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Abstract We study the problem of efficiently mining statistically-significant sequen-
tial patterns from large datasets, under different null models. We consider one null
model presented in the literature, and introduce two new ones that preserve differ-
ent properties of the observed dataset. We describe SPECK, a generic framework for
significant sequential pattern mining, that can be instantiated with any null model,
when given a procedure for sampling datasets according to the null distribution. For
the previously-proposed model, we introduce a novel procedure that samples ezactly
according to the null distribution, while existing procedures are approrimate sam-
plers. Our exact sampler is also more computationally efficient and much faster in
practice. For the null models we introduce, we give exact and/or almost uniform
samplers. Our experimental evaluation shows how exact samplers can be orders of
magnitude faster than approximate ones, and scale well.

Keywords Hypothesis Testing, Significant Pattern Mining, Statistically-Sound
Knowledge Discovery

Speck Alto Adige |/ Siudtiroler Speck: an Italian dry-cured, lightly smoked ham.
1 Introduction

Representing data as sets of sequences of elements is natural for many processes.
Finding interesting patterns in a dataset of sequences is an important knowledge
discovery task with many applications: web log analysis, finance modelling, moni-
toring of athletes’ vitals and performance (Hrovat et al. 2015), and processing of
satellite images (Méger et al. 2015). As already observed for other kinds of pat-
terns (Hamaéldinen and Webb 2019; Pellegrina et al. 2019a), support (or frequency),
i.e., how many times a pattern appears in a dataset, falls short from being a good
measure of interestingness: a sequential pattern may be frequent just because it is
composed of many frequent items, but it may not be interesting in itself. For this
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reason, many other measures of interestingness have been proposed, e.g., based on
Minimum Description Length (Lam et al. 2014) or on different statistical assump-
tions (Fumarola et al. 2016; Feremans et al. 2018; Petitjean et al. 2016; Tatti 2015;
Raissi et al. 2008; Gwadera and Crestani 2010; Low-Kam et al. 2013; Tonon and
Vandin 2019; Pinxteren and Calders 2021). A natural way to find interesting se-
quential patterns is to perform statistical hypothesis tests on the patterns, under
the assumption of a user-specified null model that captures properties of the data
generating process as expressed in the observed dataset (see Sect. 3.1 for formal
definitions). Sequences that “pass the test” are deemed interesting, and marked as
(statistically- )significant. 1t is of key importance that the testing procedure cor-
rects for the fact that multiple hypotheses are being tested, which is usually done
by ensuring that the Family-Wise Error Rate (FWER)—i.e., the probability that
the collection of patterns marked as significant contains a pattern that is not really
significant—is bounded by a user-specified quantity § € (0, 1).

Different from, e.g., the collection of frequent sequences, the set of significant
sequential patterns is mot uniquely defined: it depends on the null model that the
user chooses to assume. Many null models for sequential patterns have been defined
in the literature (see Sect. 2). The choice of a null model must be very deliberate,
and depends on what is known (and should be modeled) about the process that
generates data. Informally, finding the collection of significant sequential patterns
can lead to the discovery of properties of the data generation process that are not
captured by the assumed model. It is therefore important to have efficient methods
for significant sequential pattern mining that can handle different null models.

A key step in hypothesis testing for sequences is the computation of the p-value
(Sect. 3.1), i.e., the probability that, under the null model, the support of the pattern
is as high or higher than in the observed dataset. Computing the p-value exactly is
usually impossible, except in restricted cases (Pinxteren and Calders 2021). Thus,
algorithms for significant sequence mining rely on estimating p-values by randomly
sampling datasets from the null model. Sampled datasets are also used in Monte-
Carlo methods such as the Westfall-Young approach (Westfall and Young 1993) for
computing the adjusted critical value used for controlling the FWER (see Sect. 3.1).
It is therefore crucially important to have efficient procedures for sampling datasets
from the null model, where efficiency is considered both along the axis of computa-
tion (in terms of the time complexity to generate a dataset) and along the axis of
probability, i.e., how close to the desired null distribution is the output distribution
of the sampling procedures: exact samplers that are computationally efficient should
be preferred to samplers whose outputs approzimately follow the null distribution.

Contributions We study the problem of mining statistically significant sequential
patterns from a large transactional dataset, with statistical guarantees and as effi-
ciently as possible. Our contributions are the following.

— We present SPEck (Alg. 1), a generic framework for mining significant se-
quential patterns according to different null models. Our framework uses the
Westfall-Young resampling approach (Westfall and Young 1993), and generalizes
the PROMISE algorithm by Tonon and Vandin (2019).

— SPECK’s instantiation for a null model requires a procedure to sample datasets
according to the null distribution. For a popular null model (Sect. 4.2.1), pre-
vious work (Tonon and Vandin 2019) gave an approzimate sampling procedure



SPEck: Mining Statistically-significant Sequential Patterns Efficiently 3

(specifically, an e-Almost Uniform Sampler (e-AUS), see Sect. 3.2). We introduce
the first Exzact Uniform Sampler (EUS) for this null model. In addition to being
better on probabilistic grounds, our EUS is computationally more efficient than
the e-AUS, thus it should be preferred. As a byproduct of our approach, we also
show an improved mixing time for the e-AUS by Tonon and Vandin (2019).

— We focus on market basket data, i.e., binary sequential datasets (see Sect. 3), but
most of what we say can be extended to richer sequential datasets, such as those
used for mining high-utility sequential patterns (Truong-Chi and Fournier-Viger
2019).

— We introduce two novel null models (Sect. 4.2.2 and 4.2.3) preserving different
properties of the observed dataset, and we give EUS’s and /or e-AUS’s for each of
them. This contribution enriches the set of null models available to practitioners.

— We implement SPEcCK and our EUS’s and e-AUS’s, and evaluate their perfor-
mance on real and artificial datasets (Sect. 5) in terms of the time needed to
sample a dataset from the null model and the time to mine significant patterns.
The results show that our EUS’s are faster than e-AUS’s for the same null model,
by up to 26 times, and thus that they should be preferred for the task at hand.

2 Related Work

Frequency/support was the first interestingness measure for sequences (Agrawal and
Srikant 1995), and efficient algorithms are readily available, both exact (Pei et al.
2004; Fournier-Viger et al. 2014) and approximate (Raissi and Poncelet 2007; Servan-
Schreiber et al. 2020). The limitations of this measure were soon understood, and
the knowledge discovery community shifted its focus to developing other ways of
assessing the interestingness of sequential patterns, based, for example, on Mini-
mum Description Length (Lam et al. 2014), exceptional model mining (Mollenhauer
and Atzmueller 2020) or on different statistical models (Fumarola et al. 2016; Fere-
mans et al. 2018; Petitjean et al. 2016; Tatti 2015; Raissi et al. 2008; Gwadera and
Crestani 2010; Low-Kam et al. 2013; Tonon and Vandin 2019; Pinxteren and Calders
2021). This shift is similar to that observed for other kinds of patterns (e.g., item-
sets (Gionis et al. 2007; Pellegrina et al. 2019b), subgraphs (Sugiyama et al. 2015)),
and subgroups (Duivesteijn and Knobbe 2011). We refer the reader to the survey
by Hédméldinen and Webb (2019) and the tutorial by Pellegrina et al. (2019a) for
in-depth treatments of this field. In the interest of brevity and clarity, we discuss
here only works dealing with sequential patterns in an unlabeled dataset, i.e., when
the transactions are not associated to a class label (Pellegrina and Vandin (2020)
discuss the labeled setting).

Gwadera and Crestani (2010) propose a two-parts probabilistic model for the
sequences in the dataset, based on a model for just the lengths of the sequences
and a maximum-entropy null model for the itemsets in the sequences. Testing for
significance this way is particularly inefficient for longer patterns. Our approach
does not suffer from this issue. Additionally, Gwadera and Crestani’s model does
not exactly preserve some important properties of the observed dataset, which is a
desirable feature of null models. All null models we study (Sect. 4.2) exactly preserve
one or more properties, e.g., the multi-set of transaction lengths or their item-lengths,
or the multi-support of the itemsets (see definitions in Sect. 3).
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Low-Kam et al. (2013) introduce SIGSPAN, an algorithm for mining statistically
significant sequential patterns. In their model, each itemset appears in a transaction
with a probability equal to its frequency in the original dataset, and independently
from any other event. The frequency is therefore preserved only in expectation.
The null models we study preserve exactly other important properties of the origi-
nal dataset. Additionally, Low-Kam et al. use the Bonferroni correction (Bonferroni
1936) to control for the Family-Wise Error Rate (FWER, see Sect. 3) and only con-
sider the frequent patterns in the observed dataset as the set of hypotheses. We
instead use the resampling approach by Westfall and Young (1993), which tends to
have more statistical power because it takes into consideration the correlation be-
tween the tested hypotheses (i.e., patterns). Furthermore, our approach considers
the class of all patterns that may be frequent in any dataset from the null model,
which is statistically more appropriate.

Tonon and Vandin (2019) present PROMISE, an algorithm that mines signifi-
cant frequent sequential patterns under two different null models while controlling
the FWER using the Westfall-Young Monte-Carlo resampling approach. SPECK
generalizes this algorithm. For one of the null models they propose, we show an ez-
act sampler, which is preferable both probabilistically and computationally to the
approzximate sampler they propose. We also introduce two novel null models that are
not considered in their work.

Pinxteren and Calders (2021) have developed PS?, an algorithm to rank the
significance of sequential patterns according to the specific null model that considers
only permutations of itemsets within a transaction, not across different transactions.
This model was previously presented by Tonon and Vandin (2019). PS? only works
in the case where all itemsets in a transaction have length one and there are no
repeated itemsets in a transaction. These assumptions are made to avoid what they
call multiple-distribution sensitivity, the assumption that all sequences come from the
same distribution. By considering all permutations of each sequence, PS? computes
the fraction of permutations in which a sequential pattern appears, thus allowing
for the exact computation of the p-value. We study different null models, without
imposing the above restrictions, but the spirit of our work is similar in the sense
that we are developing efficient methods for computing (approximate) p-values of
patterns under interesting null models.

3 Preliminaries

We now formally define the main concepts used in this work. To keep the presentation
focused, we only cover the case of binary sequential datasets, but what we say can
also be extended to the richer datasets used for high-utility sequence mining (Truong-
Chi and Fournier-Viger 2019). A ground set (or alphabet) A is a finite set of items
A ={a1,...,a,}, for some n > 1. An itemset A C A is a non-empty subset of A. A
sequential pattern, or sequence S = (Aj,...,Ay) for some ¢ > 1, is a finite ordered
list of itemsets, i.e., 4; C A, 1 < i < {. We say that these itemsets participate in
the sequence and denote this fact with A; € S. The itemset A may be repeated
more than once in a sequence (e.g., S = (A, B, A)). The length |S| of a sequence
S is the number of itemsets participating in S, and the item-length ||S|| of S is
defined as ) , 4| A|. For example, S = ({a,b},{b,c,d},{a, f}) has length [S] =3
and item-length ||S|| = 7. A sequence S = (S1,5,...,5y) is a subsequence of a
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sequence T' = (T1,T3,...,Ty) (denoted S C T) iff there exist integers 1 < i1 <
ip < -+ < 4y, < wsuch that 51 C T;,5 C T,,...,8, C T; . A transactional
dataset D is a bag of sequences. Each sequence in D is also called, in this context, a
transaction. The support op(S) of a sequence S in D is the number of transactions
in D of which S is a subsequence. The support op(A) of an itemset A in D is the
number of transactions ¢ of D in which A participates, i.e., for which A € t. The
multi-support pp(A) of an itemset A in D is the number of times that A is repeated
in total in the transactions of D. For example, if D = {(A4, B), (A, C, A), (B, C)}, it
holds op(A) = 2 and pp(A) = 3.

Let S be the (infinite) set of all possible sequences built on itemsets with ground
set A. Given a minimum support threshold 6 € [1,|D|] (where |D| is the number of
transactions in D), the set Fp(0) of O-frequent sequences in D is the set of sequences
with support at least 8 in D, i.e.,

Fp(0) ={S €S : op(S) >0} .

3.1 Significant Patterns and Hypothesis Testing

Given an observed dataset D, whose transactions are built on the alphabet A, a
null model II is a pair II = (Z, ) where Z is a subset of the set of all possible
datasets with |D| transactions built on A, and 7 is a probability distribution over
Z. In this work, it is always the case that 7 is the uniform distribution over Z, i.e.,
m = U(Z). The set Z is usually defined by including all and only the datasets as
above that exhibit some property that D also exhibits (thus, D € Z). For example, Z
may contain all and only the datasets for which pp/(A) = pp(A), for every D' € Z,
and every itemset A C A (i.e., the multi-support of every itemset is the same in all
datasets in Z). In Sect. 4, we study several null models preserving different properties.

Given a null model IT = (Z,7), the expected support u(S) of a sequence S € S
under II is the expectation of the support of S w.r.t. m, i.e.,

NH(S) =Ep~r [UD(S)]

We restrict m = U(Z), and Z is finite, thus we can equivalently write

1
u(9) = 17 > on(S) -

Dez

In this work, given a dataset D, a minimum support threshold 6, and a null model
IT = (Z,7), we are interested in finding a subset of Fp(6) containing only sequences
whose support in D is significantly different than their expected support under I7,
where significance is determined using hypothesis testing. Specifically, for each se-
quence S, we consider the null hypothesis

HS = “/LH(S) = U'D(S)” A

The p-value pp/ (S) of S in D’ is the probability, conditioned on Hg (i.e., under II),
that, in a dataset D" drawn from Z according to 7, one observes op (S) > op/(S),

1 This null hypothesis is one of many that could be considered: one could equally test any
hypothesis for which the pattern support (or actually any pattern-specific function of the
dataset) is a reasonable test statistic.
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i.e., a support of S at least as large as its support in D’. The p-value pp(S) is used to
assess whether the observed dataset D gives evidence for the null hypothesis Hg to
be false: informally, a small pp(S) (e.g., not larger than a critical value o) is taken
as suggesting that there is such evidence. When the p-value pp(S) is such that this
evidence seems present, the null hypothesis Hg is rejected and the sequence S is
marked as significant. The p-value of S in D may be low even if the null hypothesis
is true, thus there is the possibility that marking S as significant is a false discovery,
or, equivalently, that S is a false positive. For example, if we decide to mark S as
significant whenever pp(S) is not larger than a critical value «, then the probability
(considered over repetitions of the experiment, i.e., over different observed datasets)
to make a false discovery involving S is at most a.

Under the null models we consider, computing the p-value pp (S) ezactly is not
possible: even if 7 is uniform over Z, the support of S, seen as a random variable, has
a complicated distribution. We then estimate the p-value pp- (S) using the following
Monte-Carlo procedure (Tonon and Vandin 2019, Sect. I1.D). Let Dy,..., Dy be T
datasets sampled independently from 7. We estimate pp/(S) as the fraction pp/(S)
of the datasets D', Dy, ..., Dr where the support of S was at least op/(.9), i.e.,

T
ppr (S) = %H <1 + Z]]-[JDi(S) > UD'(S)]> ; (1)

where 1[] is the indicator function for the condition between brackets.

In this work we develop methods for finding a subset @ of Fp(6) such that the
probability that any sequence in @ is a false positive is at most §, for a user-specified
parameter § € (0,1). In statistical terms, we want to develop methods that output
a set () while controlling the Family-Wise Error Rate (FWER) at level 6.

A classic way to control the FWER at level § is the Bonferroni correction (Bon-
ferroni 1936) (later slightly improved by many, e.g., Holm (1979)). The idea is
that, when testing a set H of hypotheses, one should use the adjusted critical value
ap(6,H) = 9/|H| to test each hypothesis (i.e., compare each p-value to ap). This
approach suffers from many defects: (1) as the number k of hypotheses grows, it
becomes harder to reject false null hypotheses, i.e., this approach suffers from low
statistical power; (2) it does not take into account any “structure” or correlation
between the different hypotheses; and (3), it cannot be applied when the number
of hypotheses being tested is not known in advance, or is infinite. The first two is-
sues affect all applications of the Bonferroni approach, and already make it quite
unattractive, but it is the third one that really prevents us from using this technique
to control the FWER for the task in which we are interested. Indeed, under the null
model, we have to consider the set H of the hypotheses associated with all sequences
S for which there exists a D’ € Z such that op/(S) > 6 (Tonon and Vandin 2019,
Sect. I.B). While the set of these hypotheses is well defined, its size is not readily
available, thus precluding the use of the Bonferroni correction for this task.

The Westfall-Young method (Westfall and Young 1993) for multiple hypothesis
correction relies on an empirical approximation of the distribution of the minimum
p-value across all sampled datasets to determine an adjusted critical value awy (9, H)
as follows. Let D1,...,Dp be P datasets sampled independently from 7. Let

p; = min{pp,(S) : Hs € H},1<i< P (2)
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be the minimum p-value on D; of any null hypothesis in H. Then, the Westfall-Young
adjusted critical value is

P
awy(a,y);max{a : ;Z]l[ﬁiga]ng} . 3)

Except in restricted settings (Pinxteren and Calders 2021), pp, (S) cannot be easily
computed, so pp,(S) can be used in its place in (2) (Tonon and Vandin 2019).

3.2 Uniform and e-Almost-Uniform Samplers

In this work we discuss procedures to draw samples from a finite domain {2, according
to a distribution 7. To be more precise, the procedures take an input x from some
space, and draw a sample from a finite domain {2(x) that depends on z, based on 7. In
the specific case of significant sequential pattern mining, « is the observed dataset D,
and 2(z) is the set Z of datasets considered in the null model IT = (Z, ), where, as
mentioned in Sect. 3.1, 7 is uniform over Z, and Z depends on the observed dataset
D because the datasets in Z preserve specific properties of D.

We study two kinds of sampling procedures: ezact-m samplers and e-almost-m
samplers. Since in this work 7 will always be the uniform distribution over 2(x), we
actually talk about Exact Uniform Samplers (EUS) and e-Almost Uniform Samplers
(e-AUS). EUS’s, as the name implies, are algorithms that, given £2(z) return a sample
from 2(z) that is distributed perfectly uniformly in 2(z). We only consider EUS’s
that run in time polynomial in the size of the input .

An e-AUS (Mitzenmacher and Upfal 2005, Sect. 10.3) is instead an algorithm A
that takes in input = and a parameter ¢ € (0, 1), and outputs a sample w from 2(z)
such that the total variation distance d(ia, ) between 7 and the distribution s of
the output w, when A is run with input = and parameter ¢, is at most ¢, i.e.,

- — <e.
d(va, ) sax Ya(S) W(‘f‘) <e
TR

We only consider e-AUS’s that run in time polynomial in Ine~! and in the size of
(also known as “Fully-Polynomial e-AUS’s”).

It should be evident that an EUS is always preferable to an e-AUS in probabilistic
terms, but the computational complexity must also be taken into consideration. In
this work we show that it is possible to develop EUS’s that are faster than e-AUS’s,
thus making the former the obvious choice for the task at hand.

Markov-Chain-Monte-Carlo e-AUS and mixing times Many e-AUS’s are based on
Markov-Chain-Monte-Carlo (MCMC) methods (Mitzenmacher and Upfal 2005, Ch.
10). These methods use a Markov chain whose states are the elements of the domain
£2(z) and whose unique stationary distribution is the uniform distribution. Samples
are taken by running the Markov chain long enough that the distribution of the
state of the Markov chain has a total-variation distance at most € from the uniform
distribution. The number of steps needed for this condition to hold may depend on
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the starting state s € 2(x) from which the chain starts. For any s € £2(z), let p’ be
the distribution of the state of the chain starting at s after ¢ steps. The mizing time
7(e) for a Markov chain is the minimum number of steps ¢ such that the maximum,
over the choice of the starting state s, of the total variation distance between p’ and
the stationary distribution 7 of the chain is at most &:

7(g) = min {t : max d(pl,7) < 5}
sef2(x)

A Markov chain is said to be rapidly mixing if the mixing time is polynomial in
log(1/¢) and in the size of x. It is important to remark that 7(¢) is a function of €,
and, unless € = 0, it is not the time needed for the distribution of the state of the
chain to be ezactly the stationary distribution. That is, 7(¢) is not a strong stationary
time (Levin and Peres 2017, Ch. 6) (which is a random variable), nor in general an
upper bound to such a time. Many techniques exist to bound the mixing time 7(¢),
for example coupling and path coupling which give upper bounds that depend on
both € and the size of x. Often, in the derivation of such bounds, ¢ is fixed to a
constant, e.g., 1/1, as 7(¢) < [logy e~ 1]7(1/4) (Levin and Peres 2017, Eq. 4.34). The
monograph by Levin and Peres (2017) contains an in-depth discussion of Markov
chains, mixing and (strong) stationary times, and (path) coupling.

4 Mining Significant Sequential Patterns Efficiently

In this section we first describe SPECK, our framework for mining significant se-
quential patterns, and then (Sect. 4.2) discuss different null models, some of them
novel, and show procedures to efficiently sample from them.

4.1 SPECK

We now present SPECK (pseudocode in Alg. 1), a generic framework for mining
significant sequential patterns, using the Westfall-Young approach. The framework
closely follows PROMISE by Tonon and Vandin (2019, Alg. 2), but we make it capable
of handling any null model by making the null model part of the input, (see below)
and we make SPECK use a single set of T' datasets to estimate all the p-values, rather
than having to sample a new set every time. This last change allows for a higher level
of parallelism when the algorithm is implemented, and makes no difference from a
correctness point of view.

The input parameters are: a dataset D, a minimum support threshold 6 € [1,|D|],
a null model IT = (Z, ), an acceptable FWER 6 € (0,1), and two integers 7" and
P, that respectively specify the number of datasets from IT to use for estimating p-
values, and the number of datasets from IT to use for computing the adjusted critical
value awy. The output is a collection @ C Fp(6), with the following properties.

Lemma 1 With probability at least 1—§ (over the runs of the algorithm), Q contains
only sequences S for which the null hypothesis Hg (w.r.t. IT) is false.

Equivalently, SPECK controls the FWER at level §. The proof of this result is
immediate from the description and the correctness of the Westfall-Young approach.
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Algorithm 1: SPEck: a framework for mining significant sequential pat-
terns
Input : Dataset D, min. supp. thres. 6 € [1,|D|], null model IT = (Z, «), acceptable
FWER § € (0, 1), no. of datasets for p-value estimation T, no. of datasets
for critical value computation P
Output: Set Q C Fp(#), with no false positive, with prob. > 1 — ¢
F < array of size T
for i < 1 to T do
Déz) < sampleDataset (D, II);
Flil = F i (0);

B N R

P < array of size P of all 1’s;
for i < 1 to P do

'Dgi) < sampleDataset (D, I1);
foreach S € F ) (6) do

P (S) « ;stimatePValue(]:, o) (S)N;
D, D,

10 P[i] < min {P[i], ﬁS(Dgi))}§

® N o«

©

11 awy  adjustCriticalValue(P, §);

12 Q <« 0;

13 foreach S € Fp(0) do

14 pp(S) < estimatePValue(F, op(S));
15 L if pp(S) < awy then Q +— QU {S};

16 return Q

We assume SPECK has access to a standard frequent sequence mining algo-
rithm (Pei et al. 2004; Fournier-Viger et al. 2014). It starts by creating an array F
of size T (line 1), initially empty. This array is populated so that its i-th element,
1 < i < T, is the collection of O-frequent sequences of a dataset D,(f) sampled in-
dependently from IT (lines 3-4). The collection F is used later in the algorithm for
estimating the p-values of patterns, as in (1). The function sampleDataset samples
a single dataset from Z. It takes D as input because Z depends on D (Sect. 3.2).
SPECK then creates an array P of size P, initialized to contain all ones (line 5).
This array will store samples from the minimum p-value distribution, from which
the adjusted critical value awy is computed. This value is then used to determine
the patterns to include in Q. The value in P[i], 1 < i < P is computed as follows.
First, a dataset Dg) is sampled from II (line 7). Then, the array F is used to esti-
D (0) (lines 8-9). If the
estimated p-value p) (S) is less than P[i], this latter quantity is updated to be

mate the p-value on Dgi) of each frequent sequence S € F

Py (S) (line 10). This way, P[i] will contain the minimum estimated p-value on

DV among all f-frequent sequences in D). Once all the elements of P have been
computed, the algorithm obtains the adjusted critical value awy as in (2) (line 11).
SPECK then mines the original dataset D and, for each S € Fp(0), it estimates its
p-value using F (line 14). If this quantity is not larger than the adjusted critical
value, S is added to the output set @ (line 15), which is returned at the end.

SPEcK offers many possibilities for parallelization, in a way similar to the
PROMISE algorithm (Tonon and Vandin 2019, Sect. 111.B).
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4.2 Sampling datasets from the null model

SPECK requires a procedure (function sampleDataset in Alg. 1) to sample a dataset
from the null model IT. We now discuss how to perform this operation efficiently in
both computational and “probabilistic” terms, for different null models. For one of
the null models we study (Sect. 4.2.1), an e-AUS (Sect. 3.2) was proposed in the
literature (Tonon and Vandin 2019). We introduce an EUS for this model, which is
also much faster than the existing e-AUS. We also discuss other null models that
we deem particularly interesting and have not been studied before, and give EUS’s
and/or e-AUS’s for them (Sect. 4.2.2 and 4.2.3).

4.2.1 Null model #1: fixred multi-supports and transaction lengths

We start by studying a null model IT = (Z,7) proposed by Tonon and Vandin
(2019, Sect. I1.B), and for which they give an e-AUS (see below). This null model
can be seen as an extension of the null model proposed by Gionis et al. (2007)
from itemsets to sequential patterns. Given the observed dataset D, fix an arbitrary
ordering t1,...,tp| of its transactions. The null set Z is the set of all datasets D’
with |D’| = |D| transactions such that:

L. the transactions #, ..., ¢[p of D’ are such that [ti| = |t;|, 1 <i < |D|, ie., the
lengths of the transactions of D, as imposed by the fixed arbitrary ordering, are
preserved; and

2. for every itemset A participating in at least one transaction ¢, it holds pp/(A) =
pp(A), ie., the multi-supports of itemsets participating in the transactions are
preserved.?

The distribution 7 is uniform over Z, as it is always the case in this work. It is
important to remark that in this model, two different datasets satisfying both the
above requirements may differ from each other only in the ordering (in the datasets)
of transactions of the same length, even if both datasets are identical bags of trans-
actions. For example, the following two datasets

(C, 4) (C, A)
D = (B) and D' = (4) , (4)
(4) (B)

where A, B, and C are itemsets, are different datasets, both in Z. Without this
assumption, i.e., if we consider the two above datasets the same dataset, the MCMC
algorithm proposed by Tonon and Vandin (2019) would not be an e-AUS for the null
model. Since we want to show an EUS for the null model proposed by Tonon and
Vandin (2019), we make the same assumption.

Tonon and Vandin (2019, Sect. III.A) present an e-AUS for sampling datasets
from Z almost uniformly, taking an MCMC approach. The idea is to start from D
and perform a number of itemsets swaps, i.e., swap an itemset A from a transaction
t4 € D with another itemset B from another (or the same) transaction ¢p, where
A and B are chosen uniformly at random with replacement from the bag of the
m=5y, cplt| itemsets participating in the transactions in D. The resulting Markov
chain, where states are datasets in Z and there is an edge from D’ to D" iff D" can

2 This constraint is not the same as requiring the multi-supports of all itemsets be preserved.
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be obtained from D’ with a single swap, has a uniform stationary distribution over
Z. Tonon and Vandin (2019, Thm. 2) show an upper bound O(m?log™/=) to the
mixing time 7(¢) of the Markov chain, i.e., the number of itemsets swaps needed for
the distribution of the obtained dataset to have total-variation distance at most ¢
from the desired uniform stationary distribution.

We now discuss a different way to look at sampling of datasets from Z. We first
use this new point of view to derive a better upper bound to the mixing time 7(¢)
of the “itemset-swaps” e-AUS. Afterwards, we present an EUS for this null model,
which, in addition to giving “perfect” samples, is much more computationally efficient
than the e-AUS (even with the improved mixing time), both theoretically (see below),
and experimentally, as we show in Sect. 5.

The idea is to look at any dataset D’ € Z as an m-dimensional vector of itemsets,
as follows. Let ¢,... ,tiD,‘ be the transactions in D’ (recall that, in addition to
holding |t'|, = |t|;, 1 < 4 < |DJ, the ordering of these transactions is also fixed,
in the null model, to differentiate datasets built over the same set of transactions).
We can represent D’ as the vector v(D’) that has as the first |t}| components, the
corresponding itemsets from 1, in the order they appear in this transaction, followed,
as the successive |t}| components, by the itemsets in ¢4, in the order they appear in
this transaction, and so on, until the m-th component is the last itemset participating
in tTD’I' The vector v(D) of the observed dataset can be computed with a single pass
over it, and, given a vector, obtaining the corresponding dataset is equally efficient.

Fact 1 For any two distinct D', D" € Z, it holds v(D') # v(D").
Fact 2 Let D' € Z (possibly D' = D). Then v(D') is a permutation of v(D).

Fact 3 Let D' € Z. Any permutation of the order of the components of v(D') gives a
vector w such that there exists a D" € Z (potentially D" = D’) for which v(D") = w.

When there is at least one itemset A with pp(A) > 1, there are many permuta-
tions that map v(D) to v(D').

Facts 1 to 3 imply that the set S of all m! permutations of the order of the
components of v(D) (from now on, we say “permutations of v(D)” to refer to the
permutations of the order of its components) is partitioned into equivalence classes
in such a way that there is an equivalence class Cps for each and only the datasets
D' € Z (potentially D' = D) such that Cps contains all and only the permutations
of v(D) that result in D’. We now show a key result (Lemma 2) about the sizes of
these equivalence classes, which is at the core of our improved mixing time bound
for Tonon and Vandin (2019)’s e-AUS, and of our EUS.

Lemma 2 All classes have the same size, i.e., |Cp| = |Cp/|, for any D' € Z.

Proof Any permutation g in Cp maps v(D) to itself by only permuting components
that have identical itemsets (potentially permuting each component with itself, thus
the identity permutation is in Cp). That is, if g(i) = j, 1 < 4,5 < m, i # j, then it
must be that the itemset at index 4 of v(D) is identical to the itemset at index j.

Let D' € Z and fix g € Cpr. Any r € Cpr can be seen as the composition of g
with some h € Cp (i.e., r(i) = g(h(i)), 1 < i < m), specifically with h such that
h(i) = g~ (r(i)), 1 <i < m. The permutation h belongs to Cp because, since both
g and r belong to Cps, applying g~! (which exists because g is a permutation) to
v(D’) must result in v(D).
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From the above paragraph, it must be |Cp/| < |Cp|. Conversely, for every differ-
ent h € Cp, we obtain a different r € Cp/ when we compose g with h. Thus it must
also be |Cp/| > |Cpl|, and our proof is complete. O

We then have the following equivalence between drawing datasets from Z and
drawing permutations of v(D).

Corollary 1 Let g be a permutation of v(D) drawn uniformly at random from all
permutations of v(D). Then the dataset D' corresponding to the vector w obtained
by applying g to v(D) is drawn uniformly at random from Z.

This equivalence allows us to give a better analysis of the mixing time of the
“itemset-swap” e-AUS by Tonon and Vandin (2019), by drawing from the rich liter-
ature on card shuffling (Levin and Peres 2017, Ch. 8). Indeed the idea of shuffling
a deck of cards (i.e., obtaining a uniform random permutation of the set of cards)
by repeatedly swapping two cards chosen uniformly at random has been studied
deeply. Diaconis and Saloff-Coste (1993, Example 4A) show a O(mlogmloge~!) up-
per bound to the number of swaps needed (see also (Jonasson 2012, Sect. 1)), which is
optimal (Wilson 2004), and directly applies to the mixing time of the itemset-swap
e-AUS by Tonon and Vandin (2019), thus improving their O(m?log™/c) bound.
This improved bound may also help explaining why, in their experiments, Tonon
and Vandin (2019, Sect. IV.C) observed the Markov chain converging to the uniform
distribution much faster than explained by their bound.

The restriction that the random permutation of v(D) can only be obtained by
performing itemset swaps starting from v(D) is unnecessary: there is no reason to
impose such constraint. Drawing a permutation of v(D) uniformly at random can
be done using the Fisher-Yates shuffle (Knuth 1998, Sect. 3.4.2) with input v(D).
The output will be a vector w that is obtained by applying a uniformly-chosen per-
mutation to v(D). The Fisher-Yates shuffle runs in time O(m). Parallel algorithms
outputting such a w are also available (Bacher et al. 2015). The dataset D’ corre-
sponding to w is the dataset whose first transaction ¢} contains exactly, in order, the
first |¢1] components of w, in the same order as they appear in w, and whose second
transaction ¢}, contains exactly, in order, the successive |t2| components, and so on.
In conclusion, we have a EUS for this first null model, which is more efficient than
the existing e-AUS in both probabilistic and computational terms, and thus should
be preferred. In Sect. 5 we show that our EUS is faster also in practice.

4.2.2 Null model #2: fixred multi-supports, and transaction lengths and item-lengths

We now introduce a first novel null model. As in Sect. 4.2.1, we fix an arbitrary
ordering of the transactions t1,...,%p| of the observed dataset D, and will consider
two datasets to be different even if they only differ by the ordering of their trans-
actions. The null set Z contains all and only the datasets D’ with |D| transactions
such that, in addition to meeting the constraints from null model #1 (Sect. 4.2.1),
also satisfy the condition that the transactions tf, .. "tTD| of D' have ||t} = ||,
1 < i < |D|, i.e., the item-lengths of the transactions of D are preserved. The null
distribution 7 is the uniform distribution over Z.

We now give an EUS for this null model. Consider the m itemsets in D, and let ¢
be the length of the longest one. Consider the ¢ vectors zy, ..., zs, each z; containing
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all and only the itemsets of length i appearing in D, in the same order as they appear
in the vector v(D) as defined in Sect. 4.2.2. Let z; be the number of components of z;,
1 <i < £ (the sum of the z;’s is m). Let p;, 1 < i < ¢, be a vector of z; components,
whose j*" component is the index of the component of v(D) where the itemsets z;[4]
appears, 1 < j < z;. All these vectors can be computed in a single pass over the
dataset, and can be re-used by the procedure for multiple samples. Our method first
permutes, uniformly at random, each vector z;, 1 < i < /¢, then creates a vector
w of m components by iterating over each p; and setting the component at index
p:[j] of w to the itemset z;[j] (i.e., the itemset in component j of the permuted z;),
1 <j < z. A first “temporary” dataset T is obtained from the vector w, as we did
in Sect. 4.2.1. The order of the itemsets in each transaction in 7' is then permuted
uniformly at random to obtain the output dataset D”. This permutation is necessary
to ensure that only the desired constraints are satisfied.?

Let us now show that this procedure is an EUS for the null model. Consider the
set S = 57 X -+ - xSy, where each S; is the set of all z;! permutations of z;, 1 < i < ¥,
and the set @ = Q1 X --- X Q|p|, were each Q; is the set of all [t;|! permutations
of transaction t;, 1 < ¢ < |D|. Our algorithm can be seen as choosing an element
r={((ry,....7e),(q1,...,qp|)) from S x Q uniformly at random, by choosing each
permutation r; uniformly at random from S;, 1 < i < ¢, and each permutation g;
from @Q; 1 <4 < |D|. The set S x Q is therefore partitioned into equivalence classes,
one and only one class Cps for each dataset D' € Z, containing all and only the
elements of S x Q that, when the r;’s are applied to the vectors z;, 1 < i < ¢, and
then the ¢;’s are applied to the resulting transactions of the “temporary’ dataset T,
make our procedure output the dataset D’.

Lemma 3 The classes have all the same size, i.e., |Cp/| = |Cp|, for every D' € Z.

The proof follows the steps similar to the one for Lemma 2, but taking into
account the different nature of the elements in the classes (vectors of permutations
in this case, not single permutations).

Corollary 2 The procedure is an EUS for the null model.

One can easily obtain an e-AUS for this null model by repeatedly swapping
itemsets of the same length: first a vector z; is chosen with a probability proportional
to z;, then two itemsets, chosen uniformly at random with replacement among those
in z; are swapped. We use this e-AUS as a baseline for the experimental evaluation
of our EUS in Sect. 5.

4.2.8 Null model #3: fixed itemset supports and multi-supports, and fized
transaction lengths

In this null model, we still assume a fixed ordering of the transactions #1,...,#p|
of the observed dataset D, but, differently from the previous models, we will not
consider two datasets different when they only differ by the ordering of transactions
of the same length (see below for how to reintroduce this constraint, if so desired).

3 One can avoid this step and obtain a uniform sample from a null model that, in addition
to all the constraints we defined, also preserves the order of the lengths of the itemsets in the
transactions of D.
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E.g., the two datasets from (4) are the same dataset in this null model. The null
set Z contains all and only the datasets D’ with |D| transactions that, in addition
to satisfying the constraints from Sect. 4.2.1, are also such that, for every itemset
A participating in at least one transaction ¢, it holds that op/(A) = op(A4), i.e.,
the supports of itemsets participating in the transactions are preserved.* Recall that
opr(A) is the number of transactions in which A participates, with no consideration
as to whether a transaction contains multiple copies of A. The difference between
null model #1 (Sect. 4.2.1) and this one is that the former only preserves the multi-
support, while this one also preserves the support. We give an e-AUS for this null
model, based on repeated itemset swaps as follows.

Consider the vector v(D) corresponding to D. Starting from w = v(D), our
sampling procedure repeatedly selects a pair (i, j) where ¢ and j are drawn uniformly
at random, with replacement, from [1,m], and obtains a new vector w' by swapping
the itemsets I and J in the i*" and j*® component of w, iff the resulting vector w’ is
such that the supports of I and J in the dataset corresponding to w’ are the same as
in D. This condition is easy to check: let D,, be the dataset corresponding to w, and
let 7 (resp. t;) be the transaction of D,, that contains I (resp. J) at the i*® (resp.

4t component of w. Swapping I and J is allowed iff the following condition holds:®

((ts contains a single copy of I At contains no copy of I)
V both t; and ¢; contain multiple copies of I)
A((ts contains a single copy of J Aty contains no copy of J)

V both t; and ¢; contain multiple copies of J) .

If this condition is not satisfied, then no swap is performed, and w' = w. Then the
procedure sets w = w’ and iterates. After O(m?log™/c) iterations (see Lemma 5),
the dataset D’ corresponding to the last w’ is returned in output as the sample.
We now move to show that this procedure is a (fully-polynomial) e-AUS. Consider
the Markov chain C' whose set of states is Z and whose transition probabilities arise
from the procedure. We first show that it has a uniform stationary distribution
(Lemma 4), and then show an upper bound to its mixing time 7(g) (Lemma 5).

Lemma 4 The Markov chain C has a unique uniform stationary distribution.

Proof The Markov chain C is clearly aperiodic, because drawing a pair (4,%) keeps
the chain in the same state. It is also irreducible, as it is possible go from any dataset
D' € Z to any other dataset D” € Z with a sequence of itemset swaps as above.
Thus C has a unique stationary distribution.

For any ordered pair (D', D”) of not-necessarily distinct states, let (a,b) be any
pair in {(7,7) : 1 <4,5 < m} such that the corresponding itemset swap moves the
chain from D’ to D", if such a pair (a,b) exists. If it exists, the same pair would
move the chain from D” to D’. In this case, the transition probability from D’ to
D" must be the same as the one from D" to D’. If (a,b) does not exist, then these
transition probabilities must both be zero. Therefore, the transition matrix of C
is clearly symmetrical. A symmetrical transition matrix is doubly-stochastic, and a
Markov chain with a doubly-stochastic transition matrix has the uniform stationary
distribution (Motwani and Raghavan 1995, Probl. 6.6).

4 This constraint is not the same as requiring that the supports of all itemsets are preserved.
5 We denote with “A% the logical AND, and with “V” the logical OR.
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Lemma 5 Let € € [0,1]. For the Markov chain C, it holds T(¢) = O(m?log™/e).

The proof uses the path coupling technique (Levin and Peres 2017, Ch. 14) and
follows steps similar to that of (Tonon and Vandin 2019, Thm. 2).°

Proof Let D; and D2 be two datasets whose corresponding vectors v(D;) and v(Ds)
differ in exactly two components, w.l.o.g. those at indices ¢ and b, 1 < a < b < m.
We define the distance q(D’, D”) between two datasets (i.e., states of the chain)
as the number of components of corresponding vectors in which they differ, thus
q(D1,D3) = 2. It must be that the itemsets at indices a and b can be swapped, i.e.,
there is a non-zero probability of moving along the Markov chain from D; to Dy and
vice-versa. Consider now the following coupling where the first Markov chain C is
C and we assume it to be in state Dq, and the second Markov chain Cs is assumed
to be in state Dy and its transitions are defined on the basis of the transitions of C
as follows. Suppose that C; samples the indices (z,y) from {(¢,5) : 1 <i,j < m}.
Let D] be the state that C; moves to after performing the action corresponding to
(x,y). The state D} to which Co moves from D, is defined as follows: (i) if z = a
and y = b, then D) = Dy; (ii) if x = b and y = a, then D) = Dy; (iii) if x =y =a or
x =y = b then D) = Dy; (iv) otherwise the chain follows the same transition that
the original chain would have performed from Dy when sampling the pair (z,y). In
cases (i), (ii), and (iii), the distance q(D},DS) is zero, while in case (iv) it could
either go stay at two, grow to four, or go to zero depending on whether the action
corresponding to (x,y) can be performed by neither of C; and Cs, both of them, or
only one of them (not respectively). The probability of any transition is the same in
both chains, and in particular the probability of being in one of the first three cases
is 4/m?. Thus the expectation of the distance between the next states of Cy and Co,
conditioned on them currently being in states at distance two, is at most 4(1 —4/m?).
We obtain the lemma through standard path coupling results (Levin and Peres 2017,
Coroll. 14.8), using the fact that the maximum distance between two states is m. 0O

From Lemmas 4 and 5 we can conclude that our procedure is a (fully-polynomial)
e-AUS for the null model we introduced.

Reintroducing the “different-ordering-different-datasets” constraint It may be desir-
able that datasets that only differ for the ordering of transactions of the same length
be different, e.g., that the two datasets from (4) be different, as was assumed in null
models #1 and #2. In this case, it is possible to obtain an e-AUS by taking the
output D” of the procedure described above and permuting the order of transac-
tions of the same length (which is not the same as permuting the itemsets in each
transaction), uniformly at random among all possible orderings.

5 Experiments

We present here the results of our experimental evaluation of SPECK, instantiated
with the sampling procedures described in Sect. 4.2.

6 We conjecture that it should be possible to prove 7(g) = O(mlogmloge™1).



16 Jenkins, Walzer-Goldfeld, and Riondato

Dataset |D| |Al  avg. ||t|| repeated itemsint @ [Fp(0)]
BIBLE 36369 13905 21.6 yes 0.1 174
BIKE 21078 67 7.28 yes 0.025 163
Fira 20450 2990 36.2 yes 0.275 182
LEVIATHAN 5835 9025 33.8 yes 0.15 225
SIGN 730 267 52.0 no 0.4 518

Table 1 Dataset properties, min. frequency threshold 6, and number of frequent sequences.

Goals EUS’s are always to be preferred to e-AUS’s from a probabilistic point of
view. Thus, we focus on evaluating whether our EUS’s are faster than e-AUS’s for
the same null model, by comparing them on the basis of the time needed to output
a single sample, and when used in SPECK. We also evaluate the scalability of the
procedure by measuring how the sampling time changes as a function of the number
of itemsets in the dataset (i.e., the quantity m). Finally, we evaluate the effects of
the parameter 6 on the runtime of SPECK.

Implementation and environment We implement SPECK in Java 8, by modifying the
publicly-available implementation of PROMISE (Tonon and Vandin 2019), which is
based on the Apache Spark framework.” SPECK, like ProMiSe, is embarrassingly
parallel: the work on each sampled dataset can proceed independently from, thus in
parallel with, the work done on the other sampled datasets, with a final reduction
that uses the results from each sampled dataset to compute the collection of signifi-
cant sequences. We performed the experiments on an x86—64 machine with 2 Intel®
Xeon® 4210R CPUs (40 threads in total), 348GB of RAM, running FreeBSD 14.

Datasets and parameters We use five real datasets, all publicly available:®

— BIBLE: a conversion of the bible. Each word is an itemset of length one and each
sentence is a transaction.

— BIKE: data from Los Angeles Metro Bike Share. Each item is a bike station and
a transaction is the sequence of stations where a bike has been.

— F1FA: click-stream data from the website of the 1998 F1raA World Cup. An item
represents a unique web page.

— LEVIATHAN: a conversion of T. Hobbes’s Leviathan. Each word is an itemset of
length one and each sentence is a transaction.

— SIGN: a dataset of sign language utterance.

The main dataset statistics are shown in Table 1, together with the minimum fre-
quency threshold 6 we used for each dataset and the size of the collection of frequent
sequences w.r.t. . When running SPECK, we use T' = 10000 (which is a multiple of
40, the number of processors we use) and P = 100. These numbers are in line with
those used by Tonon and Vandin (2019) for a similar set of experiments, and we
verified empirically that using larger values for them would have a negligible effect
on the approximations of the p-values and the adjusted critical values. There is no
downside to using even larger values, apart from a longer running time, which would
be partially offset by a higher level of parallelism. It is an interesting direction for

7 Our code, including the data and scripts to reproduce all our results and figures, is available
from https://github.com/acdmammoths/SPEck-code/.

8 https://github.com/VandinLab/PROMISE/tree/master/data.
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Fig. 1 Distribution of the relative runtimes on real datasets, normalized by the median, over
100 runs, of the runtime for the e-AUS (which therefore corresponds to the 1.0 line; the absolute
runtimes for this median are shown under the dataset name). The whiskers corresponds to
minimum and maximum, the extremes of the box to 15¢ and 3™ quartile, and the line crossing
the box to the median.

future work to incorporate the error in the approximation of the p-values and in the
FWER due to the use of finite values of T' and P, in order to make the process of
mining significant patterns even more statistically rigorous. We fix the acceptable
FWER 6§ to 0.05. When using an e-AUS to generate the samples, we use 2m as the
number of swaps to perform before taking each sample, which we checked experimen-
tally to be sufficient for the state distribution to be extremely close to uniform, by
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looking at the convergence of the average relative difference between the frequency of
a frequent sequence in the observed dataset and the frequency in a random dataset,
in the same way as done by Tonon and Vandin (2019, Fig. 2).

To evaluate the scalability of the sampling procedures, we use artificial datasets
with |D] € {1000, 3162,10000, 31623, 10000}, generated using the IBM Quest Dataset
Generator? (Agrawal and Srikant 1994), run with the default parameters.

To evaluate the effect of the minimum frequency threshold 6 on the runtime and
on the number of significant frequent patterns we use the publicly available BIBLE
dataset, with 6 € {0.031,0.043,0.06,0.1}. The choice of these values is guided by the
number of frequent patterns w.r.t. 6 (see Table 3, third column from the left).

Runtime on Dataset (s)

Null Model Method BIBLE BIKE FIFA  LEVIATHAN  SIGN

#1 EUS 2454 343 2308 432 90
e-AUS 4139 432 3341 582 72

#2 EUS 3386 552 3447 774 128
e-AUS 8494 1268 5702 1132 157

#3 e-AUS 4950 559 7249 1594 272

Table 2 Runtime of SPECK with different sampling procedures. EUS’s, when available, are
much faster than e-AUS’s, in addition to be preferrable from a probabilistic point of view.

Results on real datasets In Fig. 1 (one figure per null model) we report the relative
runtimes, on the five real datasets, of the EUS we introduce for that model (or e-AUS,
in the case of Model #3 in Fig. 1¢), and a baseline e-AUS, when available (for Model
#1 it is Tonon and Vandin (2019)’s procedure; for Model #2 it is the “same-length-
itemset-swap” procedure described at the end of Sect. 4.2.1). The box-and-whiskers
plots show the minimum, first quartile, median, third quartile, and maximum of
the runtimes. The runtimes are normalized by the median, over 100 runs, of the
e-AUS’s runtime, so, e.g., the median of the e-AUS’s runtimes is always on the 1.0
line. Absolute runtimes for the median of the e-AUS (i.e., the normalization factors)
are reported in parentheses under each dataset’s name.

For Models #1 and #2, it is evident that the EUS’s are much faster than the
e-AUS’s, which confirms that our EUS’s should be preferred on both probabilistic
and computational grounds. A comparison of the median runtimes reveals speed-up
factors between 5.08 (for SIGN, on Model #2) and 26.7 (for FIFA, on Model #1). We
can also appreciate from the figures that, in general, the runtime of EUS’s has lower
variance than the runtime of e-AUS’s. The exception in this case is SIGN, which is a
relatively small dataset (see Table 1)—even the e-AUS takes only a few milliseconds
to sample a dataset from the null models when given this dataset as input, so a
larger variance in the runtimes is to be expected, and is mostly due to outliers (see
also the next experiment).

In Table 2 we report, for each null model and each real dataset, the running time
of SPECK using EUS’s and e-AUS’s. The reduction in runtime when using exact
sampling procedures over approximate ones is significant. The reason the speedups

9 Available from https://github.com/acdmammoths/datasetgenerator.
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Fig. 2 Absolute runtimes on artificial datasets as function of the total number m of itemsets.
The median is over 100 runs and the shaded area goes from the minimum to the maximum
runtime. The EUS’s scale as well as the e-AUS’s.

are not the same as when evaluating the runtimes of the sampling procedures in
isolation (as we did above), is that a large portion of SPECK’s runtime is spent on
operations other than sampling datasets (e.g., computing the frequent sequences of
the sampled datasets), which are not impacted by the choice of sampling procedure.
We remark that it is not very interesting to compare the runtimes across different null
models: the meaning of significant pattern changes with the model, and the choice of
model should be very deliberate on the user’s side, depending on the desired meaning.
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Thus it should not be surprising that the sampling procedures are different and take
different amounts of time.

Scalability Figure 2 compare how well the EUS’s and ¢-AUS’s scale as the total
number m of itemsets grows. We used our artificial datasets in this experiment,
and repeated it 100 times. The figures show the absolute runtimes of the various
sampling methods. The shaded areas go from the minimum to the maximum runtime
over 100 runs, and we also report the median (dashed lines). We can see how both
EUS’s and e-AUS’s scale in a similar way, with EUS’s remaining much faster. We
can appreciate again how the variance in the runtimes decreases as m grows. This
experiment confirms that the EUS’s we present should be preferred over e-AUS’s.

Null model #1 - EUS Null model #2 - EUS
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Fig. 3 Runtimes of SPECK on BIBLE for 6 € {0.031,0.043,0.06,0.1} (see text for rationale).

Impact of the minimum frequency threshold We used 6 € {0.031,0.043,0.06,0.1} to
study its impact on the runtime and on the number of significant frequent patterns.
The choice of values is guided by the number of frequent patterns in BIBLE w.r.t. 6
(third column from the left in Table 3).

Figure 3 shows that as the value of 8 increases, the runtime of SPECK decreases.
This behavior is expected, as more time is required to mine a dataset at a lower
threshold. Indeed the behavior is essentially linear with the number of frequent pat-
terns. The runtime variance is explained with the next set of results.

SFSPs in iteration #

Method 9 IFp(8)] 1 2 3 4 5

0.031 2074 0 0 0 0 0

0.043 1035 786 0 787 0 787

Null model #1 —EUS ' 507 366 0 0 366 0
0.1 174 119 120 120 121 119

0.031 2074 0 0 0 0 0

0.043 1035 0 787 0 788 787

Null model #2 —EUS ¢ 507 367 366 367 365 0
0.1 174 119 120 120 119 121

Table 3 No. of SF'SPs in BIBLE returned by SPEcK for different values of € over five iterations.
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We also studied the number of Significant Frequent Sequential Patterns (SFSPs)
in BIBLE output by SPECK for different values of §. We performed each experiment
five times, and report the results in Table 3 (we remind the reader, once again,
that results for different null models should not be compared to each other). For
relatively small values of #, SPECK reported, in some runs, no significant patterns.
We remark that outputting no significant patterns is perfectly fine and in line with
the guarantees on the FWER,'© and it is just a sign of low statistical power. As
discussed in Sect. 3.1, we use the Westfall-Young method to control the FWER, which
provides more statistical power than the Bonferroni correction would. However, when
0 is small, the set of hypotheses that even the Westfall-Young method has to consider
is large, because it is related to the number of patterns in the observed dataset that
have a frequency (in the observed dataset) lower-than-but-close-to 6, and this number
increases with 6. Any A of these patterns may have, in one D; of the P sampled
datasets used to compute the adjusted critical value awy (see (3)), a frequency not
smaller than 6, but A may not have such a frequency in any of the T' datasets used
to estimate A’s p-value pp,(A) in D; (see (1)). This fact in turn leads to the lowest
possible minimum p-value p; = 1/(1+1) for D; (see (2)), and thus to a low adjusted
critical value awy = 1/(T 4 1), when there are such A’s in a fraction at least ¢ of
the P datasets. Since this value is the minimum possible (empirical) p-value that a
pattern may have, no pattern can actually be marked as significant by SPEcK. In
other words, SPECK’s statistical power decreases with 6.

We remark that this behavior is not specific of SPECK, but it affects any method
that uses an empirical estimate of the p-values, and an empirical estimate of the
minimum p-value distribution, which make the p-values and the adjusted critical
value only take discrete values. On one hand, this issue cannot be avoided, because
we are forced to use empirical estimations for these quantities and distributions,
as they cannot be derived exactly, on the other hand, intuitively, this issue could
be mitigated by increasing T' and P. As our results for # = 0.06 and 6 = 0.043
show, SPECK does not always report zero significant patterns: it really depends
on the datasets sampled in each iteration. Developing methods that (1) have high
statistical power in all situations; and (2) control the FWER, is the “holy grail” of
researchers in this field, and a natural (if challenging) direction for future work.

6 Conclusion

We presented SPECK, a framework for mining statistically-significant sequential
patterns from large datasets under different null models, using the Westfall-Young
resampling approach. We study a null model first proposed by Tonon and Vandin
(2019) and introduce two novel null models that preserve different properties of the
observed dataset. Our main algorithmic contributions are new methods to sample
datasets from the null model. For the previously-studied model, we give an Ezact
Uniform Sampler (EUS) that greatly improves, both in probabilistic and computa-
tional terms, over the existing e-Almost Uniform Sampler (e-AUS), for which we also
present an improved analysis of the mixing time. For the novel models we introduce,
we give EUS’s and /or e-AUS’s. The results of our experimental evaluation show that
our EUS’s are much faster than e-AUS’s, and thus they should be preferred.

10 The easiest way for an algorithm to offer guarantees on the FWER is to never report
anything as significant. It would not be a very useful algorithm though.
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