informed and less polarized general
public (Benhabib 1996). Indeed politicians have strongly promoted and even
requested that audiences are exposed to varied content (LeFebvre 2017).

The progressive polarization of content presented to users of online plat-
forms (social networks, microblogging websites, discussion boards) is a worri-
some societal phenomenon with ample evidence (Ribeiro et al. 2019; O’Callaghan
et al. 2015). In addition to polarizing content that influences online and of-
fline discourse and “agitates the masses”, the sequence of browsing options
(e.g., recommendations) dictated by the structure of the graphs underlining
these platforms, i.e., the hyperlink graph, is in part responsible for trapping
the user in echo chambers and polarized bubbles (Pariser 2011; Adamic and
Glance 2005; Conover et al. 2011; Flaxman et al. 2016), exposing them only
to agreeable information (Bakshy et al. 2015) when not in a downward spiral
of more and more extreme opinions, or leading to conflicts between users in
different bubbles (Kumar et al. 2018; Cossard et al. 2020).. The gravity of this
phenomenon is exacerbated by the fact that the user may not even realize that
they entered such a bubble (Ribeiro et al. 2020; Menghini et al. 2020). There
is also evidence that recommender systems may worsen these tendencies be-
cause they act on these graphs, by suggesting new edges for the social graph,
or directly injecting into webpages hyperlinks to more and more extreme con-
tent (Baeza-Yates 2020; Ge et al. 2020; Aridor et al. 2020; Nguyen et al. 2014;
Castells et al. 2015). Recommender systems may also reduce serendipity (Ge
et al. 2010; Kotkov et al. 2016; Anagnostopoulos et al. 2020), i.e., the possi-
bility of “stomping” on content/users expressing different opinions.

A web user can freely click on any hyperlink on the page they are currently
visiting, but the choice of which hyperlinks to include in the page is with the
website owner or editor, who, if not careful, may stop the user from being
exposed to diverse opinions. Similar issues arise in the context of recommender
systems: the user can only choose among the recommended items. In other
words, the hyperlink topology of a website may suffer from structural bias that
traps the user in a bubble of one-sided content without them knowing (Ribeiro
et al. 2020; Menghini et al. 2020). For example, structural bias on topic-induced
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networks, such as Wikipedia topic-induced subgraphs, prevents users from
building a well-rounded knowledge about the topic. On query-/user-induced
recommendation networks such as those on Amazon and YouTube, structural
bias hinders the discovery of diversified content, reducing serendipity (Ge et al.
2010; Kotkov et al. 2016; Anagnostopoulos et al. 2020). Structural bias thus
limits the user’s freedom while navigating the Web.

We model the network as a directed weighted graph, where each node rep-
resent a content item (webpage, news feed, blog entry, etc.), an edge represents
a hyperlink or a recommendation for the next item to browse. The nodes of
the graph are colored. Two nodes have the same color if they present the same
opinion on a polarizing topic, the same product category, etc. The behavior
of a web surfer is modeled as a random walk on the graph, with the weights
on the directed edges representing their transition probabilities. We measure
the bubble radius of a node in terms of the expected number of steps till a
random walk reaches a node of a different color.

It has been suggested that, in order to increase the exposure of users to
diverse content, every vertex (i.e., webpage, item) should link to a vertex of
different color. For example, some methods for recommender systems add a
constraint to ensure that a diverse set of recommendations is presented to the
user, or at least that the probability of this event is maximized (Kunaver and
Porl 2017). We argue that it is not sufficient to consider only the possibility
that the user accesses diverse content “at the next step” of their surfing, and
such “positive bias” may not even be sufficient (Blex and Yasseri 2022). Rather,
we suggest that it is important to evaluate the content accessed during the
entire browsing session, i.e., measure the expected number of steps needed for
a user navigating this graph starting from a vertex of one class to visit a vertex
of a different class.

We introduce novel measures of the polarization in a graph, namely the
structural bias and the diverse navigability, that capture the above “long-
horizon” point of view. The former is more tailored to the Web graphs, while
the latter is designed for graphs arising from content recommendation systems.
We then propose algorithmic techniques to improve these measures. Our tech-
niques are based on either inserting new edges in the graph, which is relatively
easy to do in web pages for the owner/administrator of the network (e.g., for
Wikipedia editors, or for the company owning the content website and con-
trolling the recommendation system), or swapping the transition probabilities
of edges with the same source. The assignment of a weight to an edge depends
on presentation and appearance factors (e.g., location, font size, order in a
list) of the hyperlink corresponding to the edge in the page related to the item
v, w.r.t. the other hyperlinks. For example, observational studies on hyperlink
graphs (Lerman and Hogg 2014; Craswell et al. 2008; Lamprecht et al. 2016;
Dimitrov et al. 2017; Richardson et al. 2007) have shown that a link closer to
the top of the page has higher probability (i.e., weight) of being clicked than
a link lower in the page, but the set of probabilities depends only on the set
of hyperlinks (i.e., on the set of targets) and on the page itself (i.e., on v).
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Contributions

– We consider directed graphs with vertices of two colors, representing a
network of webpages on the same topic, with the two colors identifying the
two opposite opinions on the topic, and edges representing links between
pages (we also show how to generalize our approaches to more than two
colors). We define the (Polarized) Bubble Radius (BR) of a vertex p as a
novel measure to quantify the structural bias of p (see Def. 1), based on a
task-specific variant of the hitting time for random walks, which models the
navigation of a user on the web (Fagin et al. 2001; Dumitriu et al. 2003).
The BR is the expected number of steps to go from p to a page of different
opinion, and can be easily estimated with a sampling-based approach with
probabilistic guarantees (Lemma 4).

– We define the structural bias of a graph G as the sum of the BRs of ver-
tices with high BR (Eq. 1). Completely removing the bias is APX-hard
by reduction from set cover (see Lemma 5). We therefore state the k-edge
structural bias decrease problem as the task of finding the set of k pairs of
vertices of different color such that adding the edge between the vertices in
each pair would maximally decrease the structural bias, over all possible
sets of k pairs (see Prob. 2 and Thm. 1). This problem connects two areas:
link recommendation and polarization reduction.

– We also define the measure of diverse navigability (Def. 3), to quantify the
diversity of bounded navigation sessions. Our measures capture the im-
portance of evaluating diversity in an entire navigation session, in contrast
with almost all prior work, which focused on diversity within one click.
We formulate the problem of improving the diverse navigability of a graph
by swapping the transition probabilities of some edges outgoing from the
same source, which is a realistic inexpensive operation corresponding to,
e.g., swapping the corresponding hyperlinks on a webpage or changing the
ordering of a list of recommendations.

– We present RePBubLik, an efficient approximation algorithm for the k-
edge structural bias decrease problem, that recommends the addition of
k edges between vertices of different color. Under mild conditions, the re-
sulting decrease of the structural bias is within a constant factor of the
optimal (Thm. 2. Website editors have limited control on the probability
that a newly added edge will be traversed by the users, so our algorithm
makes no assumption or impose any restriction on it, as this probability is
essentially external. At the core of RePBubLik is an analysis of the sub-
modularity of the objective function (see Lemma 11), combined with the
use of a task-specific variant of random-walk closeness (White and Smyth
2003), a well-established centrality measure. RePBubLik requires good es-
timations of the random walk closeness, so we also give an approximation
algorithm for this quantity (see Lemma 1).

– We present ShuffLik, an approximation algorithm which aims at max-
imizing the diverse navigability using only k link swaps. We present a
rigorous theoretical analysis of the performance of ShuffLik and show it
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obtains a constant approximation under mild conditions (see Thm. 2). We
then study the more general settings in which the cost of swapping two
edge probabilities is not the same for all edge pairs, and there is a limit
(budget) to the total costs of the swaps. We show a variant ShuffLik+
that works in this setting.

– We evaluate RePBubLik on eight real datasets. We compare it to base-
lines and existing methods for edge recommendation either designed with
the goal of reducing the controversy of a graphs (Garimella et al. 2017a)
or with the more general purpose of completing the network’s link struc-
ture (Grover and Leskovec 2016). Our algorithm leads to a faster reduction
of the average BR (i.e., requiring fewer edge insertions) than existing con-
tributions.

– We evaluate ShuffLik on recommendation networks built using the 25M
MovieLens dataset (Harper and Konstan 2015). Results show that Shuf-
fLik produces a faster increase of diverse navigability compared to a rea-
sonable baseline. ShuffLik is particularly effective when combined with
diversity constraints on standard recommendation systems.

2 Related work

Polarization in social networks and the Web Polarization has long been stud-
ied in political science (Sunstein 2002; Isenberg 1986), and the diffusion of
(micro-) blogs and social media platforms brought the issue to the attention
of the broad computer science community. Many works focused on showing
the existence of polarization on these platforms (Morales et al. 2015; Adamic
and Glance 2005; Cossard et al. 2020; Conover et al. 2011; Flaxman et al.
2016), and on modeling, quantifying, and reducing polarization (Garimella
et al. 2018b, 2017a; Musco et al. 2018; Chitra and Musco 2020; Matakos et al.
2017; Becker et al. 2020; Garimella et al. 2017b; Matakos et al. 2020; Aslay
et al. 2018; Akoglu 2014; Garimella et al. 2018a; Matakos et al. 2017; Neli-
markka et al. 2018; Liao and Fu 2014a,b; Munson et al. 2013), or the glass
ceiling effect (Stoica and Chaintreau 2019; Stoica et al. 2018, 2020). The lit-
erature is rich, to the point that the times seem ripe for an in-depth survey
on the topic. We discuss here the relationship between our work and the most
relevant algorithmic contributions to polarization reduction (Garimella et al.
2017a; Chitra and Musco 2020; Musco et al. 2018; Aslay et al. 2018; Becker
et al. 2020; Garimella et al. 2017b; Matakos et al. 2020; Menghini et al. 2019;
Menghini et al. 2020; Stoica et al. 2018).

A first important difference of our work with respect to most previous con-
tributions is that they consider a network of users, with edges representing
notions such as friendship or endorsement (e.g., retweets) (Garimella et al.
2017a; Chitra and Musco 2020; Musco et al. 2018; Aslay et al. 2018; Becker
et al. 2020; Garimella et al. 2017b; Matakos et al. 2020; Stoica et al. 2018). We
focus instead on networks of content, such as web pages linked to each other,
or products that are connected when similar. This deep difference makes our
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contribution quite orthogonal to previous ones: we focus on the polarization
that is introduced by the topology of the network, rather than on the polar-
izing effect of content on users or on the effect of users on each other. Both
aspects are important and they lead to different kinds of bubbles: the filter
bubble, due to the network structure, and the epistemic bubble, due to the
user behavior. The structural bias we focus on has only been the subject of
only few studies (Menghini et al. 2019; Menghini et al. 2020). These works,
relying on the notion of weighted reciprocity, propose a static and dynamic
analysis of structural bias on Wikipedia. The measures of structural bias and
diverse navigability that we introduce are not tailored to a specific website.

A second relevant difference from many previous works is that we con-
sider the “opinion” of a page (i.e., a vertex) to be fixed, as it depends on its
content, while past contributions consider different models of user opinion dy-
namics (Mossel and Tamuz 2017; Das et al. 2014) to study the evolution of
such opinions as the users are exposed to different content or recommended
different friendships. The problem of recommending changes to the content of
a page to modify the opinion expressed in it is interesting but outside the scope
of our work. Instead, we focus on recommending the addition of links between
pages, to reduce the structural bias, or to swapping transition probabilities
between edges with the same source, to increases the diverse navigability.

An interesting line of work studies how to reduce polarization in the con-
tent seen by the users, by adapting information diffusion approaches through
better selection of the seed set for cascades (Aslay et al. 2018; Becker et al.
2020; Garimella et al. 2017b; Matakos et al. 2020; Stoica et al. 2020), or by di-
rectly acting on recommendation systems (Rastegarpanah et al. 2019). These
methods can not be adapted to the problem we study, as they do not act on
the graph of content, but on that of users.

The most similar methods to ours are those that act on the structure of
the graph (Chitra and Musco 2020; Musco et al. 2018; Garimella et al. 2017a;
Stoica et al. 2018), although as we mentioned, they consider a network of
users, not of content. Musco et al. (2018) propose a network-design approach:
they aim to find the best set of edges between vertices such that the result-
ing graph would minimize both disagreement and polarization. Rather than a
“design-from-scratch” approach, which seems mostly of theoretical relevance,
we consider instead a practical incremental approach that suggests modifi-
cations to an existing network. Like us, Garimella et al. (2017a) consider a
graph polarization measure based on random walks (Garimella et al. 2018b).
Their measure essentially quantifies the probability that a user of one opinion
is exposed to content from a user of a different opinion, thanks to a chain of
retweets (represented by the random walks). The measure is based on a variant
of personalized PageRank for sets of users with different opinions. The task
requires to recommend new edges, i.e., retweets, to increase this probability.
Our measures are instead defined on the basis of the (Polarized) Bubble Ra-
dius (BR) (Def. 1), which is a vertex-dependent measure that represents the
expected number of steps, for a user starting at the page represented by vertex
v, to reach, with a random walk, a vertex with color different from v, repre-
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senting a page expressing a different opinion. Our measures are appropriate
for making it easier for users to reach pages of different opinions. In Sect. 6
we compare our approach to that of Garimella et al. (2017a).

An important line of work in graph analysis and mining looked at manip-
ulating the topology to modify different interesting characteristic quantities
of the graph, such as shortest paths and related measures (Parotsidis et al.
2015; Papagelis et al. 2011; Demaine and Zadimoghaddam 2010; Perumal et al.
2013), various forms of centrality (Parotsidis et al. 2016; Bergamini et al. 2018;
D’Angelo et al. 2019; Wąs et al. 2020; Medya et al. 2018; Mahmoody et al.
2016; Angriman et al. 2020), and more (Arrigo and Benzi 2016a,b; Chan et al.
2014; Tong et al. 2012; Zeng et al. 2012). Despite the fact that we consider
a specific centrality to choose the source of the added edges, these methods
cannot be used to solve our task of interest.

Another body of work related to ours are those which estimate graph
properties using random walks (Bera and Seshadhri 2020; Chierichetti and
Haddadan 2018; Ben-Hamou et al. 2018; Dasgupta et al. 2014). The studied
properties are not defined based on random walks, rather random walks are
used as a tool to estimate them. Here based on random walks, we define a
new property for networks: the structural bias, and we use random walks to
estimate it.

Polarization and bias in recommender systems Many works have identified
different types of algorithmic bias, lack of diversity, and lack of fairness in
recommender systems (Baeza-Yates 2020; Fu et al. 2020; Resnick et al. 2013;
Aridor et al. 2020; Ge et al. 2020; Geyik et al. 2019; Singh and Joachims 2018;
Zhu et al. 2018; Yao and Huang 2017; Jiang et al. 2019; Sîrbu et al. 2019;
Blex and Yasseri 2022). Their effects are usually framed in terms of having
a negative impact on underrepresented/underserved groups, whose members
progressively get less recommended over time, while “the popular ones get
more popular”. But these same effects can also be seen as preventing a web
surfer, who is genuinely interested in learning in depth or widely exploring
a topic (broadly defined to include both knowledge topics and music/movie
genre), from ever reaching less popular points of view, or from being exposed
to more niche details of the topic. Essentially, they can be seen as trapping the
user in a “filter bubble” (Pariser 2011; Nguyen et al. 2014), i.e., in a limited
set of items (pages/products/songs/movies/. . . ) with little or no possibility to
reach even slightly different items. It is necessary to enable the user to escape
such a bubble, as the desire of the user to explore widely and serendipitously
can be seen as empathy, as a desire to learn and experience content from the
point of view of another individual (Taramigkou et al. 2013).

The existence of these issues suggested that exposing users to diverse con-
tent should be made “a design principle for recommender systems” (Helberger
et al. 2018), possibly even a legally-required property. Many algorithmic so-
lutions have been proposed to address these issues (Kunaver and Porl 2017).
These solutions usually involve changing the optimization problem solved by
the recommender systems, with the goal of taking into consideration fairness
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and diversity (both defined in a variety of ways) when producing the recom-
mendations and their ranking. Among such changes, there is the possibility
of introducing diversity/fairness constraints (Celis et al. 2017; Geyik et al.
2019; Singh and Joachims 2018; Zehlike et al. 2017; Tabibian et al. 2020;
Biega et al. 2018; Singh and Joachims 2019; Celis et al. 2017), optimizing di-
versity/fairness with a lower bound on the relevance or other utility of the
recommended items (Zhu et al. 2018), or jointly optimizing utility and diver-
sity/fairness (Celis et al. 2019).

All these works only consider a “single step” in the web surfer exploration
of the graph of content/recommendations: their aim is to ensure that, for ev-
ery item, the items that can be reached from it, i.e., the items that would be
recommended, have sufficient utility and are sufficiently diverse. But explo-
ration is rarely, if ever, limited to a single step. Rather, users follow sequences
of recommendations and/or web links, taking multiple “hops” on the graph.

Our measures take this aspect into account and are defined on the basis
of how many steps a user walking on the graph following the recommenda-
tions would need, in expectation, to eventually reach an item that is different
(i.e., has different color) than all the ones they visited so far. Our algorithm
ShuffLik (see Sect. 5) is designed to optimize this measure by swapping the
weights, i.e., the traverse probabilities, of edges outgoing from the same node.
As discussed in Sect. 1 this action can be seen as a re-ranking of the items
recommended from the visited one, without affecting the set of recommended
items. Thus, we take a more “far-sighted” and “inclusive” approach that takes
multiple steps into consideration. Additionally, our method does not change
the topology of the graph, so it can also be applied as a post-processing steps
after the above methods have been used to generate the graph itself.

This version of the work differs from the conference version (Haddadan
et al. 2021) in multiple ways:

– We introduce a new approach that, instead of adding new edges to the
graph, reduces the bias in the network by swapping the edge weights, cor-
responding to the transition probabilities of the random walk (see Sect. 5).
This approach is less invasive and can be applied in different situation than
the previous approach.

– We evaluated the above approach, showing how it performs much better
than existing baselines.

– We strengthen and streamline our theoretical results, present all their
proofs, and add examples and intuitions that allow the reader to better
understand our approach.

– We present new experimental results on additional datasets.

3 Preliminaries

Let G = (V,E) be a directed weighted graph with |V | = n vertices, such
that no vertex v ∈ V has only incoming edges and no outgoing edges. V is
partitioned in two disjoint sets R and B (i.e., R∩B = ∅ and R∪B = V ), called
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“red” or “blue” vertices, respectively. These colors either correspond to opposing
viewpoints of a polarizing topic (e.g., on YouTube) or, when considering several
categories of items (e.g., movie genres), red corresponds to one category and
blue to all other categories. At the end of Sect. 3.2 we discuss how to extend
our definitions and approaches to more than two colors. For any v ∈ V , the
set of all other vertices of the same color as v is denoted as Cv and the sets of
all vertices of colors different than v is denoted as C̄v.

The edge weights M are transition probabilities: M is a n × n right-
stochastic transition matrix such that each entry M(i, j) is a probability, with
M(i, j) = 0 if (i, j) /∈ E, and such that

∑n
j=1 M(i, j) = 1. We sometimes abuse

notation and use M(e) to denote the transition probability of the edge e.

We are interested in random walks (r.w.’s) on the graph G using the tran-
sition matrix M . Intuitively, a random walk starting at a vertex v explores
the graph by choosing at each step an outgoing edge from the current vertex,
with probability equal to the weight of such edge, independently from previous
choices. Let S ⊆ V and v ∈ V . Let Tv(S) be the random variable indicating
the first instant when a random walk from v hits (i.e., reaches) any vertex in
S. The quantity EG [Tv(S)] is known as the hitting time of S from v, where
the expectation is over the space of all random walks on G starting from v,
with transition probabilities given by M .

Random walks and their variants have been used widely for network anal-
ysis (Fouss et al. 2007; Hua et al. 2020; Jung et al. 2019), and in particular to
model network exploration behavior (Fagin et al. 2001; Dumitriu et al. 2003).
It is realistic to assume that there is an upper bound t, which we call the ex-
ploration factor, on the length of a walk performed by the users. For example,
we can assume that there is an upper limit on the number of pages that a
user will visit one after the other in a browsing session. The value of the pa-
rameter t can be derived, for example, from traces of visits. In most practical
cases, t is likely to be bounded by a polylogarithmic quantity in the number of
nodes, if not a constant. For a random walk starting from v ∈ V , given a set
S ⊆ V , we define the random variable T t

v (S) as min{t, Tv(S)}. This variable
is more appropriate for measuring the length of browsing sessions, which have
bounded length, than the unbounded length classically used when discussing
random walks.

For a graph Z, any vertex u, and any set S of vertices of Z, let u
cond
⇝
Z

S,
denote the event that a random walk in Z from u hits a vertex in S without
first visiting any vertex in C̄u and while satisfying the condition cond on the
number of steps needed to hit S. For example, u

<t
⇝
Z

S is the event that a
random walk in Z from u hits a vertex in S in less than t steps, without first

visiting any vertex in C̄u. We denote the complementary event as u
cond

̸⇝
Z

S.
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3.1 Random-Walk Closeness Centrality

Our algorithms choose the sources of newly added edges and the sources of the
edges whose weights to swap on the basis of a task-tailored measure of central-
ity based on random walks. Specifically, we adapt the definition of random-walk
closeness centrality (White and Smyth 2003) to bounded random walks so that
the contribution to the centrality of v by vertices that do not reach v in less
than t′ steps (in expectation) is zero, for any t′.

Random-walk closeness centrality (bounded form). For a vertex
v ∈ V , a subset S ⊆ V , and any t′, the t′-bounded Random Walk Closeness
Centrality (RWCC) of v with respect to S is

rt
′
(v;S)

.
=

1

|S|
∑
w∈S

(
t′ − EG

[
T t′

w (v)
])

=
1

|S|
∑
w∈S

t′−1∑
i=1

(t′ − i)P
(
w

=i
⇝
G

v
)

.

Computing the exact RWCC is expensive. To estimate rt
′
(v;S), we pick z

vertices {wi}zi=1 u.a.r. from S, and run some κ random walks to obtain an
estimate h̄wi of EG

[
T t′

wi
(v)
]

for each wi. The quantity

r̄(v)
.
= t′ − 1

z

z∑
i=1

h̄wi

is a good approximation of rt
′
(v;S).

Lemma 1 Let z ≥ (t
′
/2ε)

2
δ−1. Then

P
(
|r̄(v)− rt

′
(v;S)| ≥ ε

)
≤ δ .

Proof We can write

rt
′
(v;S) = t′ − 1

|S|
∑
w∈S

EG

[
T t′

w (v)
]

.

We apply Chebyshev’s inequality to the r.v. 1/z
∑z

i=1 h̄wi , to bound the devi-
ation from its expectation

1

|S|
∑
w∈S

EG

[
T t′

w (v)
]

.

To get an upper bound to the variance of this r.v., we use the fact that the
r.v.’s h̄wi

, i = 1, . . . , z, are independent, and, from Popoviciu’s inequality, the
fact that each has a variance at most t′2/4, as h̄wi

∈ [0, t′].
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3.2 The Bubble Radius

We introduce the (Polarized) Bubble Radius to quantify how many steps it
would take, in expectation, for users starting their random walk on a vertex
v ∈ V of one color, to hit a vertex of the other color.

Definition 1 The (Polarized) Bubble Radius (BR) Bt
G (v) of v with explo-

ration parameter t is
Bt
G (v)

.
= EG

[
T t
v

(
C̄v

)]
.

A random walk starting at a vertex v with high BR is unlikely to hit a
vertex in C̄v in fewer-than-or-exactly t steps. The following lemma formalizes
this idea on common models for web browsing (random walks with restarts or
with back button (Fagin et al. 2001; Dumitriu et al. 2003)).

Lemma 2 Let r ∈ N, and consider a user who starts their random walk at
v ∈ V and may either restart their walk from v or hit the back button up to z
times. Let Tv be the random variable denoting the number of steps such user
takes to hit a vertex in C̄v. If Bt

G (v) ≥ t(1− 1/8z), then P (Tv ≤ t/2) ≤ 1/4. If
instead Bt

G (v) ≤ b for some b > 0, then P (Tv > 4bz) ≤ 1/4.

In the proof, we use the following technical result (proof in App. A).

Lemma 3 Let X be a random variable satisfying 0 ≤ X ≤ t. We have:

P(X ≤ k) ≤ t− E [X]

t− k
.

Proof (Lemma 2) Assume first that Bt
G (v) ≥ t(1 − 1/(8z)). Consider a set

of z independent random walkers, w1, . . . , wr, each starting from v. We can
see the trace of the partial walks taken by our random walker with restarts as
the union of the traces of these walkers. The event E ′ .

= “Tv ≤ t/2” is a strict
subset of the event E ′′ .

= “there is (at least) a walker wi for which T t
v ≤ t/2”,

as the condition in E ′ implies the condition in E ′′, but not vice versa. Thus,
P(E ′) < P(E ′′). By Lemma 3 we have, for each walker, that

P
(
T t
v ≤ t

2

)
≤ t− E [T t

v (S)]

t− t
2

≤
t
8z
t
2

≤ 1

4z
.

Thus, using the union bound over the z walkers, we get P(E ′′) ≤ 1/4. Equiva-
lently P (Tv ≤ t/2) ≤ 1/4.

When Bt
G (v) ≤ b, it holds, from Markov’s inequality, that P (Tv > 4bz) ≤

1/4. ⊓⊔

Given t, it is easy to estimate Bt
G (v) for each vertex v ∈ V by sampling

random walks from v. The following result, whose proof uses the Hoeffding’s
bound and the union bound, shows the trade-off between the number of sam-
pled random walks and the accuracy in estimating the BR of v.
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Lemma 4 For each v ∈ V , let w(v)
1 , w

(v)
2 , . . . , w

(v)
r be r random walks from v

and stopped either when they hit a vertex of color C̄v or when they run for t

steps, whichever happens first. For i = 1, . . . , r, let b(v)i be the length of random
walk w

(v)
i . Let

B̄(v)
.
=

1

r

r∑
i=1

b
(v)
i .

Let ε, δ ∈ (0, 1). If r ≥ t2

ε2 ln
2n
δ , then

P
(
∃v ∈ V s.t. |Bt

G (v)− B̄(v)| > ε
)
< δ,

where the probability is over the choice of the random walks.

In the rest of the work, we assume for simplicity to have access to the
exact BR of every vertex. Lemma 4 makes this assumption reasonable because
computing approximations of extremely high quality is relatively inexpensive.

Extension to more than two colors We assume that there are only two colors, R
and B. Our approach can be extended to the case of k > 2 groups representing
different opinions. One possible extension involves considering, in turn, the
vertices in one group to have color R and all other vertices to have color B,
independently from their group. Another possibility is to assign a different
color Ci, 1 ≤ i ≤ k, to each group, and then, for each 1 ≤ i ≤ k, define, for
each v ∈ Ci, the BR of v w.r.t. color Cj , j ̸= i, using the hitting time from
v to vertices of color Cj . We can then redefine the BR of v as the minimum,
over all Cj , j ̸= i, of the BR of v w.r.t. color j.

When one of the groups is supposed to represent a neutral opinion, one
approach could be to assign weights to the vertices, representing the extreme-
ness of their position, and then define a weighted version of the bubble radius.
Such an extension goes beyond the scope of our work, but it is an interesting
direction for future work.

Another interesting direction, in the presence of multiple groups, would be
to study “multi-chromatic exploration”, by considering hitting times defined
as the number of steps needed for a r.w. to traverse vertices of h > 2 colors.

4 Reducing the structural bias with edge insertions

On the basis of the BR, we define two sets of vertices: cosmopolitan and
parochial. Given two reals b and r with 1 ≤ b < r ≤ t, the set Z(G) of
cosmopolitan vertices contains all and only the vertices in G with BR at most
b, and the set P(G) of parochial vertices contains all and only the vertices in
G with BR at least r. The intuition is that it is easy to reach the other color
from cosmopolitan nodes, while it is hard from parochial nodes. For ease of
notation, we do not include b and r in the notation for Z(G) and P(G). For
technical reasons (see the proof of Lemma 8), we require r ≥ t/2. Z(G) and
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P(G) are disjoint, but they do not necessarily form a partitioning of V . We
will often consider the partitioning of P(G) by color, i.e., the two sets PR(G)
and PB(G), containing the parochial vertices of color R or B respectively.

Definition 2 The structural bias ϱ(G) of G is the sum of the BRs of the
parochial nodes of G, i.e.,

ϱ(G)
.
=

∑
v∈P(G)

Bt
G (v) . (1)

It is reasonable to consider only the parochial nodes in the definition of
structural bias because they are the ones such that a random walk from them
is very unlikely to hit any vertex of color different than the starting vertex
(see also Lemma 2). Additionally, the choice of considering the sum, and not,
for example, the average of the BRs is due to the fact that it makes it easy to
compare the structural bias of a graph vs. that of the same network with some
added edges: such a network may have higher average BR of the parochial
nodes (because, e.g., there are fewer parochial nodes with higher BR), but the
“total” bias is lower (because there are fewer parochial nodes and/or the BR of
some parochial node decreased as a consequence of the edge insertions), and
that is the quantity we want to measure.

Our goal in this section is to find a set of edges with extrema of different
color whose addition to G would decrease the structural bias of the network.
It is reasonable to only consider edge with end points of different color, as they
are always preferable (i.e., their insertion will result in a larger decrease of the
structural bias) than edges with monochromatic extrema: the addition of the
new edge can only have positive impact on the parochial vertices of the same
color as the edge source, and has no impact on the parochial vertices of the
other color. If we could add any number of such edges to G, it would be easy to
bring the structural bias of G to zero, as there would be no parochial nodes left.
This assumption is not realistic: the number of links that a website editor can
add to a single page and to the whole graph is limited by many factors, such as
the fact that a human-readable page cannot have too many links, and the fact
that the editor can only spend a limited time on this activity. Nevertheless,
ideally one would want to solve Prob. 1, defined as follows. Given a set Σ of
edges not currently in G, we denote with GΣ the graph GΣ

.
= (V,E ∪Σ).

Problem 1 Given C ∈ {R,B}, find the smallest set Σ of pairs of distinct
vertices (v, w) /∈ E with Cv = C and Cw ̸= C such that PC(GΣ) = ∅.

Lemma 5 Problem 1 is NP-hard and APX-hard.

Proof We show an approximation-preserving polynomial time reduction from
the minimum set cover problem to Prob. 1.

Let U = {u1, u2, . . . , un} be a domain and let S1, S2, . . . , Sm ⊆ U be an
instance of the set cover problem. We construct an instance of Prob. 1 as
follows. Fix t ≥ 3. Let V be union of the following sets: U , S = {si}mi=1
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representing the sets, T =
⋃m

j=1 Tj where each Tj is a set of r − 1 distinct
vertices, and {g}. Assume all vertices except g have color red and g is blue,
i.e., R = V \ {g} and B = {g}. For each i ∈ [n] and j ∈ [m], place an edge
from ui to sj if and only if ui ∈ Sj . For each j ∈ [m], using the vertices in Tj ,
place a path of length r − 1 going from sj to g. For each 1 ≤ j ≤ m, it holds
Bt
G (sj) = r − 1, and for each 1 ≤ i ≤ n,

Bt
G (ui) =

1

|{j : ui ∈ Sj}|
∑

j s.t. ui∈Sj

Bt
G (sj) + 1 = r .

Clearly the bubble radius of vertices in T is strictly less than r. Thus the
parochial vertices are all and only those in U . Assume there is a polynomial-
time algorithm for Prob. 1. For any (optimal) solution Σ ⊆ V × V , it holds
Bt
Gnew

(ui) < r if and only if Σ contains an edge whose source is in {ui} ∪⋃
j s.t. ui∈Sj

({sj} ∪ Tj), for each i ∈ [n]. The source vertices of the edges in
Σ must be distinct, as any solution containing two edges originating from the
same vertex cannot be optimal. Denote with Z the set of the source vertices
of the edges in Σ. Consider now the solution Σ′ obtained by changing (in
polynomial time) Σ as follows: 1. each edge in Σ whose source is in Ti is
modified to have source si, for each i ∈ [n]; and 2. each edge in Σ whose
source is u ∈ U is changed to have source sj where j is such that u ∈ Sj .
Clearly Σ′ is still an (optimal) solution to Prob. 1. Let OPT be the set of
source vertices of the edges in Σ′. Clearly it must be OPT ⊆ S. We now
show that Σ′ is an (optimal) solution to Prob. 1 if and only if OPT is such
that {Sj : sj ∈ OPT} is a minimum set cover for the considered instance.
It is evident that {Sj : sj ∈ OPT} is a set cover, which can be obtained
in polynomial time from Σ′. We now show that this set cover is minimal.
Consider now any set cover Y ⊆ {S1, . . . , Sm}, and consider the set of edges
{(si, g) : Si ∈ Y }. Adding these edges to G would result in all the vertices
in U to no longer be parochial. This holds in particular for any minimal set
cover Y , from which we can create an (optimal) solution ΣY to Prob. 1. Thus
we found a bijection between (optimal) solutions to Prob. 1 and minimal set
covers for the considered instance, and computing one from the other can be
done in polynomial time, showing the NP-hardness of Prob. 1. The APX-
hardness follows because, for any minimum set cover Y , the corresponding
optimal solution ΣY to Prob. 1, built as above, is such that |ΣY | = |Y |,
thus if we had a constant-factor polynomial-time approximation algorithm for
Prob. 1 we would have an algorithm with the same properties for the minimum
set cover problem. ⊓⊔

Since Prob. 1 is hard to even approximate, we seek to answer a close relative
(see Prob. 2 below). We first introduce a set of measures to capture the change
in the BRs of the (original) parochial nodes of G after edge insertions. Assume
to add to G all edges in a set Σ of non-existing directed edges between nodes
of different colors, with each inserted edge e = (v, w) having weight M(e). For
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a set U of vertices, we define the gain of U due to Σ as

∆(G,U,Σ, {M(e)}e∈Σ , t
′)

.
=

1

|U |
∑
u∈U

(
Bt′

G (u)− Bt′

GΣ
(u)
)
, (2)

i.e., as the average change of the BR of vertices in U . When U = {v}, clearly
that is just the change in the BR of v.

When adding an edge to the graph, we also have to decide its weight. It
seems excessive to assume complete freedom in choosing the weight. We make
the assumption that the weight M(v, w) of an edge (v, w) that we would like
to add is given to us by an oracle which computes M(v, w) only as a function
of v and of information local to v (e.g., its out-degree) obtained from G and
potentially a set of other edges (and their weights) that we want to add from v.
In other words, the oracle returns the same quantity qv = M(v, w) no matter
what w is. When adding (v, w) with weight M(v, w), the other edges outgoing
from v have their weights multiplied by 1 − M(v, w) to ensure that the sum
of the weights of the edges leaving v is 1.

The problem we want to solve then is the following.

Problem 2 Let C ∈ {R,B}. Find a set Σ = {(vi, wi)}ki=1 of k edges with vi ∈
C and wi /∈ C, for 1 ≤ i ≤ k, that maximizes ∆(G,PC(G), Σ, {M(e)}e∈Σ , t).

RePBubLik (Alg. 1) is our algorithm to approximate Prob. 2. Before
describing it in detail, we give an intuition of its workings, and present the
theoretical results that guides its design. Specifically, since the objective func-
tion from Prob. 2, i.e., the gain, is monotonic and submodular (Lemma 11),
we can greedily choose, one by one, the edges to be added. Our oracle as-
sumption on the weights ensures that any vertex of color different than the
source can be picked as the target of the added edge, so the task essentially
reduces to finding the sources for the edges to be added. Lemma 8 quantifies
the gain when picking each source according to a specific measure depending
on the bounded RWC and on the oracle-given weight that only depends on
the source. In Lemma 10 we show that under mild conditions this choice is
constantly close to an optimal choice. Theorem 1 states the approximation
qualities of RePBubLik. Let us first introduce some needed quantities.

For any vertex v, and 0 ≤ t′ ≤ t, let

Ft′ (v)
.
=

t′−1∑
i=0

P
(
v

=i
⇝
G

v
)
= 1 + P

(
v

<t′

⇝
G

v

)
, (3)

where we assumed P
(
v

=0
⇝
G

v
)
= 1, and define γt

.
= maxv∈V Ft′ (v). This quan-

tity is one plus the maximum probability that a random walk from a vertex
return to that vertex in at most t′ steps, which is a constant for many graphs

Theorem 1 Let Σ be the output of RePBubLik and OPT be the optimal
solution to Prob. 2. Let ∆Σ = ∆(G,PC(G), Σ, {M(e)}e∈Σ , t). Then

∆(G,PC(G),OPT, {M(e)}e∈OPT, t) ≤
(
2
t

r
γt−2 + 1

)(
1 +

1

e

)
∆Σ .
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When γt is bounded by a constant, so is γt−2, and since we assumed r ≥ t/2,
we get that RePBubLik gives a constant factor approximation, under this
mild condition.

We now proceed towards presenting lemmas which together provide a proof
for Thm. 1. The following lemma shows upper and lower bounds to the change
in the BR of a vertex v (i.e., to the gain for v) when a new edge from v is
added to the graph.

Lemma 6 Let v ∈ P(G), w ∈ C̄v and t′ ≤ t. Assume to add e = (v, w) to G
with weight M(e). Then,(

Bt′

G (v)− 1
)
M(e) ≤ ∆(G, v, e,M(e), t′) ≤ Ft′−1 (v)

(
Bt′

G (v)− 1
)
M(e) .

Proof Let Ge be the graph obtained after adding e to G with weight M(e).
Consider the probability space of all random walks starting from v in Ge and
G. We introduce a coupling between these two probability spaces as follows:
consider a walk in Ge and couple every step of it to an identical step in G.
If a walk in Ge never traverses (v, w) then the gain function is zero as it gets
coupled to the identical walk in G. Assume that the walk in Ge traverses (v, w)
at the ith step without first visiting a vertex in C̄v. Before traversing (v, w), the
two identical walks in Ge and G have the same probability, and the coupling
works. We partition the state space by conditioning on the step i as follows.

Let Ei, 1 ≤ i ≤ t′, be the event that the walk in Ge traverses (v, w) at step
i. Consider all such walks. These walks need, at step i − 1, one more step to
reach the other color, and they are coupled to walks in G which in expectation
need Bt′−i+1

G (v) steps to reach C̄v (or terminate). Thus, assuming Ei, the gain
in bubble radius is equal to Bt′−i+1

G (v)− 1. Using the law of total expectation
and summing over all 1 ≤ i ≤ t′, we can write

∆(G, v, (v, w),M(v, w), t′) =

t′∑
i=1

(
Bt′−i+1
G (v)− 1

)
P(Ei)

=

t′−1∑
i=1

(
Bt′−i+1
G (v)− 1

)
P(Ei),

where the second equality comes from the fact that B1
G (v) = 1 always. The

left hand side of the thesis then follows from the fact that P(E1) = M(v, w)
and that Bj

G (v) ≥ 1 for any 1 ≤ j ≤ t′. The right-hand side is concluded from
the fact that Bt′−i+1

G (v) ≤ Bt′−1
G (v) and that

t′−1∑
i=1

P(Ei) =
t′−2∑
i=0

P
(
v

=i
⇝
G

v
)
M(v, w) = Ft′−1 (v)M(v, w) .

⊓⊔
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Adding an edge from v does not just decreases the BR of v, but it also
decreases the BRs of vertices in Cv, and thus the structural bias of the whole
network. Lemma 7 quantifies this change.

Lemma 7 Let e = (v, w) be an edge with weight M(e) added to G. It holds

∆(G,PCv
(G), e,M(e), t) =

1

|PCv (G)|
∑

u∈PCv (G)

t−2∑
i=1

∆(G, v, e,M(e), t− i)P
(
u

=i
⇝
G

v
)

. (4)

Proof Using the law of total expectation, for any graph Z, it holds

Bt
Z (u) =

(
t−1∑
i=1

(
i+ Bt−i

Z (v)
)
P
(
u

=i
⇝
Z

v
))

+EZ

[
T t
u

(
C̄v

)
| u

<t

̸⇝
Z

v

]
P
(
u

<t

̸⇝
Z

v

)
.

(5)
Let Ge be the graph obtained after adding e. Between G and Ge, we are
only adding an outgoing edge from v and modifying the weights of the edges
outgoing from v, so

EG

[
T t
u

(
C̄v

)
| u

<t

̸⇝
G

v

]
= EGe

[
T t
u

(
C̄v

)
| u

<t

̸⇝
Ge

v

]
,

P
(
u

<t

̸⇝
G

v

)
= P

(
u

<t

̸⇝
Ge

v

)
, and P

(
u

=i
⇝
G

v
)
= P

(
u

=i
⇝
Ge

v

)
.

Therefore, using (5),

∆(G, u, (v, w),M(v), t)
.
= Bt

G (u)− Bt
Gnew

(u)

=

t−1∑
i=1

(∆(G, v, (v, w),M(v, w), t− i))P
(
u

=i
⇝
G

v
)

=

t−2∑
i=1

(∆(G, v, (v, w),M(v, w), t− i))P
(
u

=i
⇝
G

v
)

.

The last step follows from the fact that ∆(G, v, (v, w),M(v, w), 1) = 0 because
B1
Z (u) = 1 for every vertex u of any graph Z. The thesis then follows from the

definition of gain for a set of vertices, rather than for a single node (see (2)).
⊓⊔

Recall that our greedy choice is to identify a node v that maximizes the
gain ∆(G,P(G), (v, w),M(v, w), t) where w is any vertex in C̄v, and M(v, w)
is give to us by an oracle, only on the basis of information “locally available”
from v. Lemma 7 suggests that a good candidate v is a vertex that is likely
to be reached by short random walks from many other vertices in PCv

(G), a
property that is captured by the bounded RWCC rt−2(v;PCv

(G)) (Sect. 3.1).
Now, we first quantify the gain for adding an edge from any vertex. Then

we show that under mild conditions on the return time of vertices we get
a constant approximation by greedily choosing a vertex v that maximizes
rt−2(v;PCv

(G))M(v, w) (Lemma 10).
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Lemma 8 Let v ∈ P(G). Let w ∈ C̄v, and assume to add the edge e = (v, w)
with weight M(e). It holds

∆(G,PCv
(G), e,M(e), t) ≥ r

t
M(e)rt−2(v;PCv (G)) .

We need the following technical result before proving Lemma 8 (proof in
App. A).

Lemma 9 Let v ∈ PCv
(G), then, for any t′ ≤ t, it holds Bt′

G (v) ≥ r t′

t .

Proof (Lemma 8) It holds from Lemmas 6 and 9 that

∆(G, v, e,M(e), t′) ≥
(
r
t′

t
− 1

)
M(e) for every 1 ≤ t′ ≤ t .

Using this fact, and the requirement that r ≥ t/2, we can take (4), and conclude
as follows

∆(G,PCv
(G), e,M(e), t)

≥ 1

|PCv
(G)|

∑
u∈PCv (G)

t−2∑
i=1

(
r
t− i

t
− 1

)
M(e)P

(
u

=i
⇝
G

v
)

≥ r

t
M(e)

1

|PCv
(G)|

∑
u∈PCv (G)

t−3∑
i=1

(t− i− 2)P
(
u

=i
⇝
G

v
)

rt−2(v;PCv (G))

.

⊓⊔

Lemma 8 suggests that inserting edges from a vertex v with the highest
value of M(v, w)rt−2(v;PC(G)) may result in a larger improvement in the
objective function than if we chose a different source. In the next lemma we
compare the effect of choosing such a source to the effect of an optimal choice.

Lemma 10 Consider the set PC(G) where C ∈ {R,B}. Among all vertices
in PC(G) let

opt
.
= argmaxu∈PC(G) ∆(G,PC(G), eu,M(eu), t), and

v
.
= argmaxu∈PC(G) M(eu)r

t−2(u;PC(G)) ,

where eu is any non-existing edge connecting u to C̄u. It holds

∆(G,PC(G), eopt,M(eopt), t) ≤
(
2
t

r
γt−2 + 1

)
∆(G,PC(G), ev,M(ev), t) .

(6)
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Proof It follows from Lemma 6 that, for any t′,

∆(G, opt, eopt,M(eopt), t
′) ≤ Ft′−1 (opt)

(
Bt′

G (opt)− 1
)
M(eopt)

≤ Ft′−1 (opt) (t
′ − 1)M(eopt) .

From Lemma 7, applying the above inequality, we get

∆(G,PC(G), eopt,M(eopt), t)

=
1

|PC(G)|
∑

u∈PC(G)

t−2∑
i=1

(∆(G, opt, eopt,M(eopt), t− i))P
(
u

=i
⇝
G

v
)

≤ 1

|PC(G)|
∑

u∈PC(G)

t−3∑
i=1

(∆(G, opt, eopt,M(eopt), t− i))P
(
u

=i
⇝
G

v
)

+∆(G, opt, eopt,M(eopt), 2)P
(
u

=t−2
⇝
G

v
)

≤ 1

|PC(G)|
∑

u∈PC(G)

t−3∑
i=1

(t− 1− i)M(eopt)Ft−2 (opt)P
(
u

=i
⇝
G

v
)
+ 1

≤ 1

|PC(G)|
∑

u∈PC(G)

t−2∑
i=1

2(t− 2− i)M(eopt)Ft−2 (opt)P
(
u

=i
⇝
G

v
)
+ 1

≤ 2M(eopt)r
t−2(opt;PC(G))Ft−2 (opt) + 1

≤ 2M(ev)r
t−2(v;PC(G)) γt−2 + 1

≤
(
2
t

r
γt−2 + 1

)
∆(G,PC(G), ev,M(ev), t),

where the last step follows from Lemma 8. ⊓⊔

When the probability P
(
u

<t
⇝
G

u
)

that a random walk starting at any vertex
u gets back to u in less than t steps is less than α, for some constant α, then
γt−2 ≤ 1 + α. This assumption is realistic since t is usually small and the
return time to u is often much larger than t. The multiplicative factor on
the r.h.s. of (6) is then, in such cases, a constant, because t/r ≤ 2, since we
assumed r ≥ t/2. Thus, the gain obtained by choosing v as in Lemma 10 is a
constant-factor approximation to the optimal choice.

Finally, we show that the gain function is monotonic and sub-modular.

Lemma 11 Let C ∈ {R,B}, v, u ∈ PC(G), and wv, wu ∈ C̄v, such that
ev = (v, wv) and eu = (u,wu) are not edges in G. Let Σ = {ev, eu}. It holds

∆(G,PC(G), ev,M(ev), t) ≤ ∆(G,PC(G), Σ, {M(e)}e∈Σ , t), (7)

and

∆(G,PC(G), Σ, {M(e)}e∈Σ , t) ≤∆(G,PC(G), ev,M(ev), t)

+∆(G,PC(G), eu,M(eu), t) . (8)
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Proof Let Gv be the graph after adding only the edge ev, Gu be the graph
after only adding the edge eu, and Gvu be the graph after adding both edges.

We first show the monotonicity of the objective function, i.e., that (7)
holds. For any w ∈ PC(G), it holds

∆(G,w, ev,M(ev), t)
.
= Bt

G (w)− Bt
Gv

(w) ≤ Bt
G (w)− Bt

Gvu
(w)

.
= ∆(G,w, {ev, eu}, {M(ev),M(eu)}, t)

because Bt
Gv

(w) ≥ Bt
Gvu

(w), as adding an edge from u, which is in Cw, to a
vertex in C̄w cannot increase the bubble radius of w. The result generalizes
to (7) in a straightforward way.

We now show the sub-modularity of the objective function, i.e., that (8)
holds. We start by showing that, for w ∈ PC(G), it holds

∆(G,w, {ev, eu}, {M(ev),M(eu)}, t) ≤∆(G,w, ev,M(ev), t)

+∆(G,w, eu,M(eu), t) .

With an expansion of the definition and a slight rearrangement of the terms,
the above inequality is equivalent to

Bt
Gv

(w)− Bt
Gvu

(w)

∆(Gv,w,eu,M(eu),t)

≤ Bt
G (w)− Bt

Gu
(w)

∆(G,w,eu,M(eu),t)

,

i.e., the gain of adding the same edge (in this case eu) is smaller when the
edge is added to a graph (in this case Gv) that has a superset of the edges of
another graph (in this case G).

Consider all the walks from w that pass through v or through u or both.
Among such walks, let Ev be the event of seeing v first and Eu be the event of
seeing u first. If a walk does not pass through either v or u, its probability of
hitting the other color is the same in all three graphs we are considering, as
the graphs differ only in the outgoing edges from these two nodes and their
weights. For the same reason, P(Ev) and P(Eu) do not change across the graphs.
Thus,

Bt
Gv

(w)− Bt
Gvu

(w) =
(
EGv

[
T t
w

(
C̄w

)
| Ev
]
− EGvu

[
T t
w

(
C̄w

)
| Ev
])

P(Ev)
+
(
EGv

[
T t
w

(
C̄w

)
| Eu

]
− EGvu

[
T t
w

(
C̄w

)
| Eu

])
P(Eu) .

Similarly,

Bt
G (w)− Bt

Gu
(w) =

(
EG

[
T t
w

(
C̄w

)
| Ev
]
− EGu

[
T t
w

(
C̄w

)
| Ev
])

P(Ev)
+
(
EG

[
T t
w

(
C̄w

)
| Eu

]
− EGu

[
T t
w

(
C̄w

)
| Eu

])
P(Eu) .

We want to show that it holds

EGv

[
T t
w

(
C̄w | Ev

)]
− EGvu

[
T t
w

(
C̄w | Ev

)]
≤ EG

[
T t
w

(
C̄w | Ev

)]
− EGu

[
T t
w

(
C̄w | Ev

)]
. (9)
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and

EGv

[
T t
w

(
C̄w | Eu

)]
− EGvu

[
T t
w

(
C̄w | Eu

)]
≤ EG

[
T t
w

(
C̄w | Eu

)]
− EGu

[
T t
w

(
C̄w | Eu

)]
. (10)

We can write

EG

[
T t
w

(
C̄w

)
| Ev
]
=

t∑
i=1

(
i+ EG

[
T t−i
v

(
C̄v

)])
P
(
w

=i
⇝
G

v | Ev
)

.

The probabilities on the r.h.s. are the same on all graphs. Similar expressions
hold for

EGv

[
T t
w

(
C̄w

)
| Ev
]
, EGu

[
T t
w

(
C̄w

)
| Ev
]
, EGvu

[
T t
w

(
C̄w

)
| Ev
]
,

and when conditioning on Eu. To prove (9) and (10), we now show that, for
every t′ ≤ t, it holds

EGv

[
T t′

v

(
C̄v

)]
− EGvu

[
T t′

v

(
C̄v

)]
≤ EG

[
T t′

v

(
C̄v

)]
− EGu

[
T t′

v

(
C̄v

)]
, (11)

and

EGv

[
T t′

u

(
C̄u

)]
− EGvu

[
T t′

u

(
C̄u

)]
≤ EG

[
T t′

u

(
C̄u

)]
− EGu

[
T t′

u

(
C̄u

)]
.

We focus on showing (11), as the same steps, with simple modifications, can
be followed to show the other inequality. For Z ∈ {G,Gu, Gv, Gvu}, let AZ

.
=

v
≤t
⇝
Z

u, i.e., the event that a random walk in Z starting at v reaches u in at

most t steps before visiting any vertex in C̄v, and let ĀZ be the complementary
event. It holds

P(AGv ) = P(AGvu) ≤ P(AG) = P(AGu),

due to the insertion of ev. It also holds

EGv

[
T t′

v

(
C̄v

)
| ĀGv

]
= EGvu

[
T t′

v

(
C̄v

)
| ĀGvu

]
,

and
EG

[
T t′

v

(
C̄v

)
| ĀG

]
= EGu

[
T t′

v

(
C̄v

)
| ĀGu

]
,

Using the law of total expectation (across AZ and ĀZ) and applying these
facts, we can rewrite (11) as(

EGv

[
T t′

v

(
C̄v

)
| AGv

]
− EGvu

[
T t′

v

(
C̄v

)
| AGvu

])
P(AGv

)

≤
(
EG

[
T t′

v

(
C̄v

)
| AG

]
− EGu

[
T t′

v

(
C̄v

)
| AGu

])
P(AG) .

The differences between parentheses have the same value, as their correspond-
ing terms have the same values. The inequality holds because P(AGv ) ≤ P(AG)
due to the insertion of ev in G to obtain Gv. ⊓⊔
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Algorithm 1 RePBubLik
1: Input: Graph G = (V,E), number of desired insertions k, oracle WG : V × 2V ×V →

[0, 1], C ∈ {R,B}.
2: Output: Set Σ of k edges to be inserted, with their weights.
3: Σ ← ∅
4: for i = 1 to k do
5: P ← computeParochials(GΣ , C)
6: R← computeRWCentrality(P , GΣ)
7: vi ← argmaxv∈PR(v)×WG(v,Σ)
8: ui ← arbitrary in C̄vi
9: Σ ← Σ ∪ {(vi, ui)}

10: end for
11: return Σ

We are now ready to prove Thm. 1.

Proof (Thm. 1) Lemma 11 shows the monotonicity and submodularity of
the objective function, i.e., of the gain. Thus, a greedy algorithm that picks,
iteratively, the k best choices over all parochial vertices of color C as the sources
of the added edges, would result in a (1 + 1/e)-approximation. Lemma 10
shows that by choosing a vertex v maximizing M(ev)r

t−2(v;PC(G)) among
all parochial vertices of color C, we obtain a vertex such that the gain when
adding an edge from this source is a (2(t/r)γt−2 + 1)-approximation to the
greedy choice. The correctness of our algorithm is concluded by putting these
lemmas together. ⊓⊔

We can now describe RePBubLik in detail (pseudocode in Alg. 1). The
algorithm takes as input the graph G, the number k of desired edge insertions,
the oracle W that determines the weights of the new edges, and the set C ∈
{R,B} of nodes of a color. It first creates the empty set Σ that will store the
edges to be added and then enters a for-loop to be repeated for k times. At
every iteration of the loop, it first computes the BR of every node in C in the
graph GΣ obtained by adding to G the edges in Σ (with their weights obtained
from the oracle WG) (in practice, the BR is computed using the approximation
algorithm outlined in Lemma 4). Thanks to this computation, the algorithm
obtains (line 5) the set P of parochial nodes in this graph (at the first iteration
of the loop P = PC(G)). It then obtains the centralities values rt−2(v;P ) of
every node v ∈ P (in practice, using the approximation algorithm outlined in
Lemma 1), storing them in a dictionary R (line 6). The algorithm then selects
the node vi ∈ P associated to the maximum quantity R(vi)×WG(vi, Σ), and
arbitrarily picks a node ui of color C̄vi (i.e., of the color other than C). The
directed edge (vi, ui) is added to the set Σ (lines 7–9). After k iterations of
the loop, the algorithm returns Σ, together with the weights obtained from
the oracle.

A practical algorithm RePBubLik would require a re-computation of the BRs
and of the centralities of all vertices, at every iteration of the loop, which would
require to run a very large number of random walks, making it computationally
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very expensive. We now propose a more practical alternative RePBubLik+,
at the price of losing the approximation guarantees. RePBubLik+ only com-
putes PC(G) and R before entering the for-loop1 and uses the same values
throughout its execution, but trades off the consequences of this choice by
adding a penalty factor to the objective function involved in the selection
of the source vertices for the edges to be added. Specifically, RePBubLik+
chooses vi (line 7) by maximizing the quantity R(v)×WG(v,Σ)/ηv, where ηv is a
penalty factor equals to one plus the number of edges with source v in Σ (thus
at iteration 1, ηv = 1 for every node). This penalty factor favours the insertion
of edges from nodes that have not yet been altered. Consequently, it indirectly
(1) handles the possibility that nodes with new edges are no longer parochial,
thus we want to avoid to keep adding edges to them; and (2) avoids that the
new edges are added from a restricted set of nodes, limiting the positive effect
of the insertions on ∆(G,PC(G), Σ, {M(e)}e∈Σ , t

′).

5 Enhancing the diverse navigability by swapping transition
probabilities of links

Adding new edges to a graph is a very invasive operation, and not always
possible, for example in recommender systems, where one can assume that
the set of edges outgoing from a vertex v is the complete list of items to be
recommended when visiting the item corresponding to v, and no item should
reasonably be added to this list. Additionally we observe that, in recommender
systems, parochial nodes are few, and mitigating their bubble radius has little
effect on the entire graph. For these reasons, we now introduce a new measure,
called diverse navigability, which takes into consideration the bubble radii of
all nodes.

Definition 3 (Diverse navigability) Given S ⊆ V , the diverse navigability
ξ (S) of S is the opposite of the average BR of the vertices in S, i.e.,

ξ (S)
.
= − 1

|S|
∑
v∈S

Bt
G (v) .

When S = V , we talk about the diverse navigability of G, and we denote it
with ξ (G).

Our strategy to improve the diverse navigability is to swap the transi-
tion probabilities of edges with the same sources. This strategy is realistic:
as demonstrated in observational studies, the transition probabilities of links
(outgoing edges) in a given page (vertex) are often tightly correlated with their
display features in the page, (e.g., location (Hofmann et al. 2014; Richardson
et al. 2007; Collins et al. 2018; Lerman and Hogg 2014; Craswell et al. 2008),

1 Lemmas 1 and 4 provide bounds of order Θ(nt2) on the runtime of this computation.
Therefore for small values of t, this approach is more efficient than algorithms that compute
hitting times using the Laplacian, which need Ω(n3) steps.
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background color, font-size, and others (Lamprecht et al. 2016; Dimitrov et al.
2017)). Thus, to achieve the swap of the transition probabilities, one would
swap the position (or other presentation factors, e.g., font color or size), on
the page corresponding to v, of the two hyperlinks.

We now define the set of diversifying swaps, i.e., the set of pairs of nodes
that it is reasonable to swap in order to obtain an improvement in the diverse
navigability.

Definition 4 (diversifying swaps) For C ∈ {R,B}, the set ℜC of diversi-
fying swaps is the set of ordered pairs of edges s.t., for every (e, e′) ∈ ℜC , it
holds:

1. (e, e′) = ((v, w), (v, u)), with v, w ∈ C and u ∈ C̄v; and
2. M(e) > M(e′); and
3. w ∈ PC(G) (we call w the radicalizing end point).2

Swapping the transition probabilities of (e, e′) ∈ ℜC decreases the BR of
the source vertex v, and possibly of other vertices in Cv as well, thus improving
the diverse navigability ξ (Cv) (and ξ (G)). We now introduce a function to
quantify this improvement.

Definition 5 For C ∈ {R,B}, u ∈ C, and t′ ≤ t, the gain Γ (G, u, (e, e′), t′) on
u’s BR in G obtained by swapping the transition probabilities of (e, e′) ∈ ℜC ,
is defined as

Γ (G, u, (e, e′), t′)
.
= Bt′

G (u)− Bt′

Ge,e′
(u) ,

where Ge,e′ is the same graph as G with only the transition probabilities of e
and e′ swapped.

The definition extends immediately for a set of edge pairs Σ ⊆ ℜC to
Γ (G, u,Σ, t′), and the whole network as follows.

Definition 6 (total gain) Let Σ ⊆ ℜC and GΣ be the graph obtained by
swapping the transition probabilities of every pair of edges in Σ. The total
gain of Σ is defined as

G (G,Σ)
.
=

1

|C|
∑
u∈C

(
Bt
G (u)− Bt

GΣ
(u)
)

. (12)

Although the practical cost of swapping two edge probabilities is small,
certainly smaller than modifying the list of edge outgoing from v, it is clearly
prohibitively expensive, and unrealistic, to swap the transition probabilities of
every pair of edges in ℜC . It is more reasonable to assume that the number of
possible swaps is bounded by a parameter k.

Problem 3 Given G, a color C, and a parameter k, find a set Σ ⊆ ℜC of size
k such that G (G,Σ) is maximized.

2 This last requirement is not needed, but restricting to parochial nodes as the radical-
izing end points is reasonable in practice, although not necessarily resulting in the best
improvement in the diverse navigability.
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We design an approximation algorithm ShuffLik for Prob. 3, with the
following properties (proof in Sect. 5.1).

Theorem 2 Let Σ ⊆ ℜC be the output of ShuffLik and OPT be the optimal
solution to Prob. 3. Then

G (G,OPT) ≤
(
2
t

r
γt−2 + 1

)(
1 +

1

e

)
G (G,Σ) ,

We recall that γt′
.
= maxv∈V Ft′ (v) is the maximum, over all v ∈ V , of one

plus the probability that a random walk starting from v returns to v before
step t′, without having visited a vertex in C̄v, and this quantity is a constant
for many graphs, and e is the Euler number, also a constant. Since we assume
r ≥ t/2, we obtain that ShuffLik gives a constant-factor approximation.

Problem 3 is based on the assumption that the cost of swapping the tran-
sition probabilities of any two edges with the same source is fixed. In practice,
these costs may be dependent on arbitrary features, and each pair (e, e′) has
a swap cost D(e, e′), for some function D : E → R+ (assumed known), which
can be fixed, e.g., by a website administrator. For example, D can be the
Kendall-tau or Spearman’s distance of a swap corresponding to the order they
appear in the source (Monjardet 1998; Ceberio et al. 2014; Fligner and Ver-
ducci 1986; Fagin et al. 2002; Chierichetti et al. 2018). Alternatively, D can
be the semantic distance of pair of links (Gabrilovich and Markovitch 2007;
Zhang et al. 2013; Camacho-Collados and Pilehvar 2018), the financial loss
that swapping links would cause, or a combination of all of these measures.
The problem then becomes to find a set of swaps that maximizes the diverse
navigability within a given budget B.

Problem 4 Given C ∈ {R,B}, the function D : E × E → R+, and a budget
B ∈ R+, find a set Σ ⊆ ℜC satisfying

∑
(e,e′)∈Σ D(e, e′) ≤ B such that G (G,Σ)

is maximized.

In the next sections, we describe our algorithms and present their theoret-
ical analysis. We start with ShuffLik which provides a solution to Prob. 3 in
Sect. 5.1. Then in Sect. 5.2, we propose ShuffLik+ for Prob. 4.

5.1 ShuffLik

Before describing ShuffLik, we show that the gain function from (12) is
monotonic and sub-modular. This property guides the design of ShuffLik,
and it is at the basis of its correctness.

Lemma 12 Let C be a color, and (e1, e
′
1), (e2, e

′
2) ∈ ℜC . Let Σ = {(e1, e′1), (e2, e′2)},

and δ1 = |M(e1)−M(e′1)|, δ2 = |M(e2)−M(e′2)|. It holds

Γ (G,C, (e1, e
′
1), t) ≤ Γ (G,C,Σ, t), (13)

and
Γ (G,C,Σ, t) ≤ Γ (G,C, (e1, e

′
1), t) + Γ (G,C, (e2, e

′
2), t) .
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Proof Assume u, v ∈ C (they can be the same vertex). Let Gv be the graph af-
ter swapping (ev, e

′
v), with source vertex v and Gu be the graph after swapping

(eu, e
′
u), and Gvu be the graph after swapping both pairs.

We first show the monotonicity of the objective function, i.e., that (13)
holds. For any w ∈ C, it holds

Γ (G,w, (ev, e
′
v), t)

.
= Bt

G (w)− Bt
Gv

(w) ≤ Bt
G (w)− Bt

Gvu
(w)

.
= Γ (G,w, {(ev, e′v), (eu, e′u)}, t) .

We now show the sub-modularity of the objective function. We start by
showing that, for w ∈ C, it holds

Γ (G,w, {(ev, e′v)(eu, e′u)}, t) ≤ Γ (G,w, (ev, e
′
v), t) + Γ (G,w, (eu, e

′
u), t) .

With an expansion of the definition and a slight rearrangement of the terms,
the above inequality is equivalent to

Bt
Gv

(w)− Bt
Gvu

(w)

Γ (Gv,w,(eu,e′u),t)

≤ Bt
G (w)− Bt

Gu
(w)

Γ (G,w,(eu,e′u),t)

.

The last inequality can be proved following the same steps as in the proof for
Lemma 11. ⊓⊔

Lemma 12 would suggest to greedily choose the pair (e, e′) ∈ ℜC that
maximizes the gain, in order to obtain a constant factor approximation to
Prob. 3, but finding such pair is not straightforward. In fact, we only manage
to find a pair (e, e′) which approximates the greedy choice (see Lemma 15).

The idea behind ShuffLik is to greedily choose the pair (e, e′) ∈ ℜC with
source vertex v, that maximizes rt−2(v;C)× |M(e)−M(e′)|.

The following lemma shows that the gain, on the source vertex v, of swap-
ping the edge probabilities of a diversifying pair of edges, is proportional to
the RWCC of v.

Lemma 13 Let C ∈ {R,B} and (e, e′) ∈ ℜC with source vertex v. It holds

G (G, (e, e′)) ≥ r

t
δrt−2(v;C) .

To prove it, we need the following result (proof in App. A).

Lemma 14 Let C ∈ {R,B}, v ∈ C, t′ ≤ t, and (e, e′) ∈ ℜC with v the source
vertex and w the radicalizing end point. Let δ = M(e)−M(e′). It holds

δBt′−1
G (w) ≤ Γ (G, v, (e, e′), t′) ≤ Ft′−1 (v) δB

t′

G (w) .
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Proof (Lemma 13) Let Ge,e′ be the graph we obtain by swapping transition
probabilities of e and e′. Using the definition of the gain function we get

G (G, (e, e′)) = Γ (G,C, (e, e′), t)

=
1

|C|
∑
u∈C

t−1∑
i=1

Γ (G, v, (e, e′), t− i)P
(
u

=i
⇝
G

v
)

=
1

|C|
∑
u∈C

t−2∑
i=1

Γ (G, v, (e, e′), t− i)P
(
u

=i
⇝
G

v
)

. (14)

The last line comes from the fact that Γ (G, v, (e, e′), 1) = 0, as any walk needs
at least one step to reach the other color.

From Lemma 9, we get that Bt
v (G) ≥ r implies Bt′

v (G) ≥ rt′/t. We now
plug-in this lower bound on BR of the source vertex v, and use the lower bound
obtained in Lemma 14:

G (G, (e, e′)) ≥ 1

|C|
∑
u∈C

t−2∑
i=1

(
(t− i)

r

t
δ
)
P
(
u

=i
⇝
G

v
)

≥ r

t
δ

1

|C|
∑
u∈C

t−2∑
i=1

(t− 2− i)P
(
u

=i
⇝
G

v
)
≥ r

t
δrt−2(v;C) .

⊓⊔

We now use Lemma 13 in Lemma 15 to show that a pair of edges (e, e′)
with source vertex v which maximizes rt(v;C) × |M(e) − M(e′)| has a gain
that approximates the optimal gain of the greedy choice that maximizes the
gain.

Lemma 15 Let C ∈ {R,B}. Among all pairs of edges in ℜC , let (eopt, e′opt)
be

(eopt, e
′
opt)

.
= argmax(e,e′)∈ℜC

Γ (G,C, (e, e′), t) .

Let (eRC, e
′
RC) be a pair of edges in ℜC with source vertex vRC such that

(eRC, e
′
RC)

.
= argmax(e,e′)∈ℜC

rt−2(v;C) (M(e)−M(e′)) .

It holds

Γ (G,V, (eopt, e
′
opt), t) ≤

(
2
t

r
γt−2 + 1

)
Γ (G,V, (eRC , e

′
RC), t) .

Proof Let δopt
.
= M(eopt)−M(e′opt), and δRC

.
= M(eRC)−M(e′RC). Employing

Lemma 14, for any t′, it holds

Γ (G, vopt, (eopt, e
′
opt), t

′) ≤ Ft′−1 (vopt)
(
Bt′

G (wopt)
)
δopt ≤ t′δoptFt′−1 (vopt) ,

(15)
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where vopt and wopt are respectively the source vertex and the radicalizing end
point of (eopt, e

′
opt). From (14), we get

Γ (G,C, (eopt, e
′
opt), t)

=
1

|C|
∑
u∈C

t−3∑
i=1

(
Γ (G, vopt, (eopt, e

′
opt), t− i)

)
P
(
u

=i
⇝
G

vopt

)
+ Γ (G, vopt, (eopt, e

′
opt), 2)P

(
u

=t−2
⇝
G

vopt

)
.

Continuing by using (15) and Lemma 13 we get

Γ (G,C, (eopt, e
′
opt), t)

≤ 1

|C|
∑
u∈C

t−3∑
i=1

(t− i)δoptFt−i−1 (vopt)P
(
u

=i
⇝
G

vopt

)
+ 1

≤ 1

|C|
∑
u∈C

t−2∑
i=1

2(t− 2− i)δoptFt−2 (vopt)P
(
u

=i
⇝
G

vopt

)
+ 1

≤2
t

r
δRCr

t−2(vRC ;Copt) γt−2 + 1

≤
(
2
t

r
γt−2 + 1

)
Γ (G,C, (eRC, e

′
RC), t) .

⊓⊔

We can now combine all the above results to prove the correctness of the
algorithm.

Proof (Thm. 2) Lemma 12 shows the monotonicity and submodularity of the
gain function. Thus, if k swaps are picked greedily over all the pairs in ℜC we
will have a (1 + 1/e)-approximation. Lemma 15 shows that by choosing a pair
(e, e′) ∈ ℜC with source vertex v that maximizes (M(e)−M(e′))× rt−2(v;C),
is a (2(t/r)γt−2+1)-approximation to the greedy choice. Thus, the correctness
of ShuffLik is concluded by putting together these results. ⊓⊔

We can now give the details to ShuffLik (pseudocode in Alg. 2). The
algorithm takes as input the graph G, the edges transition probabilities MG,
the number k of desired swaps, and the set of nodes C. It first creates the empty
set Σ to store the pairs of edges to be swapped, and then enters a for-loop to be
repeated for k times. At every iteration of the loop, it first determines the set of
diversifying swaps ℜC (Def. 4) applying the function getDiversifyingSwaps
(line 5). The function takes in input G, the color C, and Σ, and returns the
set ℜC of possible swaps in the graph GΣ , obtained by performing the swaps
in Σ. The computation of the radicalizing edges involves the computation
of the BR of all vertices in C, using the approximation algorithm described
in Lemma 4. Then, the algorithm computes the RWCC of each node in C,
using the approximation algorithm from Sect. 3.1, and stores these values in a
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Algorithm 2 ShuffLik
1: Input: Graph G = (V,E), transition matrix MG, color C ∈ {R,B}, desired number of

swaps k.
2: Output: Set Σ of k pairs of edges to be swapped.
3: Σ ← ∅
4: for i = 1 : k do
5: ℜC ← getDiversifyingSwaps(G,C,Σ)
6: R← computeRWCentrality(C)
7: (ei, e

′
i)← argmax(e,e′)∈ℜC

R(v)× (MG(e)−MG(e′))

8: Σ ← Σ ∪ {(ei, e′i)}
9: end for

10: return Σ

dictionary R (line 7). At this point, ShuffLik selects the pair of edges (ei, e′i)
associated to the maximum quantity R(v)× |MG(e)−MG(e

′)|, where v is the
source vertex of (e, e′), and adds it to the solution set Σ (lines 7–8). After k
iterations of the loop, the algorithm returns Σ.

5.2 ShuffLik+

We now present ShuffLik+ (Alg. 3), which solves Prob. 4, i.e., it covers the
case when the cost of a swap is not a fixed constant and the total cost of the
swaps can not exceed a given budget. In addition to the parameters taken by
ShuffLik, it takes as input a cost function D : E ×E → R, and a maximum
budget B ∈ R+ (in place of the number of swaps k taken by ShuffLik).
ShuffLik+ builds its solution by greedily choosing the pair of edges to swap.
Differently from ShuffLik, at each step, before swapping the pair of edges
maximizing rt−2(v;C)×(M(e)−M(e′))

D(e,e′) , it controls whether the cost of the swaps
performed so far has exceeded the budget (lines 6–12). If it is the case, the
algorithm stops, otherwise it iterates until the budget is exhausted.

We show the correctness of ShuffLik+ in the following corollary.

Corollary 1 Let Σ ⊆ ℜC be the output of ShuffLik+, and assume it has a
cost B′ ≤ B. Let OPT be the optimal solution to Prob. 4 with budget B′. Then
the gains of OPT and Σ satisfy Thm. 2.

Proof Assume we could swap a fraction of two diversifying edges. Thus, for
spending each dollar we can take a greedy choice of picking the pair of edges
maximizing rt−2(v;C)×(M(e)−M(e′))

D(e,e′) , and swap a fraction of 1
D(e,e′) of (e, e′).

Using Thm. 2 this will be a (1 + 1/e)(2(t/r)γt−2 + 1)-approximation. Note
that the initial assumption is not prohibitive if we spend B′ dollars. We thus
conclude the result. ⊓⊔
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Algorithm 3 ShuffLik+
Input: Graph G = (V,E), transition matrix MG, color C ∈ {R,B}, cost function
D : E × E → R+, budget B.

2: Output: Set Σ of pairs of edges to be swapped, whose total cost is at most B.
Σ ← ∅

4: BΣ ← 0
while BΣ < B do

6: ℜC ← getDiversifyingSwaps(G,C,Σ)
R← computeRWCentrality(C)

8: (ei, e
′
i)← argmax(e,e′)∈ℜC

R(v)×|MG(e)−MG(e′)|
D(e,e′)

BΣ ← BΣ +D(ei, e′i)
10: if BΣ ≤ B then Σ ← Σ ∪ {(ei, e′i)}

end if
12: end while

return Σ

6 Experiments

To evaluate the proposed algorithms, namely RePBubLik and ShuffLik, on
several graphs, we measure the reduction in structural bias and the improve-
ment in the diverse navigability, respectively.

We conduct separate experiments for the two methods and present them in
the following sections. Although the two approaches build upon the same set of
concepts and definitions (e.g., the bubble radius and the random walk closeness
centrality), we do not perform a comparison between the two because the two
algorithms optimize different objective functions, i.e., the structural bias and
the diverse navigability through different approaches, namely, edge insertions
and traversal probabilities swaps. Because of these distinctions, we also pick
distinct baselines and datasets. For reproducibility purposes, we make the
code of the experiments available from https://github.com/CriMenghini/
RePBubLik.

6.1 RePBubLik Evaluation

The goal of our experimental evaluation for RePBubLik is to understand how
the addition of the set Σ = ΣR ∪ ΣB of K = kR + kB edges output by the
algorithm, run separately with C = R and B, affects the structural bias of the
network, by computing the gain in the structural bias reduction. In particular,
we measure the gain ∆(G,Σ), introduced in Sect. 4, used here with a simpler
notation. We also measure the change |P(G)| − |P(GΣ)| after adding Σ.

Datasets We create graphs obtained from Wikipedia, Amazon3 and PolBlogs4.
Table 1 shows the relevant statistics.

3 https://snap.stanford.edu/data/amazon-meta.html
4 http://www-personal.umich.edu/~mejn/netdata/

https://github.com/CriMenghini/RePBubLik
https://github.com/CriMenghini/RePBubLik
https://snap.stanford.edu/data/amazon-meta.html
http://www-personal.umich.edu/~mejn/netdata/
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Table 1: Networks’ statistics. The notation is consistent with the rest of the
paper.

Wikipedia

Topic |R| |B| |E|R→B |E|B→R |E| %PR(G) %PB(G)

Abort. 208 413 80 170 1911 85.56 89.20
Guns 142 118 72 79 723 82.95 71.69
Pol. 10347 10129 17452 16484 141486 25.97 42.36
Sociol. 602 2283 284 192 10514 91.32 96.36

Amazon

Topic |R| |B| |E|R→B |E|B→R |E| %PR(G) %PB(G)

MaTe 302 132 25 42 675 90.91 79.63
MiHi 124 169 66 63 482 58.33 63.46
MaAs 293 117 11 6 680 97.31 95.15

PolBlogs

Topic |R| |B| |E|R→B |E|B→R |E| %PR(G) %PB(G)

Politics 545 488 902 781 17348 87.71 90.37

From Wikipedia we consider four bi-partitioned subgraphs related to con-
troversial topics: politics, abortion, guns and sociology (Menghini et al. 2020).
partitions, corresponding respectively to democrats vs. republican, pro-life vs.
pro-choice, control vs. right, and individualism vs. collectivism. Each node in
the graph is a page, and is assigned to one color according to Wikipedia’s cat-
egorization. Directed edges denote links, and are weighted using Wikipedia’s
clickstream data.5

The Amazon dataset contains metadata about books (Leskovec et al. 2007).
Given two book categories, the vertices are all the items in those categories, col-
ored accordingly. There is a directed edge (u, v) if v appears in the list of items
similar to u. The edge is weighted by v’s sales rank.6 We built three graphs
by considering pairs of the following categories: Mathematics & Technology
(MaTe), History of Technology & Military Science (MiHi), and Mathematics
& Astronomy (MaAs).

The Political Blogs dataset is a directed network of hyperlinks between
weblogs on US politics (Adamic and Glance 2005). Each node represents a
blog and is colored according to its political leaning. Links between blogs
were automatically extracted from a crawl of the front page of the blog and
represent the edges of the graph. Each edge (v, u) has weight proportional to
the out-degree of v.

5 https://dumps.wikimedia.org/other/clickstream/
6 Amazon sales rank is a metric of the relationship among products within one category

based on their sales performance. It expresses how well a product is selling relative to other
products in the same category.

https://dumps.wikimedia.org/other/clickstream/
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Baselines We compare RePBubLik+ to three different baselines (i.e., simpli-
fied variants of RePBubLik+) and to two existing algorithms, described in
the following. The first baseline, PureRandom (PR) selects the source, and the
target, nodes of the new edges uniformly at random from the set PC(G) and
C̄, respectively. The second baseline Random Top-N Central Nodes (N -RCN),
given a parameter N ∈ (0, 100), sorts the nodes in PC(G) by descending cen-
trality, and picks, uniformly at random, kC edges with source in the top-N
percent of nodes in PC(G). The last baseline, Random Top-N Weighted Cen-
tral Nodes (N -RWCN), differs from N -RCN as the nodes in PC(G) are sorted
in descending order by R(v)×M(v, u).

We compare RePBubLik+ also to three existing methods, ROV (Garimella
et al. 2017a), node2vec (Grover and Leskovec 2016), and FairWalk (Rahman
et al. 2019). The ROV algorithm outputs a set of k edges to be added to G to
minimize the controversy score (RWC) (Garimella et al. 2018b). The RWC is
a metric that characterizes how controversial a topic is by capturing how well
separated the two colors are. ROV considers as candidates the edges between
the high-degree vertices of each color (Garimella et al. 2017a, Algorithm 1).
These edges are sorted by descending impact on the graph controversy score,
and the top-k edges are added to the graph. The objective of the comparison
between ROV and RePBubLik+ is to verify whether an algorithm developed
to minimize the RWC can be used to minimize the structural bias. Node2vec
is a graph embedding technique that encodes a network in a low-dimensional
space retaining characteristics like the nodes’ similarity (Grover and Leskovec
2016). The generation of the embedding is based on random walks. One of the
main applications of node2vec is to employ the embedding as the feature space
to train link recommendation algorithms. The goal of comparing node2vec to
RePBubLik+ is to understand how the predictions of widely-used link recom-
mendation algorithms affect the network’s structural bias. In the experiments,
we create for each network a 128-dimensional space, then we train a logistic
regression (avg. AUC 85%) over these features, and we predict the existence
probabilities of edges from P(G). We add to the graph the top k edges ac-
cording to these probabilities. FairWalk (Rahman et al. 2019) is a variation
of node2vec, that imposes the same probability of sampling nodes from the
two partitions throughout the walks. We use it to obtain a fair graph em-
bedding space, where the nodes’ neighborhoods are expected to be composed
of nodes belonging to different partitions of the graph. The link recommen-
dation strategy (avg. AUC 73%) follows the one utilized using node2vec as
embedding generator. We compare RePBubLik+ to link recommendation
based on FairWalk to understand whether fairified embedding space can help
in recommending connections that reduce graphs’ polarization. Finally, we also
compare RePBubLik+ to CrossWalk (Khajehnejad et al. 2022). CrossWalk
creates an embedding to (1) increase weights in the peripheries of groups; and
(2) to generally connect different groups. We want to understand if creating
nodes embeddings with this technique favours connections among groups that
also help reducing the network’s structural bias.
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Setup Given a network, we run RePBubLik and the other algorithms on it
for increasing values of K, with K = 1, 2, 4, 6, . . . , 400 or 2000 for larger graphs
(Sociology and Politics). These values of K represent only a small percentage
of the set of possible edges to insert and correspond to the total number of
edges to add to the graph. Once we set the value of K, accordingly, we allocate
kB and kR of the K edge insertions to each color proportionally to the sum
of the BRs of the parochial vertices in each color. That is, we define YC =∑

v∈PC(G) B
t
G (v), for C ∈ R,B, then kB =

⌈
k YB

YB+YR

⌉
and kR = K−kB . This

allocation strategy is a simple but reasonable heuristic that ensures that more
edges are added from nodes with the color whose parochial nodes contribute
more to the structural bias of the network.

We assign the weight M(v, u) = 1/(d(v) + 1) to the added edge (v, u),
where d(v) is the out-degree of v before the insertion, and then we re-normalize
the weights of the other edges by multiplying each of them by 1 − M(v, u).
Furthermore, we set r = 5 and b = 2. Moreover, for the algorithms picking
the top-N central nodes, we set N = 10. To account for variability of the
algorithms, we run them 10 times. The variance of the results is low, overall.

Experiment results In Fig. 1, the plots in the first row show how the structural
bias is affected by the insertion of an incrementally larger set of edges, while
the ones on the second row show the reduction in the number of parochial
nodes. There is a curve for the gain of each algorithm. We draw the following
observations, which we comment on in detail below: (1) RePBubLik+ per-
forms better than the baselines and the competitors: the gain increases faster
after the insertion of just a few edges. (2) N-RCN, N-WRC, and ROV after
a certain point become flat. (3) Overall, RePBubLik+ is the best algorithm.
(4) The values of RePBubLik+ and PR converge, at different speed, to the
same value when we add more edges. (5) node2vec, in the best cases, shows
little improvement of the structural bias that, in the remaining cases, stays
flat or even increases. (6) FairWalk improves over node2vec, but still does not
guarantee a significant reduction of the structural bias. (7) CrossWalk behaves
similarly to node2vec. We now explain these behaviours using the plots on the
second row of Fig. 1.

1. RePBubLik+ chooses edges that directly affect the BR of central nodes
and, with a chain effect, the BR of nodes connected to them. More central
are the nodes we attach the edges to, higher the structural bias drop is.
RePBubLik+achieves a high gain even just after inserting a small set of
edges. There is also a significant drop in the number of parochial nodes.

2. N-RCN, N-WRC, and ROV attach edges only to a subset of P(G) and
as k increases, so does the probability of adding multiple edges to the
same nodes. These facts imply respectively that, especially on disconnected
graphs (see MiHi in Fig. 1c), the addition of edges may affect few nodes,
and that even the insertion of more edges does not modify the set of nodes
on which the new edges have effect. Thus, the curves of N-RCN, N-WRCN
and ROV reach an early saturation that expresses the scarce impact of
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Fig. 1: The first row shows the ∆(G,Σ) (y-axis) for increasing value of k,
reported in terms of %LG, the union of possible edges across PC(G) and C̄ for
C ∈ R,B, (x-axis) for each algorithm. Higher values of ∆ show more significant
reduction of the structural bias. In the second row, we show the percentage of
nodes that are still parochial, %P = |P(G)|−|P(GΣ)|

|P(G)| after k additions.
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subsequent edge additions. This explanation is confirmed by the percent-
age of parochial nodes, which does not decrease after the saturation point.
Furthermore, the ROV shows a stepping behaviour due to it selecting edges
between high-degree central nodes that minimize the RWC without impos-
ing diversity constraints on nodes. And resulting in many selected edges
being attached to the same node. Last, we see that on Polblogs the best
algorithms are N-RCN, N-WRCN. This surprising superiority of the ran-
dom approaches can be explained by the fact that Polblogs is a connected
graph, thus edges added to the top-central nodes potentially affect all the
nodes in P(G). Thus, even when N-RCN and N-WRCN add multiple new
edges to the same set of nodes, ∆ continues to increase.

3. RePBubLik+ shows a consistent behaviour, indeed it increases the gain
faster than other methods, requiring fewer insertions. The penalty factor η
allows the algorithm to diversify the set of nodes to which the new edges at-
tach, raising the chances of lowering the BR of a larger number of parochial
nodes, thus increasing the gain. This feature is important especially on dis-
connected graphs, where the vertices in tiny connected components always
have lower centrality compared to those in huge ones. More importantly,
we observe that the size of P(G) is often reduced to 0: RePBubLik+ is
able to “heal” all the bad vertices, and if we measured the structural bias
on the obtained graph it would be zero. When adding a very large number
of edges, other methods do better than RePBubLik+ on some graphs,
but this situation is not very realistic: usually one can really only add a
small fraction of edges.

4. The variants of RePBubLik: RePBubLik+ and PR, pick edges from the
same candidate set, thus the more edges they can pick, the more likely
they choose edges with similar effect, thus the average parochial nodes’
BR converges. This is the main explanation why the random algorithm
performs so well.

5. Generally, link recommendation algorithms tend to suggest edges between
similar nodes. Node2vec captures this similarity through the nodes’ neigh-
borhood. In this context, graphs partitions have high within- and low
between-density. Nodes in the same partition then lie close in the embed-
ding space. Edges suggested by node2vec with high probability connect
nodes close to each other in the embedding, which often are in the same
partition. Thus, node2vec has a hard time reducing the structural bias,
and in some cases increases it.

6. Aligned with our expectations, link recommendation algorithms based on
FairWalk reduce the structural bias more than node2vec. This suggests
that a fair embedding space improve the connectivity between the graph’s
partitions. However, this is insufficient to significantly reduce the structural
bias.

7. CrossWalk does not reduce the structural bias as much as FairWalk, indeed
it behaves similarly to node2vec. We believe that this is a consequence of
the algorithm design to create the embeddings. Specifically, the strategy of
increasing the weights in the peripheries of groups is quite the opposites of
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the goal of RepBubLiK, which adds connections from nodes at the core of
a group.

6.2 ShuffLik Evaluation

We report here the results of the evaluation of ShuffLik, to assess its effect on
the diverse navigability on a set of graphs. We measure ξ (C) for an increasing
number k of swaps. Another goal of our experiments is to compare the diverse
navigability of recommendation networks built imposing a diversity constraint
to diverse navigability obtained by applying ShuffLik to an unconstrained
graph of recommendations.

Data The MovieLens dataset gathers 25M ratings provided by u ∼ 162, 000
users about m ∼ 60, 000 movies. We consider only the movies whose genre
is known. Starting from the 25M MovieLens dataset7 (Harper and Konstan
2015), we generate multiple recommendation networks. Given the set of all
movies, we fix a genre g and assign the same color to all movies of genre g,
obtaining the set C. The remaining items belong to C̄. For each genre g, we
build two graphs of recommendations whose nodes are movies and edges in-
dicate a directed recommendation relationship. For each movie i, let Li be
the set of its neighbors. In the first kind of graph, named vanilla-RecNet, Li

contains the ℓ most similar movies to i, obtained with an Item Collaborative
Filtering (CF) based on the Alternative Least Square (ALS) (Hu et al. 2008).
In the second kind of graph, div-RecNet, a constraint on the diversity of the
neighbors is imposed, so that at least the 50% of the neighborhood of each
i ∈ C belongs to C̄. This notion of diversity is a variant, on our data, of the
metrics defined by Vargas et al. (2014); Anagnostopoulos et al. (2020). Both
networks have weighted edges as follows. Given an edge (i, j) its weight is di-
rectly proportional to (1) its position within the list of suggested items, (2)
the portion of users rating that item over the number of total users, (3) the
number of reviews it received. Items (2) and (3) are quantities we infer from
the original dataset, while, to obtain (1), we evaluate a power-law density on
ℓ equidistant points. By using the power-law distribution, we model the prob-
ability of clicking links differently positioned within the page. In particular,
we assign higher likelihood to items at the top of the list (Hofmann et al.
2014; Richardson et al. 2007; Collins et al. 2018). We pick as parameter of the
power-law distribution α = 0.3. This way, suggestions at the top of the list are
more likely to be clicked. In Table 2, we show the size of the genres and the
number of possible diversifying swaps, ℜC (Def. 4). We indicate the number
of swaps for both G and div-RecNet. We remark that the size of the graph is
invariant for all topics and all kinds of recommendation graphs. In particular,
the vertices are 54479 and the edges ℓ× 54479.

7 https://grouplens.org/datasets/movielens/25m/

https://grouplens.org/datasets/movielens/25m/
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Table 2: Recommendation Networks’ statistics.

Action Adventure Animation Children Crime Documentary

|C| 16051 349 3502 7305 195 5024
ℜG

C 91689 57735 45948 34710 73064 46299
ℜdiv−RecNet

C 156846 65043 80095 57995 77442 84309

Drama Film-Noir Horror Romance Sci-Fi Thriller

|C| 16784 5453 5746 1770 8330 3868
ℜG

C 377669 8190 59857 100628 58720 137137
ℜdiv−RecNet

C 724682 9068 155949 129147 73360 180766

Baseline We compare ShuffLik to a baseline WeightDifference (WD) which
chooses the pair of edges whose weight to swap based only on absolute differ-
ence between their edge weights. It differs from ShuffLik because it ignores
the centrality of the edges’ source.

Setup We set the number of recommendation ℓ to 20. The parameter t used to
bound the random walks is 10. The number k of weight swaps varies between 1
and 500. Even 500 is a very small fraction of the possible swaps for all graphs.

Results Figure 2 shows the effect of weight swapping on the diverse naviga-
bility (additional results for remaining genres are available inside the code
folder).

We draw the following observations from Fig. 2 (detailed below): (1) in
a few cases, initially ξ (C) on div-RecNet is higher (i.e., better) than the one
measured on vanilla-RecNet ; (2) ShuffLik, even if applied to vanilla-RecNet
achieves, a better diverse navigability for C than the one obtained by the
diversity constrained construction of div-RecNet ; (3) ShuffLik works as well
or better than the baseline WD, especially for a lower number of swaps, but
the values of ξ (C) achieved by ShuffLik and WD sometimes are similar or
converge as the number of allowed swaps increases; (4) when ξ (C) is initially
higher on div-RecNet, the overall best diverse navigability ξ (C) is obtained
by applying ShuffLik on the network div-RecNet obtained by imposing the
diversity constraint (obviously, this solution is also the most expensive).

We now give the details about each observation.

1. Generally, imposing a diversity constraint on the set of recommended items
can have a beneficial impact on diverse navigability, as at every step of the
random walk there is a non-zero probability of traversing an edge to a
node of different colors. We stress that imposing the diversity constraint
to build div-RecNet has a significant cost in terms of the quality of the
recommendations, i.e., the outgoing edges from each vertex i, because an
item that is among the ℓ-most similar to i is replaced with one of smaller
similarity in order to increase the diversity of the whole recommendation
list. On the contrary, the cost of ShuffLik is quite limited: the suggested
items loose their initial order but the goodness of set of items in Li stays the
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Fig. 2: Diverse navigability. On the x-axis is the number of edge swaps. We
report ξ (C) as it changes after applying ShuffLik or the baselines, the higher
the better. Marker shapes identify the kind of graphs, while curve colors iden-
tify algorithms. The blue triangle and its corresponding dashed line indicates
the diverse navigability on the initial vanilla-RecNet network. The green thick
cross and its corresponding dashed line ξ (C) are for div-RecNet.
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same. Additionally, we note that in most of the cases, imposing the diversity
constraint does not imply better graph navigability and a sufficient increase
in the diverse navigability.

2. Swapping edge weights increases the probability of reaching the other color.
With a relative small number of swaps, ShuffLik achieves, in most cases,
the same or higher diverse navigability obtained by imposing a diversity
constraint, and does so without altering the set of items recommended
by an unconstrained system. This results shows the major effectiveness of
ShuffLik over imposing a diversity constraint, since the weight swaps are
much cheaper than the changes in the recommendation list required by
imposing a diversity constraint. In one case (e.g., Fig. 2g) ShuffLik does
not achieve the initial value of ξ (C) in div-RecNet, but this fact is more
a witness of the fact that the initial diverse navigability of vanilla-RecNet
was particularly bad, than of the performance of ShuffLik.

3. Often, ShuffLik reaches a higher diverse navigability within fewer swaps
than WD. This result essentially demonstrates that switching edge weights
within pages that are central has a direct and significant impact on their BR
and, with a domino effect, on all the nodes reaching them. On the contrary,
WD can easily swap edges that do not have impact on many nodes. The two
values start to converge when the effect of centrality dissipates. The latter
happen because we do not update the nodes centralities for computational
reasons.

4. It is pretty obvious that applying ShuffLik on div-RecNet when the ini-
tial navigability is higher results in the best diverse navigability, but it is
important to remark that the cost of this operation would include both the
cost of the changes in the recommendations due to the diversity constraint
imposed in the construction of div-RecNet, and the cost in the change of or-
dering due to ShuffLik. In some cases, the performance of ShuffLik on
vanilla-DivRec and ShuffLik on div-RecNet are similar (see, e.g., Fig. 2a).
Still, the first solution has a much lower cost, only determined by swap-
ping a few edges. We can generalize this observation by saying that, using
ShuffLik, we can aim to the same level of diverse navigability without the
need of imposing diversity constraints on the set of recommended items.

7 Conclusion

We define and study the problems of reducing the bubble diameter and in-
creasing the diverse navigability of graphs by either inserting new edges or
swapping edge traversal probabilities.

Our algorithms perform at most k iterations (either insertions or swaps).
They exploit the monotonicity and submodularity of the objective functions,
to take a greedy approach that is based on a task-specific variant of the random
walk closeness centrality. Under mild conditions, they offer a constant factor
approximation guarantee.
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The results of our experimental evaluation show that the edge insertions
suggested by our algorithm for this task result in a much quicker decrease
of the structural bias than existing methods and reasonable baselines. Our
swap-based algorithm is able to increase the diverse navigability more than
an appropriate baseline and it performs particularly well when combined with
diversity constraints on top of existing standard recommendation algorithms.
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A Postponed Proofs

Lemma 3 Let X be a random variable satisfying 0 ≤ X ≤ t. We have:

P(X ≤ k) ≤
t− E [X]

t− k
.

Proof It holds

E [X] =

∫ k

0
xp(x)dx+

∫ t

k
xp(x)dx ≤ k (1− P(X ≥ k)) + tP(X ≥ k) .

Thus,

P(X ≥ k) ≥
E [X]− k

t− k
,

and

P(X ≤ k) = 1− P(X ≥ k) ≤ 1−
E [X]− k

t− k
=

t− E [X]

t− k
.

⊓⊔

Lemma 9 Let v ∈ PCv (G), then, for any t′ ≤ t, it holds Bt′
G (v) ≥ r t′

t
.

Proof From the hypothesis, using the definition of BR, it holds

r ≤ Bt
G (v) = tP

(
v

≥t
⇝
G

C̄v

)
+

t−1∑
i=1

iP
(
v

=i
⇝
G

C̄v

)

≤ tP
(
v

≥t′
⇝
G

C̄v

)
+

t′−1∑
i=1

iP
(
v

=i
⇝
G

C̄v

)
.
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By rearranging the terms, we obtainr −
t′−1∑
i=1

iP
(
v

=i
⇝
G

C̄v

) 1

t
≤ P

(
v

≥t′
⇝
G

C̄v

)
.

Thus, for t′ ≤ t, it holds

Bt′
G (v) = t′P

(
v

≥t′
⇝
G

C̄v

)
+

t′−1∑
i=1

iP
(
v

=i
⇝
G

C̄v

)

≥ rj
t′

t
−

t′−1∑
i=1

i

(
1−

t′

t
P
(
v

≥t′
⇝
G

C̄v

))
≥

t′

t
r .

⊓⊔

Lemma 14 Let C ∈ {R,B}, v ∈ C, t′ ≤ t, and (e, e′) ∈ ℜC with v the source vertex and
w the radicalizing end point. Let δ = M(e)−M(e′). It holds

δBt′−1
G (w) ≤ Γ (G, v, (e, e′), t′) ≤ Ft′−1 (v) δB

t′
G (w) .

Proof Let Ge,e′ be the graph obtained after swapping the probabilities of e and e′. Consider
the probability space of all random walks starting from v in Ge,e′ and G. We introduce a
coupling between these two probability spaces as follows: consider a walk in G, for any step
that is not traversing e couple it to an identical step in G. If a step traverses e, then, with
probability 1− δ, couple it to the same step in Ge,e′ , else couple it to e′ in Ge,e′ .

Let Ei, 1 ≤ i ≤ t′ be the event that the coupling diverges at the i-th step, which is
equivalent to being at v at step i− 1 and the first r.w. taking e, the second taking e′.

When Ei happens, then the walk in Ge,e′ has reached the other color by taking e′ while

the walk in G still needs, in expectation, Bt′−i
G (w) steps to reach the other color. Using the

law of total expectation and summing over all 1 ≤ i ≤ t′, we can write

Γ (G, v, (e, e′), t′) =
t′∑

i=1

Bt′−i
G (w)P(Ei) =

t′−1∑
i=1

Bt′−i
G (w)P(Ei) .

It holds

P(Ei) = P
(
v

i−1
⇝
G

v

)
δ .

Since Bt′−i
G (w) ≥ 1 for every 1 ≤ i < t′, and clearly P(E1) = δ, we obtain the left hand side

of the thesis.
The right hand side is concluded as follows. It holds Bt′−i

G (w) ≤ Bt′−1
G (w), for every

1 ≤ i < t′, and we can write, using (3),

t′−1∑
i=1

P(Ei) =
t′−1∑
i=1

P
(
v

i−1
⇝
G

v

)
δ =

t′−2∑
i=0

P
(
v

i
⇝
G

v

)
δ = Ft′−1 (v) δ .

⊓⊔
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