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Analyzing huge datasets becomes prohibitively slow when the dataset does not fit in main memory.

Approximations of the results of guaranteed high quality are sufficient for most applications and can

be obtained very fast by analyzing a small random part of the data that fits in memory. We study

the use of the Vapnik-Chervonenkis dimension theory to analyze the trade-off between the sample

size and the quality of the approximation for fundamental problems in knowledge discovery (frequent

itemsets), graph analysis (betweenness centrality), and database management (query selectivity).

We show that the sample size to compute a high-quality approximation of the collection of frequent

itemsets depends only on the VC-dimension of the problem, which is (tightly) bounded from above

by an easy-to-compute characteristic quantity of the dataset. This bound leads to a fast algorithm

for mining frequent itemsets that we also adapt to the MapReduce framework for parallel/distributed

computation. We exploit similar ideas to avoid the inclusion of false positives in mining results.

The betweenness centrality index of a vertex in a network measures the relative importance of that

vertex by counting the fraction of shortest paths going through that vertex. We show that it is

possible to compute a high-quality approximation of the betweenness of all the vertices by sampling

shortest paths at random. The sample size depends on the VC-dimension of the problem, which is

upper bounded by the logarithm of the maximum number of vertices in a shortest path. The tight

bound collapses to a constant when there is a unique shortest path between any two vertices.

The selectivity of a database query is the ratio between the size of its output and the product of

the sizes of its input tables. Database Management Systems estimate the selectivity of queries for

scheduling and optimization purposes. We show that it is possible to bound the VC-dimension of

queries in terms of their SQL expressions, and to use this bound to compute a sample of the database

that allow much a more accurate estimation of the selectivity than possible using histograms.
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Chapter 1

Introduction

“ 千里之行，始於足下 ”1

老子 (Laozi), 道德 (Tao Te Ching), Ch. 64.

Thesis statement: Analyzing very large datasets is an expensive computational task. We show

that it is possible to obtain high-quality approximations of the results of many analytics tasks by

processing only a small random sample of the data. We use the Vapnik-Chervonenkis (VC) dimension

to derive the sample size needed to guarantee that the approximation is sufficiently accurate with

high probability. This results in very fast algorithms for mining frequent itemsets and association

rules, avoiding the inclusion of false positives in mining, computing the betweenness centrality of

vertices in a graph, and estimating the selectivity of database queries.

1.1 Motivations

Advancements in retrieval and storage technologies led to the collection of large amounts of data

about many aspects of natural and artificial phenomena. Analyzing these datasets to find useful

information is a daunting task that requires multiple iterations of data cleaning, modeling, and

processing. The cost of the analysis can often be split into two parts. One component of the cost

is intrinsic to the complexity of extracting the desired information (e.g., it is proportional to the

number of patterns to find, or the number of iterations needed). The second component depends

on the size of the dataset to be examined. Smart algorithms can help reducing the first component,
1A journey of a thousand miles begins with a single step.

1



2

while the second seems to be ever increasing as more and more data become available. Indeed the

latter may reduce any improvement in the intrinsic cost as the dataset grows. Since many datasets

are too large to fit into the main memory of a single machine, analyzing such datasets would require

frequent access to disk or even to the network, resulting in excessively long processing times.

The use of random sampling is a natural solution to this issue: by analyzing only a small random

sample that fits into main memory there is no need to access the disk or the network. This comes at

the inevitable price of only being able to extract an approximation of the results, but the trade-off

between the size of the sample and the quality of approximation can be studied using techniques

from the theory of probability.

The intuition behind the use of random sampling also allow us to look at a different important

issue in data analytics: the statistical validation of the results. Algorithms for analytics often make

the implicit assumption that the available dataset constitutes the entire reality and it contains, in

some sense, a perfect representation of the phenomena under study. This is indeed not usually

the case: not only datasets contain errors due to inherently stochastic collection procedures, but

they also naturally contain only a limited amount of information about the phenomena. Indeed a

dataset should be seen as a collection of random samples from an unknown data generation process,

whose study corresponds to the study of the phenomena. By looking at the dataset this way, it

becomes clear that the results of analyzing the dataset are approximated and not “perfect”. This

leads to the need of validating the results to discriminate between real and spurious information,

which was found to be interesting in the dataset only due to the stochastic nature of the data

generation process. While the need for statistical validations has long been acknowledged in the life

and physical sciences and it is a central matter of study in statistics, computer science researchers

have only recently started to pay attention to it and to develop methods to either validate the results

of previously available algorithms or to avoid the inclusion of spurious information in the results.

We study the use of sampling in the following data analytics tasks:

• Frequent itemsets and association rules mining is one of the core tasks of data analytics,

requiring to find sets of items in a transactional dataset that appear in more than a given

fraction of the transactions, and use this collection to build high-confidence inference rules

between sets of items.

• Betweenness centrality is a measure of the importance of a vertex in a graph, corresponding
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to the fraction of shortest paths going through that vertex. By ranking vertices according

to their betweenness centrality one can find which ones are most important, for example for

marketing purposes.

• The selectivity of a database query is the ratio between the size of its output and the product

of the sizes of the tables in input. Database management systems estimate the selectivity of

queries to make informed scheduling decisions.

We choose to focus on important tasks from different areas of data analytics, rather than a single

task or different tasks from the same area. This is motivated by our goal of showing that random

sampling can be used to compute good approximations for a variety of tasks. Moreover, these tasks

share some common aspects: they involve the analysis of very large datasets and they involve the

estimation of a measure of interest (e.g., the frequency) for many objects (e.g., all itemsets). These

aspects are common in many other tasks.

As we said, there exists many mathematical tools that can be used to compute a sample size

sufficient to extract a high-quality approximation of the results: Chernoff/Hoeffding bounds, mar-

tingales, tail bound on polynomials of random variables, and more [8, 58, 154]. We choose to focus

on VC-dimension for the following reasons:

• Classical probabilistic tools like the Azuma inequality work by bounding the probability that

the measure of interest for a single object deviates from its expectation by more than a given

quantity. One must then apply the union bound to get simultaneous guarantees for all the

objects. This results in a sample size that depends on the logarithm of the number of objects,

which may be still too much and too loose. Previous works explored the use of these tools to

solve the problems we are interested in and indeed suffered from this drawback. On the other

hand, results related to VC-dimension give sample sizes that only depend on this combinatorial

quantity, which can be very small and independent from the number of objects.

• The use of VC-dimension is not limited to a specific problem or setting. The results and

techniques related to VC-dimension are widely applicable and can be used for many different

problems. Moreover, no assumption is made on the distribution of the measure of interest, or

on the availability of any previous knowledge about the data.
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1.2 Overview of contributions

This dissertation presents sampling-based algorithms for a number of data analytics tasks: frequent

itemsets and association rules mining, betweenness centrality approximation, and datatabase query

selectivity estimation. We use the Vapnik-Chervonenkis dimension and related results from the field

of statistical learning theory (Ch. 2) to analyze our algorithms . This leads to significant reductions

in the sample sizes needed to obtain high-quality approximations of the results.

Mining frequent itemsets and association rules. We show that the VC-dimension of the

problem of mining frequent itemsets and association rules is tightly bounded by an easy-to-compute

characteristic quantity of the dataset. This allows us to derive the smallest known bound to the

sample size needed to compute very accurate approximations of the collections of patterns (Ch. 3).

The combination of the theoretical guarantees offered by these results with the computational power

and scalability of MapReduce allows us to develop PARMA, a fast distributed algorithm that mines

many small samples in parallel to achieve higher confidence and accuracy in the output collection of

patterns. PARMA scales much better than existing solutions as the dataset grows and uses all the

available computational resources (Ch. 4).

Statistical validation. A common issue when mining frequent itemsets is the inclusion of false

positives, i.e., of itemsets that are only frequent by chance. We develop a method that computes a

bound to the VC-dimension of a collection of itemsets by solving a variant of the Set-Union Knapsack

Problem. This allows us to to find a frequency threshold such that the collection of frequent itemsets

with respect to this threshold will not include false positives with high probability (Ch. 5).

Betweenness centrality. We show that it is possible to compute very accurate estimations of the

betweenness centrality (and many of its variants) of all vertices by only performing a limited number

of shortest paths computation, chosen at random. The sample size depends on the VC-dimension

of the problem, which we show to be bounded by the logarithm of the number of vertices in the

longest shortest path (i.e., by the logarithm of the diameter in an unweighted graph). The bound is

tight and interestingly collapses to a small constant when there is a unique shortest path between

every pair of connected vertices. Our results also allow us to present a tighter analysis of an existing

sampling-based algorithm for betweenness centrality estimation (Ch. 6).
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Query selectivity estimation. We show that the VC-dimension of classes of database queries

is bounded by the complexity of their SQL expression, i.e., by the maximum number of joins and

selection predicates involved in the queries. Leveraging on this bound, it is possible to obtain

very accurate estimations of the selectivities by running the queries on a very small sample of the

database.



Chapter 2

The Vapnik-Chervonenkis

Dimension

“I would like to demonstrate that [. . . ] a good old principle is valid:

Nothing is more practical than a good theory.”

Vladimir N. Vapnik, The Nature of Statistical Learning Theory.

In this dissertation we explore the use of random sampling to develop fast and efficient algorithms

for data analytics problems. The use of sampling is not new in this area but previously presented

algorithms were severely limited by their use of classic probability tools like the Chernoff bound,

the Hoeffding bound, and the union bound [154] to derive the sample size necessary to obtain

approximations of (probabilistically) guaranteed quality. Instead, we show that it is possible to

obtain much smaller sample sizes, and therefore much more efficient algorithms, by using concepts

and results from statistical learning theory [192, 193], in particular those involving the Vapnik-

Chervonenkis (VC) dimension of the problem.

2.1 Use of VC-Dimension in computer science

VC-Dimension was first introduced in a seminal article [194] on the convergence of empirical averages

to their expectations, but it was only with the work of Haussler and Welzl [103] and Blumer et al.

[18] that it was applied to the field of learning. It became a core component of Valiant’s Probably

6
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Approximately Correct (PAC) Framework [123] and has enjoyed enormous success and application

in the fields of computational geometry [38, 150] and machine learning [10, 55]. Boucheron et al.

[21] present a good survey and many recent developments. Other applications include database

management and graph algorithms. In the former, it was used in the context of constraint databases

to compute good approximations of aggregate operators [15]. VC-dimension-related results were also

recently applied in the field of database privacy by Blum et al. [17] to show a bound on the number of

queries needed for an attacker to learn a private concept in a database. Gross-Amblard [85] showed

that content with unbounded VC-dimension can not be watermarked for privacy purposes. In the

graph algorithms literature, VC-Dimension has been used to develop algorithms to efficiently detect

network failures [125, 126], balanced separators [65], events in a sensor networks [69], and compute

approximations of the shortest paths [1].

We outline here only the definitions and results that we use throughout the dissertation. We refer

the reader to the works of Alon and Spencer [8, Sect. 14.4], Boucheron et al. [21, Sect. 3], Chazelle

[38, Chap. 4], Devroye et al. [55, Sect. 12.4], Mohri et al. [155, Chap. 3], and Vapnik [192, 193] for

more details on the VC-dimension theory.

2.2 Range spaces, VC-dimension, and sampling

A range space is a pair (D,R) where D is a (finite or infinite) domain and R is a (finite or infinite)

family of subsets of D. The members of D are called points and those of R are called ranges. The

Vapnik-Chernovenkis (VC) Dimension of (D,R) is a measure of the complexity or expressiveness of

R [194]. Knowning (an upper bound) to the VC-dimension of a range space can be very useful: if we

define a probability distribution ν over D, then a finite upper bound to the VC-dimension of (D,R)

implies a bound to the number of random samples from ν required to approximate the probability

ν(R) =
∑
r∈R ν(r) of each range R simultaneously using the empirical average of ν(R) as estimator.

Given A ⊂ D, The projection of R on A is defined as PR(A) = {R∩A : R ∈ R}. If PR(A) = 2A,

then A is said to be shattered by R.

Definition 1. Given a set B ⊆ D, the empirical Vapnik-Chervonenkis (VC) dimension of R on B,

denoted as EVC(R, B) is the cardinality of the largest subset of B that is shattered by R. If there

are arbitrary large shattered subsets, then EVC() = ∞. The VC-dimension of (D,R) is defined as

VC ((D,R)) = EVC(R, D).
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For any range space, we have that its VC-dimension cannot be greater than d = blog2 |R|c since

for any t > d, one would need 2t ranges to shatter a set of size t.

A range space (D,R) with an infinite set of points D and an infinite family of ranges R can have

a finite VC-dimension. A simple example is the family of open intervals in R (i.e., D = R and R

contains all the half-closed intervals [a,+∞) and (−∞, a) for any a ∈ R). Let A = {x, y, z} be the

set of three points such that x < y < z. There is no interval R ∈ R such that R ∩A = {x, z} so the

VC-dimension of this range space is less than 3. This result can be generalized to higher dimensions.

Lemma 1 (Lemma 10.3.1 [150]). The VC-Dimension of the range space (Rd,R), where R is the

set of all half-spaces in Rd equals d+ 1.

Another example of range space and its VC-dimension is shown in Fig. 2.1.

y

x0

y

x0

Figure 2.1: Example of range space and VC-dimension. The space of points is the plane R2 and
the set R of ranges is the set of all axis-aligned rectangles. The figure on the left shows graphically
that it is possible to shatter a set of four points using 16 rectangles. On the right instead, one can
see that it is impossible to shatter five points, as, for any choice of the five points, there will always
be one (the red point in the figure) that is internal to the convex hull of the other four, so it would
be impossible to find an axis-aligned rectangle containing the four points but not the internal one.
Hence VC((R2,R)) = 4.

A classic example of a range space with infinite VC-dimension is the space of sine functions. Let

D = R2 and, for any ω ∈ R, let Aω be the subset of R2 that lies above the curve sin(ωt), for t ∈ R.

It is possible to shatter any set S of points by choosing an appropriate ωA for each subset A ⊆ S.

Let ν be a probability distribution on the points of D, and let Xk
1 = (X1, . . . , Xk) be a bag of

elements from D. For any subset A ⊆ D, we define the function

νXk1 (A) = 1
k

k∑
j=1

1A(Xj),
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where 1A is the indicator function for the set A. WhenXk
1 is a collection of independent samples from

ν, then νXk1 (A) is known as the empirical average of ν(A) =
∑
a∈A ν(a) on Xk

1 and is an unbiased

estimator for ν(A) (i.e., E[νXk1 (A)] = ν(A)). One of the main applications of (empirical) VC-

dimension is in giving bounds to the number of samples from ν needed to simultaneously approximate

the probabilities ν(A) of all A ∈ R using their empirical averages, in the following sense.

Definition 2. Let (D,R) be a range space and ν be a probability distribution on D. For ε ∈ (0, 1),

an ε-approximation to (D,R, ν) is a bag S of elements of D such that

sup
A∈R
|ν(A)− νS(A)| ≤ ε . (2.1)

If D is finite and ν is the uniform distribution on D, then ν(A) = |A|/|D|, and (2.1) is equivalent

to ∣∣∣∣ |A||D| − |A ∩ S||S|

∣∣∣∣ ≤ ε,∀A ∈ R.
Indeed this will be often but not always the case in later chapters, and we will simplify the notation

by dropping ν and saying that S is an ε-approximation to (D,R).

A great result by Vapnik and Chervonenkis [194] showed that it is possible to compute a ε-

approximation with a limited number samples from ν, provided an upper bound to the VC-dimension

of (D,R) or to its empirical VC-dimension on a subset of D is known. This result is one of the

reasons why VC-dimension gained fundamental importance in the PAC framework [123]. The origi-

nal bound to the number of samples was improved multiple times. Here we present the most recent

improvement.

Theorem 1 (Thm. 2.12 [100], see also [134]). Let (D,R) be a range space with VC(R) ≤ d, and let

ν be a distribution on D. Given ε, δ ∈ (0, 1), let

` = c

ε2

(
d+ log 1

δ

)
(2.2)

where c is an universal constant. Then, a bag of ` elements of D sampled independently according

to ν is an ε-approximation to (R, ν) with probability at least 1− δ.

The constant c is approximately 0.5 and it is universal, i.e., it does not depend on any parame-

ter [142]. It is also interesting to note that, if |D| is finite, then an ε-approximation of size O( dε2 log d
ε )
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can be built deterministically in time O(d3d( 1
ε2 log d

ε )d|D|) [38].

Throughout this dissertation we assume the sample to be drawn with replacement if the sample

size is smaller than the size |D| of the domain, (otherwise the sample is exactly D).

To understand the importance of Thm. 1, consider the following simple example. Assume that

R contains a finite number of ranges and let ν be the uniform distribution on D, and S be a sample

of points drawn uniformly and independently at random (i.e., according to ν) from D. We can

compute the sample size |S| needed to obtain an ε-approximation with probability at least 1− δ by

using the Chernoff bound and the union bound [154]. Indeed, using the union bound, we have that

Pr
(
∃A ∈ R :

∣∣∣∣ν(A)− |A ∩ S|
|S|

∣∣∣∣ > ε

)
≤
∑
A∈R

Pr
(∣∣∣∣ν(A)− |A ∩ S|

|S|

∣∣∣∣ > ε

)

If the right side is bounded by δ, then S is a ε-approximation for (D,R, ν). A sufficient condition

for this is that, for any A ∈ R,

Pr
(∣∣∣∣ν(A)− |A ∩ S|

|S|

∣∣∣∣ > ε

)
≤ δ

|R|

The quantity |A∩S| is a random variable with binomial distribution B(|S|, ν(A)). Then we can use

the Chernoff bound and obtain

Pr
(∣∣∣∣ν(A)− |A ∩ S|

|S|

∣∣∣∣ > ε

)
≤ 2e−2|S|ε2

which is smaller than δ/|R| for

|S| ≥ 1
2ε2

(
ln |R|+ ln 2 + ln 1

δ

)
.

Comparing this quantity with (2.2) clearly shows the multiple advantages of VC-dimension. Firstly,

the sample size suggested by (2.2) is smaller than the above as soon as the (upper bound to the)

VC-dimension of (D,R) is smaller than ln(2R) (note that the above example cannot be used when

R has infinite size). Secondly, Thm. 1 holds for any distribution ν and no assumption are made

on it or any of its moments (e.g., on its variance). It is important to mention that if VC ((D,R))

and/or the upper bound d do not depend on |D| or on |R| neither does the sample size presented

in Thm. 1 (nor the ones in Thm. 2 and Thm. 3 which we show next). We use this property in the
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following chapters to develop efficient sampling-based randomize algorithms for important problems

in data mining.

It is possible to build an ε-approximation even when only an upper bound to the empirical

VC-Dimension is available.

Theorem 2 (Sect. 3 [21]). Let (D,R) be a range space, and let ν be a distribution on D. Let S

be a bag of ` points from D sampled independently according to ν. Let d be an integer such that

EVC(R, X`
1) ≤ d. Given δ ∈ (0, 1), let

ε = 2
√

2d log(`+ 1)
`

+

√
2 log 2

δ

`
. (2.3)

Then S is a ε-approximation for (R, ν) with probability at least 1− δ.

One can define and compute stronger approximations with relative guarantees (rather than ad-

ditive) as follows.

Definition 3. Let (D,R) be a range space and ν be a probability distribution onD. For p, ε ∈ (0, 1),

a relative (p, ε)-approximation to (D,R, ν) is a bag S of elements from D such that

• For any A ∈ R such that ν(A) ≥ p, we have

|ν(A)− νS(A)| ≤ εν(A) .

• For any B ∈ R such that ν(B) < p, we have νS(B) ≤ (1 + ε)p.

Theorem 3 (Thm. 2.11 [100]). Let (D,R) be a range space with VC ((D,R)) ≤ d, and let ν be a

distribution on D. Given ε, δ, p ∈ (0, 1), let

` ≥ c′

ε2p

(
d log 1

p
+ log 1

δ

)
(2.4)

where c′ is an universal constant. Then a bag of ` points from D sampled according to ν is a relative

(p, ε)-approximation to (D,R, ν) with probability at least 1− δ.

Up to a constant factor, the bounds presented in Thm. 1 and Thm. 3 are tight [134, Thm. 5].

In Sect. 7.3 we use the following bound which is an extension of [8, Corol. 14.4.3] to arbitrarily

combinations of set operations. We present it here because it is a general result on VC-dimension.
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Lemma 2. Let (D,R) be a range space of VC-dimension d ≥ 2 and let (D,Rh) be the range space

on D in which Rh includes all possible combinations of union and intersections of h members of R.

Then VC ((D,Rh)) ≤ 3dh log(dh).

Proof. Let A be an arbitrarily subset of cardinality n of D. From [8, Coroll. 14.4.2], we have that

|PR(A)| ≤ nd. There are (
|PR(A)|

h

)
≤ ndh

possible choices of h members of PR(A), and there are no more than h!2h−1Ch−1 ≤ h2h Boolean

combinations using unions and intersections of the h sets, where Ch−1 is the (h − 1)th Catalan

number (Ci = 1
i+1
(2i
i

)
). If 2n > h2hndh ≥ |PRh(A)| then A cannot be shattered. This inequality

holds for n ≥ 3dh log(dh). To see this, consider the fact that clearly 2n ≥ h2hndh for sufficiently

large n, so it suffices to show that n = 3dh log(dh) is sufficiently large. Next observe that the

function f(x) = 2 log x − log(3x log x) is positive for x ≥ 2 since it is positive for x = 2 and it is

easy to see that the derivative f ′(x) is positive for x ≥ 2. It immediately follows that 3 log(dh) >

log(dh) + log(3dh log(dh) for d ≥ 2 and h ≥ 1. Since dh log(dh) ≥ 2h log(h), we have 3dh log(dh) >

2h log(3dh log(dh)), which proves the result.

2.3 Computational considerations

An upper bound to the VC-dimension of the range space is needed in order to apply Thm. 1, Thm. 2,

or Thm. 3. It is natural to ask whether, rather than a bound, one could compute the exact VC-

dimension of a range space. Papadimitriou and Yannakakis [165] characterized the complexity of

computing the VC-dimension. The problem is in np, although it is most probably not np-complete.

The question is is whether it can be solved in polynomial time? Papadimitriou and Yannakakis

[165] defined a new complexity class lognp and show that the decision version of the problem of

computing the VC-dimension is lognp-complete. Schäfer [184] showed that in general one can not

approximate the problem up to a constant factor in polynomial time, unless p=np. Mossel and

Umans [156] gave a refined characterization of the approximability of the problem.

Vapnik et al. [195] and Shao et al. [186] presented and refined an experimental procedure to

estimate the VC-dimension of a learning machine, and McDonald et al. [151] gave concentration

results for such an estimate. This procedure is mostly of theoretical interests, as it is computationally
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very expensive. It would not be practical in settings like the one we study in this dissertation, as it

would defeat the purpose of using sampling to speed up the analysis of very large datasets.



Chapter 3

Mining Association Rules and

Frequent Itemsets

“[. . . ] non ci sono informazioni migliori delle altre, il potere sta nello schedarle tutte, e

poi cercare le connessioni. Le connessioni ci sono sempre, basta volerle trovare.”1

Umberto Eco, Il pendolo di Foucault (Focault’s pendulum).

In this chapter we start presenting our contributions to the problem of extracting interesting

collections of patterns from very large transactional dataset.

The discovery of Frequent Itemsets and Association Rules is a fundamental computational prim-

itive with application in data mining (market basket analysis), databases (histogram construction),

networking (heavy hitters) and more [98, Sect. 5]. The computational problem is defined in the

general setting of a transactional dataset – a collection of transactions where each transaction is

a set of items. With datasets increasing both in size and complexity, the computation for FIM

faces scalability challenges in both space and time. Depending on the particular application, one is

interested in finding all itemsets with frequency greater or equal to a user defined threshold (FIs),

identifying the K most frequent itemsets (top-K), or computing all association rules (ARs) with

user defined minimum support and confidence level (see Sect. 3.4.4 and 3.4.5 for additional crite-

ria). The cost of algorithms for extracting the FIs and the ARs can be split in two independent
This chapter is an extended version of a work that originally appeared in ACM Transaction of Knowledge Discovery

in Data as [176].
1[. . . ] no piece of information is better than another, the power resides in archiving all of them, and finding the

connections. There always are connections, one just needs to have the will to find them.

14
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components: the scanning cost and the mining cost. The scanning cost includes all operations that

directly handle the transactions in the dataset, and scales with the size of the dataset, i.e., the

number of such transactions. Examples include the scanning of the dataset to build the FP-Tree in

FP-Growth [97] or to compute the actual frequencies of candidate frequent itemsets in APriori [6].

The mining cost refers to the operations in derived data structures and does not require access to

the dataset. Examples include the operations performed on the FP-Tree once it has been generated,

and the creation of candidate itemsets of length i + 1 at the end of phase i in APriori. This cost

scales with the complexity of the dataset, i.e., the number of items, the number and distribution of

frequent itemsets, and the underlying process that generated the transactions. It also depends on

parameters given to the algorithm, such as the desired frequency threshold.

A typical exact algorithm scans the entire dataset, possibly multiple times, and stores interme-

diate counts of a large number of possible frequent itemsets candidates [5, 97]. For large datasets

that do not fit in main memory, this can be prohibitively expensive. We are interested in reducing

the scanning cost of algorithms by using random sampling to compute high quality approximations

of the collections of FIs and ARs, which are usually sufficient for most practical applications. It

is reasonable to focus on the scanning cost as in many practical settings the process generating

the data changes very slowly or not at all, especially when compared to the data generation rate,

therefore the number and frequency distribution of the frequent itemsets grows much slower than

the size of the dataset. For example, the number of items available on the catalog of an e-commerce

website grows much slower than the number of purchases by customers, each of which corresponds

to a transaction. Therefore the scanning component grows faster than the mining one, and soon

becomes dominant.

Indeed, a number of recent works (see Sect. 3.1 for more details) explored the application of

sampling for approximate solutions to these problems. However, the efficiency and practicality of

the sampling approach depends on a tight relation between the size of the sample and the quality of

the resulting approximation. Previous works do not provide satisfactory solutions to this problem.

The technical difficulty in analyzing any sampling technique for frequent itemset discovery prob-

lems is that a-priori any subset of items can be among the most frequent ones, and the number of

subsets is exponential in the number of distinct items appearing in the dataset. A standard analysis

begins with a bound on the probability that a given itemset is either over or under represented in

the sample. Such bound is easy to obtain using a large deviation bound such as the Chernoff bound
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or the Central Limit theorem [154]. The difficulty is in combining the bounds for individual itemsets

into a global bound that holds simultaneously for all the itemsets. A simple application of the union

bound vastly overestimates the error probability because of the large number of possible itemsets,

a large fraction of which may not be present in the dataset and therefore should not be considered.

More sophisticated techniques, developed in recent works [33, 45, 169], give better bounds only in

limited cases. A loose bound on the required sample size for achieving the user defined performance

guarantees, decreases the gain obtained from the use of sampling.

We circumvent this issue by applying the VC-dimension theory to frequent itemsets problems by

viewing the presence of an itemset in a transaction as the outcome of an indicator function associated

with the itemset. The major theoretical contributions of our work are a complete characterization of

the VC-dimension of the range space associated with a dataset, and a tight bound to this quantity.

We prove that the VC-dimension is upper bounded by a characteristic quantity of the dataset which

we call d-index. The d-index is the maximum integer d such that the dataset contains at least d

different transactions of length at least d such that no one of them is a subset of or equal to another

in the considered set of transactions (see Def. 9). We show that this bound is tight by demonstrating

a large class of datasets with a VC-dimension that matches the bound. Computing the d-index can

be done in polynomial time but it requires multiple scans of the dataset. We show how to compute

an upper bound to the d-index with a single linear scan of the dataset in an online greedy fashion.

The VC-dimension approach provides a unified tool for analyzing the various frequent itemsets

and association rules problems (i.e., the market basket analysis tasks). We use it to prove tight

bounds on the required sample size for extracting FIs with a minimum frequency threshold, for

mining the top-K FIs, and for computing the collection of ARs with minimum frequency and “inter-

estingness” thresholds, where the interestingness can be expressed in terms of confidence, leverage,

lift, or other measure. Furthermore, we compute bounds for both absolute and relative approxima-

tions (see Sect. 3.2 for definitions) and our results extend to a variety of other measures proposed in

the literature (see Sect. 3.4.4). We show that high quality approximations can be obtained by mining

a very small random sample of the dataset. Table 3.1 compares our technique to the best previously

known results for the various problems (see Sect. 3.2 for definitions). Our bounds, which are linear

in the VC-dimension associated with the dataset, are consistently smaller than previous results and

less dependent on other parameters of the problem such as the minimum frequency threshold and

the dataset size. An extensive experimental evaluation demonstrates the advantage of our technique
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in practice.

We are the first to provide a characterization and an explicit bound for the VC-dimension of the

range space associated with a dataset and to apply the result to the extraction of FIs and ARs from

random sample of the dataset. We believe that this connection with statistical learning theory can

be furtherly exploited in other data mining problems.

Table 3.1: Required sample sizes (as number of transactions) for various approximations to
FIs and ARs as functions of the VC-dimension v, the maximum transaction length ∆, the
number of items |I|, the accuracy ε, the failure probability δ, the minimum frequency θ,
and the minimum confidence γ. Note that v ≤ ∆ ≤ |I| (but v < |I|). The constant c and
c′ are absolute, with c ≤ 0.5. See Sect. 3.4.4 for the sample sizes for approximations of the
collection of association rules according to interestingness measures other than confidence.

Task/Approx. This work Best previous work

FIs/abs. 4c
ε2

(
v + log 1

δ

)
O
( 1
ε2

(
|I|+ log 1

δ

))†
FIs/rel. 4(2+ε)c

ε2(2−ε)θ

(
v log 2+ε

θ(2−ε) + log 1
δ

)
24

ε2(1−ε)θ

(
∆ + 5 + log 4

(1−ε)θδ

)
‡

top-K FIs/abs. 16c
ε2

(
v + log 1

δ

)
O
( 1
ε2

(
|I|+ log 1

δ

))§
top-K FIs/rel. 4(2+ε)c′

ε2(2−ε)θ

(
v log 2+ε

θ(2−ε) + log 1
δ

)
not available

ARs/abs. O
(

(1+ε)
ε2(1−ε)θ

(
v log 1+ε

θ(1−ε) + log 1
δ

))
not available

ARs/rel. 16c′(4+ε)
ε2(4−ε)θ

(
v log 4+ε

θ(4−ε) + log 1
δ

)
48

ε2(1−ε)θ

(
∆ + 5 + log 4

(1−ε)θδ

)
¶

† [115, 133, 190, 209]
‡ [33]
§ [169, 185]
¶ [33]

Outline. We review relevant previous work in Sect. 3.1. In Sect. 3.2 we formally define the problem

and our goals, and introduce definitions and lemmas used in the analysis. The main part of the

analysis with derivation of a strict bound to the VC-dimension of association rules is presented in

Sect. 3.3, while our algorithms and sample sizes for mining FIs, top-K FIs, and association rules

through sampling are in Sect. 3.4. Section 3.5 contains an extensive experimental evaluation of our

techniques. A discussion of our results and the conclusions can be found in Sect. 3.6.



18

3.1 Related work

Agrawal et al. [6] introduced the problem of mining association rules in the basket data model,

formalizing a fundamental task of information extraction in large datasets. Almost any known

algorithm for the problem starts by solving a FIs problem and then generate the association rules

implied by these frequent itemsets. Agrawal and Srikant [5] presented Apriori, the most well-known

algorithm for mining FIs, and FastGenRules for computing association rules from a set of itemsets.

Various ideas for improving the efficiency of FIs and ARs algorithms have been studied, and we refer

the reader to the survey by Ceglar and Roddick [32] for a good presentation of recent contributions.

However, the running times of all known algorithms heavily depend on the size of the dataset.

Mannila et al. [147] were the first to propose the use of sampling to efficiently identify the

collection of FIs, presenting some empirical results to validate the intuition. Toivonen [190] presents

an algorithm that, by mining a random sample of the dataset, builds a candidate set of frequent

itemsets which contains all the frequent itemsets with a probability that depends on the sample size.

There are no guarantees that all itemsets in the candidate set are frequent, but the set of candidates

can be used to efficiently identify the set of frequent itemsets with at most two passes over the entire

dataset. This work also suggests a bound on the sample size sufficient to ensure that the frequencies

of itemsets in the sample are close to their real one. The analysis uses Chernoff bounds and the

union bound. The major drawback of this sample size is that it depends linearly on the number of

individual items appearing in the dataset.

Zaki et al. [208] show that static sampling is an efficient way to mine a dataset, but choosing the

sample size using Chernoff bounds is too conservative, in the sense that it is possible to obtain the

same accuracy and confidence in the approximate results at smaller sizes than what the theoretical

analysis proves.

Other works tried to improve the bound to the sample size by using different techniques from

statistics and probability theory like the central limit theorem [115, 133, 209] or hybrid Chernoff

bounds [210].

Since theoretically-derived bounds to the sample size were too loose to be useful, a corpus of

works applied progressive sampling to extract FIs [25, 34, 39, 40, 45, 109, 110, 116, 118, 144, 166, 201].

Progressive sampling algorithms work by selecting a random sample and then trimming or enriching

it by removing or adding new sampled transactions according to a heuristic or a self-similarity
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measure that is fast to evaluate, until a suitable stopping condition is satisfied. The major downside

of this approach is that it offers no guarantees on the quality of the obtained results.

Another approach to estimating the required sample size is presented by Chuang et al. [46]. The

authors give an algorithm that studies the distribution of frequencies of the itemsets and uses this

information to fix a sample size for mining frequent itemsets, but without offering any theoretical

guarantee.

A recent work by Chakaravarthy et al. [33] gives the first analytical bound on a sample size that

is linear in the length of the longest transaction, rather than in the number of items in the dataset.

This work is also the first to present an algorithm that uses a random sample of the dataset to mine

approximated solutions to the ARs problem with quality guarantees. No experimental evaluation

of their methods is presented, and they do not address the top-K FIs problem. Our approach gives

better bounds for the problems studied in [33] and applies to related problems such as the discovery

of top-K FIs and absolute approximations.

Extracting the collection of top-K frequent itemsets is a more difficult task since the correspond-

ing minimum frequency threshold is not known in advance [42, 68]. Some works solved the problem

by looking at closed top-K frequent itemsets, a concise representation of the collection [168, 199],

but they suffers from the same scalability problems as the algorithms for exactly mining FIs with a

fixed minimum frequency threshold.

Previous works that used sampling to approximation the collection of top-K FIs [169, 185] used

progressive sampling. Both works provide (similar) theoretical guarantees on the quality of the

approximation. What is more interesting to us, both works present a theoretical upper bound to the

sample size needed to compute such an approximation. The size depended linearly on the number of

items. In contrast, our results give a sample size that only in the worst case is linear in the number

of items but can be (and is, in practical cases) much less than that, depending on the dataset, a

flexibility not provided by previous contributions. Sampling is used by Vasudevan and Vojonović

[196] to extract an approximation of the top-K frequent individual items from a sequence of items,

which contains no item whose actual frequency is less than fK − ε for a fixed 0 < ε < 1, where

fK is the actual frequency of the K-th most frequent item. They derive a sample size sufficient to

achieve this result, but they assume the knowledge of fK , which is rarely the case. An empirical

sequential method can be used to estimate the right sample size. Moreover, the results cannot be

directly extended to the mining of top-K frequent item(set)s from datasets of transactions with
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length greater than one.

To our knowledge, ours is the first application of VC-dimension to knowledge discovery.

3.2 Preliminaries

This section introduces basic definitions and properties that will be used in later sections.

A dataset D is a collection of transactions, where each transaction τ is a subset of a ground set

I2 There can be multiple identical transactions in D. Elements of I are called items and subsets of

I are called itemsets. Let |τ | denote the number of items in transaction τ , which we call the length

of τ . Given an itemset A ⊆ I, the support set of A, denoted as TD(A), is the set of transactions

in D that contain A. The support of A, sD(A) = |TD(A)|, is the number of transaction in D that

contains A, and the frequency of A, fD(A) = |TD(A)|/|D|, is the fraction of transactions in D that

contain A.

Definition 4. Given a minimum frequency threshold θ, 0 < θ ≤ 1, the FIs mining task with respect

to θ is finding all itemsets with frequency ≥ θ, i.e., the set

FI(D, I, θ) = {(A, fD(A)) : A ⊆ I and fD(A) ≥ θ} .

To define the collection of top-K FIs, we assume a fixed canonical ordering of the itemsets in

2I by decreasing frequency in D, with ties broken arbitrarily, and label the itemsets A1, A2, . . . , Am

according to this ordering. For a given 1 ≤ K ≤ m, we denote by f (K)
D the frequency fD(AK) of the

K-th most frequent itemset AK , and define the set of top-K FIs (with their respective frequencies)

as

TOPK(D, I,K) = FI
(
D, I, f (K)

D

)
. (3.1)

One of the main uses of frequent itemsets is in the discovery of association rules. An association

rule W is an expression “A ⇒ B” where A and B are itemsets such that A ∩ B = ∅. The support

sD(W ) (resp. frequency fD(W )) of the association rule W is the support (resp. frequency) of the

itemset A∪B. The confidence cD(W ) ofW is the ratio fD(A∪B)/fD(A). Intuitively, an association

rule “A ⇒ B” expresses, through its support and confidence, how likely it is for the itemset B

to appear in the same transactions as itemset A. The confidence of the association rule can be
2We assume I = ∪τ∈Dτ , i.e., all the elements of I appear in at least one transaction from D.
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interpreted the conditional probability of B being present in a transaction that contains A. Many

other measures can be used to quantify the interestingness of an association rule [189] (see also

Sect. 3.4.4).

Definition 5. Given a dataset D with transactions built on a ground set I, and given a minimum

frequency threshold θ and a minimum confidence threshold γ, the ARs task with respect to θ and γ

is to identify the set

AR(D, I, θ, γ) = {(W, fD(W ), cD(W )) | association rule W, fD(W ) ≥ θ, cD(W ) ≥ γ} .

We say that an itemset A (resp. an association rule W ) is in FI(D, I, θ) or in TOPK(D, I,K)

(resp. in AR(D, I, θ, γ)) when there A (resp. W ) is part of a pair in FI(D, I, θ) or TOPK(D, I,K),

(resp. a triplet AR(D, I, θ, γ)).

We are interested in extracting absolute and relative approximations of the sets FI(D, I, θ),

TOPK(D, I,K) and AR(D, I, θ, γ).

Definition 6. Given a parameter εabs (resp. εrel), an absolute εabs-close approximation (resp. a

relative εrel-close approximation) of FI(D, I, θ) is a set C = {(A, fA) : A ⊆ I, fA ∈ [0, 1]} of pairs

(A, fA) where fA approximates fD(A). C is such that:

1. C contains all itemsets appearing in FI(D, I, θ);

2. C contains no itemset A with frequency fD(A) < θ − εabs (resp. fD(A) < (1− εrel)θ);

3. For every pair (A, fA) ∈ C, it holds |fD(A)− fA| ≤ εabs (resp. |fD(A)− fA| ≤ εrelfD(A)).

As an example, consider a dataset D where transactions have all length one and are built on

the ground set I = {a, b, c, d}. Suppose that fD(a) = 0.4, fD(b) = 0.3, fD(c) = 0.2, and fD(d) =

0.1 (clearly there are no other itemsets). If we set θ = 0.22 and ε = 0.05, an absolute ε-close

approximation C of FI(D, I, θ) must contain two pairs (a, fa) and (b, fb) as a, b ∈ FI(Ds, I, θ). At

the same time, C might contain a pair (c, fc), because fD(c) > θ − ε. On the other hand C must

not contain a pair (d, fd) because fD(d) < θ − ε. The values fa, fb, and eventually fc must be not

more than ε far from fD(a), fD(b), and fD(c), respectively.

The above definition extends easily to the case of top-K frequent itemsets mining using the

equivalence

TOPK(D, I,K) = FI
(
D, I, f (K)

D

)
:
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an absolute (resp. relative) ε-close approximation to FI
(
D, I, f (K)

D

)
is an absolute (resp. relative)

ε-close approximation to TOPK(D, I,K).

For the case of association rules, we have the following definition.

Definition 7. Given a parameter εabs (resp. εrel), an absolute εabs-close approximation (resp. a

relative εrel-close approximation) of AR(D, I, θ, γ) is a set

C = {(W, fW , cW ) : association rule W, fW ∈ [0, 1], cW ∈ [0, 1]}

of triplets (W, fW , cW ) where fW and cW approximate fD(W ) and cD(W ) respectively. C is such

that:

1. C contains all association rules appearing in AR(D, I, θ, γ);

2. C contains no association ruleW with frequency fD(W ) < θ−εabs (resp. fD(W ) < (1−εrel)θ);

3. For every triplet (W, fW , cW ) ∈ C, it holds |fD(W )−fW | ≤ εabs (resp. |fD(W )−fW | ≤ εrelθ).

4. C contains no association ruleW with confidence cD(W ) < γ−εabs (resp. cD(W ) < (1−εrel)γ);

5. For every triplet (W, fW , cW ) ∈ C, it holds |cD(W ) − cW | ≤ εabs (resp. |cD(W ) − cW | ≤

εrelcD(W )).

Note that the definition of relative ε-close approximation to FI(D, I, θ) (resp. to AR(D, I, θ, γ))

is more stringent than the definition of ε-close solution to frequent itemset mining (resp. association

rule mining) in [33, Sect. 3]. Specifically, we require an approximation of the frequencies (and confi-

dences) in addition to the approximation of the collection of itemsets or association rules (Property

3 in Def. 6 and properties 3 and 5 in Def. 7).

3.3 The dataset’s range space and its VC-dimension

Our next step is to define a range space of the dataset and the itemsets. We will use this space

together with Theorem 1 to compute the bounds to sample sizes sufficient to compute approximate

solutions for the various tasks of market basket analysis.

Definition 8. Let D be a dataset of transactions that are subsets of a ground set I. We define

S = (D,R) to be a range space associated with D and I such that:
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1. D = D is the set of transactions in the dataset.

2. R = {TD(A) | A ⊆ I, A 6= ∅} is a family of sets of transactions such that for each non-empty

itemset A ⊆ I, the set TD(A) = {τ ∈ D | A ⊆ τ} of all transactions containing A is an element

of R.

It is easy to see that in practice the collection R of ranges contains all and only the sets TD(A)

where A is a closed itemset, i.e., a set such that for each non-empty B ⊆ A we have TD(B) = TD(A)

and for any C ⊃ A, TD(C) ( TD(A). Closed itemsets are used to summarize the collection of

frequent itemsets [30].

The VC-Dimension of this range space is the maximum size of a set of transactions that can

be shattered by the support sets of the itemsets, as expressed by the following theorem and the

following corollary.

Theorem 4. Let D be a dataset and let S = (D,R) be the associated range space. Let v ∈ N.

Then VC(S) ≥ v if and only if there exists a set A ⊆ D of v transactions from D such that for each

subset B ⊆ A, there exists an itemset IB such that the support set of IB in A is exactly B, that is

TA(IB) = B.

Proof. “⇐”. From the definition of IB, we have that TD(IB) ∩ A = B. By definition of PR(A) this

means that B ∈ PR(A), for any subset B of A. Then PR(A) = 2A, which implies VC(S) ≥ v.

“⇒”. Let VC(S) ≥ v. Then by the definition of VC-Dimension there is a set A ⊆ D of v

transactions from D such that PR(A) = 2A. By definition of PR(A), this means that for each subset

B ⊆ A there exists an itemset IB such that TD(IB) ∩ A = B. We want to show that no transaction

ρ ∈ A\B contains IB. Assume now by contradiction that there is a transaction ρ∗ ∈ A\B containing

IB. Then ρ∗ ∈ TD(IB) and, given that ρ∗ ∈ A, we have ρ∗ ∈ TD(IB) ∩ A. But by construction, we

have that TD(IB)∩A = B and ρ∗ /∈ B because ρ∗ ∈ A\B. Then we have a contradiction, and there

can not be such a transaction ρ∗.

Corollary 1. Let D be a dataset and S = (D,R) be the corresponding range space. Then the VC-

Dimension VC(S) of S is the maximum integer v such that there is a set A ⊆ D of v transactions

from D such that for each subset B ⊆ A of A, there exists an itemset IB such that the support of IB

in A is exactly B, that is TA(IB) = B.
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For example, consider the dataset D = {{a, b, c, d}, {a, b}, {a, c}, {d}} of four transactions built on

the set of items I = {a, b, c, d}. It is easy to see that the set of transactionsA = {{a, b}, {a, c}} can be

shattered: A = A∩TD({a}), {{a, b}} = A∩TD({a, b}), {{a, c}} = A∩TD({a, c}), ∅ = A∩TD({d}).

It should be clear that there is no set of three transactions in D that can be shattered, so the

VC-dimension of the range space associated to D is exactly two.

Computing the exact VC-dimension of the range space associated to a dataset is extremely

expensive from a computational point of view. This does not come as a surprise, as it is known that

computing the VC-dimension of a range space (X,R) can take time O(|R||X|log |R|) [137, Thm. 4.1].

It is instead possible to give an upper bound to the VC-dimension and a procedure to efficiently

compute the bound.

We now define a characteristic quantity of the dataset, called the d-index and show that it is

a tight bound to the VC-dimension of the range space associated to the dataset, then present an

algorithm to efficiently compute an upper bound to the d-index with a single linear scan of the

dataset.

Definition 9. Let D be a dataset. The d-index of D is the maximum integer d such that D contains

at least d different transactions of length at least d such that no one of them is a subset of another,

that is, the transactions form an anti-chain.

Consider now the dataset D = {{a, b, c, d}, {a, b, d}, {a, c}, {d}} of four transactions built on the

set of items I = {a, b, c, d}. The d-index of D is 2, as the transactions {a, b, d} and {a, c} form an anti-

chain. Note that the anti-chain determining the d-index is not necessarily the largest anti-chain that

can be built on the transactions ofD. For example, ifD = {{a, b, c, d}, {a, b}, {a, c}, {a}, {b}, {c}, {d}},

the largest anti-chain would be {{a}, {b}, {c}, {d}}, but the anti-chain determining the d-index of

the dataset would be {{a, b}, {a, c}, {d}}.

Intuitively, the reason for considering an anti-chain of transactions is that, if τ is a transaction

that is a subset of another transaction τ ′, ranges containing τ ′ necessarily also contain τ (the opposite

is not necessarily true), so it would be impossible to shatter a set containing both transactions.

It is easy to see that the d-index of a dataset built on a set of items I is at most equal to the

length of the longest transaction in the dataset and in any case no greater than |I| − 1.

The d-index is an upper bound to the VC-dimension of a dataset.
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Theorem 5. Let D be a dataset with d-index d. Then the range space S = (D,R) corresponding to

D has VC-dimension at most d.

Proof. Let ` > d and assume that S has VC-dimension `. From Def. 1 there is a set K of `

transactions of D that is shattered by R. Clearly, K cannot contain any transaction equal to I,

because such transaction would appear in all ranges of R and so it would not be possible to shatter

K. At the same time, for any two transactions τ, τ ′ in K we must have neither τ ⊆ τ ′ nor τ ′ ⊆ τ ,

otherwise the shorter transaction of the two would appear in all ranges where the longer one appears,

and so it would not be possible to shatter K. Then K must be an anti-chain. From this and from

the definitions of d and `, K must contain a transaction τ such that |τ | ≤ d. The transaction τ is

a member of 2`−1 subsets of K. We denote these subsets of K containing τ as Ai, 1 ≤ i ≤ 2`−1,

labeling them in an arbitrary order. Since K is shattered (i.e., PR(K) = 2K), we have

Ai ∈ PR(K), 1 ≤ i ≤ 2`−1.

From the above and the definition of PR(K), it follows that for each set of transactions Ai there

must be a non-empty itemset Bi such that

TD (Bi) ∩ K = Ai ∈ PR(K). (3.2)

Since the Ai are all different from each other, this means that the TD(Bi) are all different from each

other, which in turn requires that the Bi be all different from each other, for 1 ≤ i ≤ 2`−1.

Since τ ∈ Ai and τ ∈ K by construction, it follows from (3.2) that

τ ∈ TD (Bi) , 1 ≤ i ≤ 2`−1.

From the above and the definition of TD(Bi), we get that all the itemsets Bi, 1 ≤ i ≤ 2`−1 appear in

the transaction τ . But |τ | ≤ d < `, therefore τ can only contain at most 2d − 1 < 2`−1 non-empty

itemsets, while there are 2`−1 different itemsets Bi.

This is a contradiction, therefore our assumption is false and K cannot be shattered by R, which

implies that VC(S) ≤ d.

This bound is strict, i.e., there are indeed datasets with VC-dimension exactly d, as formalized



26

by the following Theorem.

Theorem 6. There exists a dataset D with d-index d and such the corresponding range space has

VC-dimension exactly d.

Proof. For d = 1, D can be any dataset with at least two different transactions τ = {a} and τ ′ = {b}

of length 1. The set {τ} ⊆ D is shattered because TD({a}) ∩ {τ} = {τ} and TD({b}) ∩ {τ} = ∅.

Without loss of generality, let the ground set I be N. For a fixed d > 1, let τi = {0, 1, 2, . . . , i−

1, i + 1, . . . , d} 1 ≤ i ≤ d, and consider the set of d transactions K = {τi, 1 ≤ i ≤ d}. Note that

|τi| = d and |K| = d and for no pair of transactions τi, τj with i 6= j we have either τi ⊆ τj nor

τj ⊆ τi.

D is a dataset containing K and any number of arbitrary transactions from 2I of length at most

d. Let S = (D,R) be the range space corresponding to D. We now show that K ⊆ D is shattered

by ranges from R, which implies VC(S) ≥ d.

For each A ∈ 2K \ {K, ∅}, let YA be the itemset

YA = {1, . . . , d} \ {i : τi ∈ A}.

Let YK = {0} and let Y∅ = {d+ 1}. By construction we have

TK(YA) = A,∀A ⊆ K

i.e., the itemset YA appears in all transactions in A ⊆ K but not in any transaction from K \A, for

all A ∈ 2K. This means that

TD(YA) ∩ K = TK(YA) = A,∀A ⊆ K.

Since for all A ⊆ K, TD(YA) ∈ R by construction, the above implies that

A ∈ PR(K),∀A ⊆ K

This means that K is shattered by R, hence VC(S) ≥ d. From this and Thm. 5, we can conclude

that VC(S) = d.
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Consider again the dataset D = {{a, b, c, d}, {a, b}, {a, c}, {d}} of four transactions built on the

set of items I = {a, b, c, d}. We argued before that the VC-dimension of the range space associated

to this dataset is exactly two, and it is easy to see that the d-index of D is also two.

3.3.1 Computing the d-index of a dataset

The d-index of a dataset D exactly can be obtained in polynomial time by computing, for each

length `, the size w` of the largest anti-chain that can be built using the transactions of length at

least ` from D. If w ≥ `, then the d-index is at least `. The maximum ` for which w` ≥ ` is the

d-index of D. The size of the largest anti-chain that can be built on the elements of a set can be

computed by solving a maximum matching problem on a bipartite graph that has two nodes for each

element of the set [66]. Computing the maximum matching can be done in polynomial time [106].

In practice, this approach can be quite slow as it requires, for each value taken by `, a scan of

the dataset to create the set of transactions of length at least `, and to solve a maximum matching

problem. Hence, we now present an algorithm to efficiently compute an upper bound q to the d-index

with a single linear scan of the dataset and with O(q) memory.

Algorithm 1: Compute the d-bound, an upper bound to the d-index of a dataset
Input : a dataset D
Output: the d-bound q, an upper bound to the d-index of D

1 τ ← getNextTransaction(D)
2 T ← {τ}
3 q ← 1
4 while scanIsNotComplete() do
5 τ ← getNextTransaction(D)
6 if |τ | > q and τ 6= I and ¬∃a ∈ T such that τ = a then
7 R ← T ∪ {τ}
8 q ← max integer such that R contains at least q transactions of length at least q
9 T ← set of the q longest transactions from R (ties broken arbitrarily)

10 end
11 end
12 return q

It is easy to see that the d-index of a dataset D is upper bounded by the maximum integer q such

that D contains at least q different (that is not containing the same items) transactions of length at

least q and less than |I|. This upper bound, which we call d-bound, ignores the constraint that the

transactions that concur to the computation of the d-index must form an anti-chain. We can compute

the d-bound in a greedy fashion by scanning the dataset once and keeping in memory the maximum
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integer q such that we saw at least q transactions of length q until this point of the scanning. We also

keep in memory the q longest different transactions, to avoid counting transactions that are equal

to ones we have already seen because, as we already argued, a set containing identical transactions

can not be shattered and copies of a transaction should not be included in the computation of the

d-index, so it is not useful to include them in the computation of the d-bound. The pseudocode

for computing the d-bound in the way we just described is presented in Algorithm 1. The function

getNextTransaction returns one transaction at a time from the dataset. Note though that this does

not imply that, in a disk-based system, the algorithm needs a random read for each transaction.

If the dataset is stored in a block-based fashion, one can read one block at a time and scan all

transactions in that block, given that the order in which the transactions are scanned is not relevant

for the correctness of the algorithm. This means that in the worst-case the algorithm performs a

random read per block. The following lemma deals with the correctness of the algorithm.

Lemma 3. The algorithm presented in Algorithm 1 computes the maximum integer q such that D

contains at least q different transactions of length at least q and less than |I|.

Proof. The algorithm maintains the following invariant after each update of T : the set T contains

the ` longest (ties broken arbitrarily) different transactions of length at least `, where ` is the

maximum integer r for which, up until to this point of the scan, the algorithm saw at least r

different transactions of length at least r. It should be clear that if the invariant holds after the

scanning is completed, the thesis follows because the return value q is exactly the size |T | = ` after

the last transaction has been read and processed.

It is easy to see that this invariant is true after the first transaction has been scanned. Suppose

now that the invariant is true at the beginning of the n + 1-th iteration of the while loop, for any

n, 0 ≤ n ≤ |D| − 1. We want to show that it will still be true at the end of the n + 1-th iteration.

Let τ be the transaction examined at the n+ 1-th iteration of the loop. If τ = |I|, the invariant is

still true at the end of the n+ 1-th iteration, as ` does not change and neither does T because the

test of the condition on line 6 of Algorithm 1 fails. The same holds if |τ | < `. Consider now the

case |τ | > `. If T contained, at the beginning of the n+ 1-th iteration, one transaction equal to τ ,

then clearly ` would not change and neither does T , so the invariant is still true at the end of the

n+ 1-th iteration. Suppose now that |τ | > ` and that T did not contain any transaction equal to τ .

Let `i be, for i = 1, . . . , |D| − 1, the value of ` at the end of the i-th iteration, and let `0 = 1. If T
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contained, at the beginning of the n+ 1-th iteration, zero transactions of length `n, then necessarily

it contained `n transactions of length greater than `n, by our assumption that the invariant was

true at the end of the n-th iteration. Since |τ | > `n, it follows that R = T ∪ {τ} contains `n + 1

transactions of size at least `n + 1, hence the algorithm at the end of the n+ 1-th iteration has seen

`n + 1 transactions of length at least `n + 1, so ` = `n+1 = `n + 1. This implies that at the end of

iteration n+ 1 the set T must have size `n+1 = `n + 1, i.e., must contain one transaction more than

at the beginning of the n+ 1-th iteration. This is indeed the case as the value q computed on line 8

of Algorithm 1 is exactly |R| = `n + 1 because of what we just argued about R, and therefore T is

exactly R at the end of the n+1-th iteration and contains the ` = `n+1 longest different transactions

of length at least `, which is exactly what is expressed by the invariant. If instead T contained, at

the beginning of the n + 1-th iteration, one or more transactions of length `n, then T contains at

most `n−1 transactions of length greater than `n, and R contains at most `n transactions of length

at least `n + 1, hence q = `n. This also means that the algorithm has seen, before the beginning

of the n+ 1-th iteration, at most `n − 1 different transactions strictly longer than `n. Hence, after

seeing τ , the algorithm has seen at most `n transactions of length at least `n + 1, so at the end of

the n + 1-th iteration we will have ` = `n+1 = `n. This means that the size of T at the end of

the n + 1-th iteration is the same as it was at the beginning of the same iteration. This is indeed

the case because of what we argued about q. At the end of the n + 1-th iteration, T contains 1)

all transactions of length greater than `n that it already contained at the end of the n-th iteration,

and 2) the transaction τ , and 3) all but one the transactions of length `n that it contained at the

end of the n-th iteration. Hence the invariant is true at the end of the n+ 1-th iteration because `

did not change and we replaced in T a transaction of length `n with a longer transaction, that is,

τ . Consider now the case of |τ | = `. Clearly if there is a transaction in T that is equal to τ , the

invariant is still true at the end of the n+ 1-th iteration, as ` does not change and T stays the same.

If T did not contain, at the beginning of the n + 1-th iteration, any transaction equal to τ , then

also in this case ` would not change, that is ` = `n+1 = `n, because by definition of ` the algorithm

already saw at least ` different transactions of length at least `. This implies that T must have, at

the end of the n+ 1-th iteration, the same size that it had at the beginning of the n+ 1-th iteration.

This is indeed the case because the set R contains `+ 1 different transactions of size at least `, but

there is no value b > ` for which R contains b transactions of length at least b, because of what we

argued about `, hence |T | = q = `. At the end of the n + 1-th iteration the set T contains 1) all
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the transactions of length greater than ` that it contained at the beginning of the n+ 1-th iteration,

and 2) enough transactions of length ` to make |T | = `. This means that T can contain, at the

end of the n+ 1-th iteration, exactly the same set of transactions that it contained at the beginning

n+ 1-th iteration and since, as we argued, ` does not change, then the invariant is still true at the

end of the n + 1-th iteration. This completes our proof that the invariant still holds at the end of

the n+ 1 iteration for any n, and therefore holds at the end of the algorithm, proving the thesis.

The fact that the computation of the d-bound can be easily performed with a single linear scan

of the dataset in an online greedy fashion makes it extremely practical also for updating the bound

as new transactions are added to the dataset.

3.3.2 Speeding up the VC-dimension approximation task

We showed that the computation of the d-index or of the d-bound can be efficiently performed, and

especially the latter only requires a single linear scan of the dataset, in a block-by-block fashion if

the dataset is stored on disk. In some settings this may still be an expensive operation. We now

present two ways to reduce the cost of this operation.

Empirical VC-dimension. It is possible to create a random sample S of the dataset D of the

desired size |S|, compute the d-index or the d-bound on the sample, which is less expensive than

computing it on the whole dataset and, for the d-bound, can be done while creating S, and finally,

after fixing δ, use Thm. 2 to compute the ε for which S is an ε-approximation. Thus, we have a

faster method for estimating the VC-dimension that, as we will show in the Sect. 3.4, can be used

to extract an absolute ε-close approximation to the collection of (top-K) FIs and ARs.

Estimating the d-index from the transaction length distribution. When a Bayesian ap-

proach is justified, one views the dataset D as a sample of n transactions generated by a random

process with some known (or assumed) priors. A number of mixture models have been proposed

in the literature for modeling dataset generation, the most commonly used is the Dirichlet Pro-

cess Mixture model [104]. In general, we assume that the generating process πᾱ belongs to a known

parametrized family of distributions Π(α) where α represents the parameters of the distribution. De-

riving the parameter ᾱ corresponding to the distribution of transaction lengths according to which

the dataset D was generated can be done by sampling transactions from D and using techniques



31

for parameter estimation for a distribution from Π(α) [102, 130]. Once the parameter ᾱ is (prob-

abilistically) known, an upper bound b to the d-index d can be easily derived (probabilistically).

Estimating the parameter ᾱ through sampling may take less time than performing a scan of the

entire dataset to compute the d-bound, especially when the dataset is very large, a fast sequential

sampling algorithm like Vitter’s Method D [197] is used, and the estimation procedure is fast.

3.3.3 Connection with monotone monomials

There is an interesting connection between itemsets built on a ground set I and the class ofmonotone

monomials on |I| literals3. A monotone monomial is a conjunction of literals with no negations. The

class monotone-monomials|I| is the class of all monotone monomials on |I| Boolean variables,

including the constant functions 0 and 1. The VC-Dimension of the range space

({0, 1}|I|,monotone-monomials|I|)

is exactly |I| [157, Coroll. 3]. It is easy to see that it is always possible to build a bijective map

between the itemsets in 2I and the elements of monotone-monomials|I| and that transactions

built on the items in I correspond to points of {0, 1}|I|. This implies that a dataset D can be seen

as a sample from {0, 1}|I|.

Solving the problems we are interested in by using the VC-Dimension |I| of monotone-monomials

as an upper bound to the VC-dimension of the itemsets would have resulted in a much larger sample

size than what is sufficient, given that |I| can be much larger than the d-index of a dataset. Instead,

the VC-dimension of the range space (D, R) associated to a dataset D is equivalent to the VC-

dimension of the range space (D,monotone-monomials|I|), which is the empirical VC-Dimension

of the range space ({0, 1}|I|,monotone-monomials|I|) measured on D. Our results, therefore,

also show a tight bound to the empirical VC-Dimension of the class of monotone monomials on |I|

variables.
3This connection was suggested to us by Luc De Raadt, to whom we are grateful.
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3.4 Mining (top-K) Frequent Itemsets and Association Rules

We apply the VC-dimension results to constructing efficient sampling algorithms with performance

guarantees for approximating the collections of FIs, top-K FIs and ARs.

3.4.1 Mining Frequent Itemsets

We construct bounds for the sample size needed to obtain relative/absolute ε-close approximations

to the collection of FIs. The algorithms to compute the approximations use a standard exact FIs

mining algorithm on the sample, with an appropriately adjusted minimum frequency threshold, as

formalized in the following lemma.

Lemma 4. Let D be a dataset with transactions built on a ground set I, and let v be the VC-

dimension of the range space associated to D. Let 0 < ε, δ < 1. Let S be a random sample of D with

size

|S| = min
{
|D|, 4c

ε2

(
v + log 1

δ

)}
,

for some absolute constant c. Then FI(S, I, θ−ε/2) is an absolute ε-close approximation to FI(D, I, θ)

with probability at least 1− δ.

Proof. Suppose that S is a ε/2-approximation of the range space (D,R) corresponding to D. From

Thm. 1 we know that this happens with probability at least 1− δ. This means that for all X ⊆ I,

fS(X) ∈ [fD(X)−ε/2, fD(X)+ε/2]. This holds in particular for the itemsets in C = FI(S, I, θ−ε/2),

which therefore satisfies Property 3 from Def. 6. It also means that for all X ∈ FI(D, I, θ), fS(X) ≥

θ − ε/2, so C also guarantees Property 1 from Def. 6. Let now Y ⊆ I be such that fD(Y ) < θ − ε.

Then, for the properties of S, fS(Y ) < θ − ε/2, i.e., Y /∈ C, which allows us to conclude that C also

has Property 2 from Def. 6.

We stress again that here and in the following theorems, the constant c is absolute and does not

depend on D or on d, ε, or δ.

One very interesting consequence of this result is that we do not need to know in advance the

minimum frequency threshold θ in order to build the sample: the properties of the ε-approximation

allow to use the same sample for any threshold and for different thresholds, i.e., the sample does not

need to be rebuilt if we want to mine it with a threshold θ first and with another threshold θ′ later.
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It is important to note that the VC-dimension associated to a dataset, and therefore the sample

size from (2.2) needed to probabilistically obtain an ε-approximation, is independent from the size

(number of transactions) in D and also of the size of FI(S, I, θ). It is also always smaller or at most

as large as the d-index d, which is always less or equal to the length of the longest transaction in

the dataset, which in turn is less or equal to the number of different items |I|.

To obtain a relative ε-close approximation, we need to add a dependency on θ as shown in the

following Lemma.

Lemma 5. Let D, v, ε, and δ as in Lemma 4. Let S be a random sample of D with size

|S| = min
{
|D|, 4(2 + ε)c

ε2θ(2− ε)

(
v log 2 + ε

θ(2− ε) + log 1
δ

)}
,

for some absolute absolute constant c. Then FI(S, I, (1− ε/2)θ) is a relative ε-close approximation

to FI(D, I, θ) with probability at least 1− δ.

Proof. Let p = θ(2−ε)/(2+ε). From Thm. 1, the sample S is a relative (p, ε/2)-approximation of the

range space associated to D with probability at least 1−δ. For any itemset X in FI(D, I, θ), we have

fD(X) ≥ θ > p, so fS(X) ≥ (1− ε/2)fD(X) ≥ (1− ε/2)θ, which implies X ∈ FI(S, I, (1− ε/2)θ)),

so Property 1 from Def. 6 holds. Let now X be an itemsets with fD(X) < (1 − ε)θ. From our

choice of p, we always have p > (1 − ε)θ, so fS(X) ≤ p(1 + ε/2) < θ(1 − ε/2). This means

X /∈ FI(S, I, (1− ε/2)θ)), as requested by Property 2 from Def. 6. Since (1− ε/2)θ = p(1 + ε/2), it

follows that only itemsets X with fD(X) ≥ p can be in FI(S, I, (1 − ε/2)θ)). For these itemsets it

holds |fS(X)− fD(X)| ≤ fD(X)ε/2, as requested by Property 3 from Def.6.

3.4.2 Mining top-K Frequent Itemsets

Given the equivalence TOPK(D, I,K) = FI(D, I, f (K)
D ), we could use the above FIs sampling algo-

rithms if we had a good approximation of f (K)
D , the threshold frequency of the top-K FIs.

For the absolute ε-close approximation we first execute a standard top-K FIs mining algorithm

on the sample to estimate f (K)
D and then run a standard FIs mining algorithm on the same sample

using a minimum frequency threshold depending on our estimate of f (K)
S . Lemma 6 formalizes this

intuition.

Lemma 6. Let D, v, ε, and δ be as in Lemma 4. Let K be a positive integer. Let S be a random
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sample of D with size

|S| = min
{
|D|, 16c

ε2

(
v + log 1

δ

)}
, for some absolute constant c, then FI(S, I, f (K)

S − ε/2) is an absolute ε-close approximation to

TOPK(D, I,K) with probability at least 1− δ.

Proof. Suppose that S is a ε/4-approximation of the range space (X,R) corresponding to D. From

Thm. 1 we know that this happens with probability at least 1− δ. This means that for all Y ⊆ I,

fS(Y ) ∈ [fD(Y )− ε/4, fD(Y ) + ε/4]. Consider now f
(K)
S , the frequency of the K-th most frequent

itemset in the sample. Clearly, f (K)
S ≥ f (K)

D −ε/4, because there are at least K itemsets (for example

any subset of size K of TOPK(D, I,K)) with frequency in the sample at least f (K)
D − ε/4. On the

other hand f (K)
S ≤ f (K)

D + ε/4, because there cannot be K itemsets with a frequency in the sample

greater than f (K)
D + ε/4: only itemsets with frequency in the dataset strictly greater than f (K)

D can

have a frequency in the sample greater than f (K)
D + ε/4, and there are at most K − 1 such itemsets.

Let now η = f
(K)
S − ε/2, and consider FI(S, I, η). We have η ≤ f

(K)
D − ε/4, so for the properties of

S, TOPK(D, I,K) = FI(D, I, f (K)
D ) ⊆ FI(S, I, η), which then guarantees Property 1 from Def. 6. On

the other hand, let Y be an itemset such that fD(Y ) < f
(K)
D − ε. Then fS(Y ) < f

(K)
D − 3ε/4 ≤ η, so

Y /∈ FI(S, I, η), corresponding to Property 2 from Def. 6. Property 3 from Def. 6 follows from the

properties of S.

Note that as in the case of the sample size required for an absolute ε-close approximation to

FI(D, I, θ), we do not need to know K in advance to compute the sample size for obtaining an

absolute ε-close approximation to TOPK(D, I,K).

Two different samples are needed for computing a relative ε-close approximation to TOPK(D, I,K),

the first one to compute a lower bound to f (K)
D , the second to extract the approximation. Details

for this case are presented in Lemma 7.

Lemma 7. Let D, v, ε, and δ be as in Lemma 4. Let K be a positive integer. Let δ1, δ2 be two reals

such that (1− δ1)(1− δ2) ≥ (1− δ). Let S1 be a random sample of D with some size

|S1| =
φc

ε2

(
v + log 1

δ1

)

for some φ > 2
√

2/ε and some absolute constant c. If f (K)
S1
≥ (2
√

2)/(εφ), then let p = (2−ε)θ/(2+ε)
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and let S2 be a random sample of D of size

|S2| = min
{
|D|, 4c

ε2p
(v log 1

p
+ log 1

δ
)
}

for some absolute constant c. Then FI(S2, I, (1− ε/2)(f (K)
S1
− ε/
√

2φ)) is a relative ε-close approxi-

mation to TOPK(D, I,K) with probability at least 1− δ.

Proof. Assume that S1 is a ε/
√

2φ-approximation for D and S2 is a relative (p, ε/2)-approximation

for D. The probability of these two events happening at the same time is at least 1−δ, from Thm. 1.

Following the steps of the proof of Lemma 6 we can easily get that, from the properties of S1,

f
(K)
S1
− ε√

2φ
≤ f (K)
D ≤ f (K)

S1
+ ε√

2φ
. (3.3)

Consider now an element X ∈ TOPK(D, I,K). We have by definition fD(X) ≥ f
(K)
D > f

(K)
S1
−

ε/
√

2φ ≥ p, and from the properties of S2, it follows that fS(X) ≥ (1−ε/2)fD(X) ≥ (1−ε/2)(f (K)
S1
−

ε/
√

2φ), which implies X ∈ FI(S2, I, (1− ε/2)(f (K)
S1
− ε/
√

2φ)) and therefore Property 1 from Def. 6

holds for FI(S2, I, η).

Let now Y be an itemset such that fD(Y ) < (1 − ε)f (K)
D . From our choice of p we have that

fD(Y ) < p. Then fS2(Y ) < (1 + ε/2)p < (1− ε/2)(f (K)
S1
− ε/
√

2φ). Therefore, Y /∈ FI(S2, I, η) and

Property 2 from Def. 6 is guaranteed.

Property 3 from Def. 6 follows from (3.3) and the properties of S2.

3.4.3 Mining Association Rules

Our final theoretical contribution concerns the discovery of relative/absolute approximations to

AR(D, I, θ, η) from a sample. Lemma 8 builds on a result from [33, Sect. 5] and covers the relative

case, while Lemma 9 deals with the absolute one.

Lemma 8. Let 0 < δ, ε, θ, γ < 1, φ = max{2+ε, 2−ε+2
√

1− ε}, η = ε/φ, and p = θ(1−η)/(1+η).

Let D be a dataset and v be the VC-dimension of the range space associated to D. Let S be a random

sample of D of size

|S| = min
{
|D|, c

η2p

(
v log 1

p
+ log 1

δ

)}
(3.4)
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for some absolute constant c. Then AR(S, I, (1− η)θ, γ(1− η)/(1 + η)) is a relative ε-close approx-

imation to AR(D, I, θ, γ) with probability at least 1− δ.

Proof. Suppose S is a relative (p, η)-approximation for the range space corresponding to D. From

Thm. 1 we know this happens with probability at least 1− δ.

Let W ∈ AR(D, I, θ, γ) be the association rule “A ⇒ B”, where A and B are itemsets. By

definition fD(W ) = fD(A ∪B) ≥ θ > p. From this and the properties of S, we get

fS(W ) = fS(A ∪B) ≥ (1− η)fD(A ∪B) ≥ (1− η)θ.

Note that, from the fact that fD(W ) = fD(A ∪ B) ≥ θ, it follows that fD(A), fD(B) ≥ θ > p,

for the anti-monotonicity Property of the frequency of itemsets.

By definition, cD(W ) = fD(W )/fD(A) ≥ γ. Then,

cS(W ) = fS(W )
fS(A) ≥

(1− η)fD(W )
(1 + η)fD(A) ≥

1− η
1 + η

· fD(W )
fD(A) ≥

1− η
1 + η

γ.

It follows that W ∈ AR(S, I, (1− η)θ, γ(1− η)/(1 + η)), hence Property 1 from Def. 7 is satisfied.

Let now Z be the association rule “C ⇒ D”, such that fD(Z) = fD(C ∪D) < (1− ε)θ. But from

our definitions of η and p, it follows that fD(Z) < p < θ, hence fS(Z) < (1 + η)p < (1 − η)θ, and

therefore Z /∈ AR(S, I, (1− η)θ, γ(1− η)(1 + η)), as requested by Property 2 from Def. 7.

Consider now an association rule Y = “E ⇒ F” such that cD(Y ) < (1 − ε)γ. Clearly, we

are only concerned with Y such that fD(Y ) ≥ p, otherwise we just showed that Y can not be in

AR(S, I, (1 − η)θ, γ(1 − η)/(1 + η)). From this and the anti-monotonicity property, it follows that

fD(E), fD(F ) ≥ p. Then,

cS(Y ) = fS(Y )
fS(E) ≤

(1 + η)fD(Y )
(1− η)fD(E) <

1 + η

1− η (1− ε)γ < 1− η
1 + η

γ,

where the last inequality follows from the fact that (1− η)2 > (1 + η)(1− ε) for our choice of η. We

can conclude that Y /∈ AR(S, I, (1 − ε)θ, γ(1 − η)/(1 + η)γ) and therefore Property 4 from Def. 7

holds.

Properties 3 and 5 from Def. 7 follow from the above steps (i.e., what association rules can be

in the approximations), from the definition of φ, and from the properties of S.
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Lemma 9. Let D, v, θ, γ, ε, and δ be as in Lemma 8 and let εrel = ε/max{θ, γ}.

Fix φ = max{2 + ε, 2 − εrel + 2
√

1− εrel}, η = εrel/φ, and p = θ(1 − η)/(1 + η). Let S be a

random sample of D of size

|S| = min
{
|D|, c

η2p

(
v log 1

p
+ log 1

δ

)}
(3.5)

for some absolute constant c. Then AR(S, I, (1 − η)θ, γ(1 − η)/(1 + η)) is an absolute ε-close ap-

proximation to AR(D, I, θ, γ).

Proof. The thesis follows from Lemma 8 by setting ε there to εrel.

Note that the sample size needed for absolute ε-close approximations to AR(D, I, θ, γ) de-

pends on θ and γ, which was not the case for absolute ε-close approximations to FI(D, I, θ) and

TOPK(D, I,K).

3.4.4 Other interestingness measures

Confidence is not the only measure for the interestingness of an association rule. Other measures

include lift, IS (cosine), all-confidence, Jaccard index, leverage, conviction, and many more [189]. In

this section we apply our general technique to obtain good approximations with respect to a number

of these measures, while also showing the limitation of our technique with respect to other criteria.

We use the term absolute (or relative) ε-close approximation as defined in Def. 7, appropriately

adapted to the relevant measure in place of the confidence. We also extend our notation and denote

the collection of ARs with frequency at least θ and interestingness at least γ according to a measure

w by ARw(D, I, θ, γ), that is, indicating the measure in the subscript of “AR”.

The first two measures we deal with are all-confidence and IS (also known as Cosine). They are

defined as follows:

all-confidence: acD(A⇒ B) = fD(A∪B)
maxa∈A∪BfD(A)

IS (Cosine): isD(A⇒ B) = fD(A∪B)√
fD(A)fD(B)

SInce the approximation errors in the enumerators and denominators of these measures are the same

as in computing the confidence, we can follow exactly the same steps as in the proof of Lemmas 8
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and 9 and obtain the same procedures, parameters, and sample sizes (3.4) and (3.5) to extract

relative and absolute ε-close approximations to the collection of ARs according to these measures.

Lift. The lift of an association rule “A⇒ B” is defined as

`D(A⇒ B) = fD(A ∪B)
fD(A)fD(B) .

We have the following result about computing a relative ε-close approximation to the collection

of ARs according to lift.

Lemma 10. Let D, v, θ, γ, ε, and δ be as in Lemma 8. There exists a value η such that, if we let

p = θ(1− η)/(1 + η), and let S be random sample of D of size

|S| = min
{
|D|, c

η2p

(
v log 1

p
+ log 1

δ

)}

for some absolute constant c, we have that AR`(S, I, (1− η)θ, γ(1− η)/(1 + η)) is a relative ε-close

approximation to AR`(D, I, θ, γ).

Proof. In order for AR`(S, I, (1− η)θ, γ(1− η)/(1 + η)) to satisfy the properties of a relative ε-close

approximation, η must be a solution to the following system of inequalities:



(1− ε)(1 + η)3 < (1− η)3

1 + η

(1− η)2 ≤ 1 + ε

1− η
(1 + η)2 ≥ 1− ε

0 ≤ η < 1

The first inequality expresses the requirement of Property 4 from Def. 7. The second and the third

inequality deal with Properties 1, 3, and 5. The last inequality limits the domain of η. Property 2

from Def. 7 would be enforced by the choice of p. It can be verified that this system admits solutions.

Once the value of η has been determined, we can proceed as in the proof of Lemma 8 to prove that

all properties from Def. 7 are satisfied.

We can get a result about absolute ε-close approximation to AR`(D, I, θ, γ) by following the same

derivation of Lemma 9.
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Piatetsky-Shapiro measure (leverage). Another measure of interestingness is the Piatetsky-

Shapiro measure (also known as leverage):

psD(A⇒ B) = fD(A ∪B)− f(A)f(B) .

We first prove that it is possible to obtain an absolute ε-close approximation to the collection of ARs

according to this measure and then argue that our methods can not be used to obtain a relative

ε-close approximation to such collection.

Lemma 11. Let D, v, θ, γ, ε, and δ be as in Lemma 8. Let S be a random sample of D of size

|S| = min
{
|D|, 64c

ε2

(
v + log 1

δ

)}

for some absolute constant c. Then ARps(S, I, θ− ε/8, γ− ε/2) is an absolute ε-close approximation

to ARps(D, I, θ, γ) with probability at least 1− δ.

Proof. Assume that S is a ε/8-approximation for D. From Thm. 1 we know this happens with

probability at least 1− δ. This implies that for any itemeset A ⊆ I, we have |fD(A)− fS(A)| ≤ ε/8,

which holds in particular for the association rules in ARps(S, I, θ− ε/8, γ− ε/2), so Property 3 from

Def. 7 is satisfied.

Consider now an association rule W = “A⇒ B”. We have

psS(W ) = fS(A ∪B)− fS(A)fS(B) ≥ fD(A ∪B)− ε

8 −
(
fD(A) + ε

8

)(
fD(B) + ε

8

)
≥ fD(A ∪B)− fD(A)fD(B)− ε

8

(
1 + fD(A) + fD(B) + ε

8

)
≤ psD(W )− ε

2 .

(3.6)

We also have:

psS(W ) = fS(A ∪B)− fS(A)fS(B) ≤ fD(A ∪B) + ε

8 −
(
fD(A)− ε

8

)(
fD(B)− ε

8

)
≤ fD(A ∪B)− fD(A)fD(B) + ε

8

(
1 + fD(A) + fD(B)− ε

8

)
≤ psD(W ) + ε

2

(3.7)

From (3.6) and (3.7) we get that for any association rule W , we have |psD(W )−psS(W )| < ε, hence

Property 5 from Def. 7 holds.
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If W ∈ ARps(S, I, θ, γ), (3.6) implies that W ∈ ARps(S, I, θ − ε/2, γ − ε/2), therefore Property

1 from Def. 7 is satisfied.

Let now Z be an association rule with frequency fD(Z) < θ − ε. From the property of S, we

have that fS(Z) ≤ fD(Z) + ε/8 < θ − ε+ ε/8 < θ − ε/8, so Z 6∈ ARps(S, I, θ − ε/8, γ − ε/2), which

proves Property 2 from Def. 7.

Consider now an association rule Y = “C ⇒ D” with frequency fD(Y ) > θ but leverage psD(Y ) <

γ − ε (Y 6∈ ARps(D, I, θ, γ)). From (3.7) we get that psS(Y ) < γ − ε/2 which implies that Y 6∈

ARps(S, I, θ − ε/8, γ − ε/2), hence proving Property 4 from Def. 7. This concludes our proof.

We now argue that it is not possible, in general, to extend our methods to obtain a relative ε-close

approximation to ARps(D, I, θ, γ). Suppose that there is a parameter λ for which, for any itemset

A, we can find a value f̃(A) such that (1 − λ)fD(A) ≤ f̃(A) ≤ (1 + λ)fD(A). Let p̃s(A ⇒ B) =

f̃(A∪B)− f̃(A)f̃(B). We would like to show that the values p̃s cannot be used to obtain a relative

ε-close approximation to ARps(D, I, θ, γ) in general. 0 < ε, θ, γ < 1. Among the requirement for a

relative ε-close approximation we have that for an association rule “A→ B” in the approximation,

it must hold p̃s(A ⇒ B) ≥ (1 − ε)psD(A ⇒ B). We now show that this is not true in general. We

have the following:

p̃s(A⇒ B) ≥ (1− λ)fD(A ∪B)− (1 + λ)2fD(A)fD(B)

≥ (1− ε)fD(A ∪B)− (1− ε)fD(A)fD(B) ⇐⇒

(ε− λ)fD(A ∪B)− (ε+ 2λ+ λ2)fD(A)fD(B) ≥ 0

Clearly, the inequality on the last line may not be true in general. This means that we can not, in

general, obtain a relative ε-close approximation to ARps(D, I, θ, γ) by approximating the frequencies

of all itemsets, no matter how good these would be.

Other measures. For other measures it may not be possible or straightforward to analytically

derive procedures and sample sizes sufficient to extract good approximations of the collection of ARs

according to these measures. Nevertheless most of them express the interestingness of an association

rule as a function of the frequencies of the itemsets involved in the rule. Because of this, in practice,

high quality approximation of the frequencies of all itemsets should be sufficient to obtain good

approximation of the interestedness of a rule, and therefore, good approximation of the collection of
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ARs.

3.4.5 Closed Frequent Itemsets

A Closed Frequent Itemset (CFI) is a FI A whose subsets have all the same frequency f_Ds(A) of

A. The collection of CFIs is a lossless compressed representation of the FIs [30]. The collection of

CFIs is quite sensitive to sampling, as shown by the following example. Consider the dataset

D = {{a, b, c}, {a}, {b}, {c}}.

Suppose that θ = 0.5. Then FI(D, I, θ) = {{a}, {b}, {c}}, and this is also the collection of CFIs.

Consider the sample S = {{a, b, c}, {b}} of D. We have that

FI(S, I, θ′) = {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

for any θ′ ≤ θ. But the collection of CFIs is {{b}, {a, b, c}}, and it is not a superset of the original

collection. Thus, in a sample, a superset of an original CFI may become closed instead of the original

one. Therefore, given an absolute ε-close approximation F to FI(D, I, θ) (analogously for a relative

approximation), one could obtain a superset of the original collection of CFIs by considering, for

each CFI B ∈ F , the set of subsets of B whose frequency in F is less than 2ε far from that of B. As

was the case for FIs, a single scan of the dataset is then sufficient to filter out spurious candidates

that are not CFIs from the so-obtained collection.

3.4.6 Discussion

In the previous sections we presented the bounds to the sample sizes as function of the VC-Dimension

v of the range space associated to the dataset. As we argued in Sect. 3.3, computing the VC-

dimension exactly is not a viable option. We therefore introduced the d-index d and the d-bound q

as upper bounds to the VC-dimension that are efficient to compute, as described in Sect. 3.3.1. In

practice one would use d or q, rather than v, to obtain the needed sample sizes.

Chakaravarthy et al. [33] presented bounds to the sample sizes that depend on the length ∆ of

the longest transaction. It should be clear that v ≤ d ≤ q ≤ ∆, with the first inequality being

strict in the worst case (Thm. 6). In real datasets, we have that v ≤ d ≤ q � ∆: a single very
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long transaction has minimal impact on the VC-dimension or its upper bounds. One can envision

cases where an anomalous transaction contains most items from I, while all other transactions have

constant length. This would drive up the sample size from [33], while the bounds we present would

not be impacted by this anomality.

Moreover, in practice one could expect v to be much smaller than the d-index d. This is due to

the fact that the d-index is really a worst case bound which should only occur in artificial datasets,

as it should be evident from the proof of Thm. 6. It would be very interesting to investigate better

methods to estimate the actual VC-dimension of the range space associated to a dataset, rather than

upper-bound it with d or q, as this could lead to much smaller sample sizes. We discussed in Sect. 2.3

how the problem of estimating the VC-dimension of learning machines is a fundamental problem

in learning, given that analytical computation of the exact value is usually impossible, as it is in

our case. The procedure proposed by Vapnik et al. [195] and Shao et al. [186] procedure, although

applicable to our case under mild conditions, is not very practical. It is very highly time consuming,

as it requires the creation and analysis of multiple artificial datasets starting from the original one.

Developing efficient ways to estimate the VC-dimension of a range space is an interesting research

problem.

We conclude this discussion noting that all the bounds we presented have a dependency on 1/ε2.

This is due to the use of tail bounds dependent on this quantity in the proof of the bound (2.2) to

the sample size needed to obtain an ε-approximation. Given that the bound (2.2) is in general tight

up to a constant [134], there seems to be little room for improvement of the bounds we presented

as function of ε.

3.5 Experimental evaluation

In this section we present an extensive experimental evaluation of our methods to extract approxi-

mations of FI(D, I, θ), TOPK(D, I,K), and AR(D, I, θ, γ).

Our first goal is to evaluate the quality of the approximations obtained using our methods, by

comparing the experimental results to the analytical bounds. We also evaluate how strict the bounds

are by testing whether the same quality of results can be achieved at sample sizes smaller than those

computed by the theoretical analysis. We then show that our methods can significantly speed-up

the mining process, fulfilling the motivating promises of the use of sampling in the market basket
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analysis tasks. Lastly, we compare the sample sizes from our results to the best previous work [33].

We tested our methods on both real and artificial datasets. The real datasets come from the

FIMI’04 repository (http://fimi.ua.ac.be/data/). Since most of them have a moderately small

size, we replicated their transactions a number of times, with the only effect of increasing the size

of the dataset but no change in the distribution of the frequencies of the itemsets. The artificial

datasets were built such that their corresponding range spaces have VC-dimension equal to the

maximum transaction length, which is the maximum possible as shown in Thm. 5. To create these

datasets, we followed the proof of Thm. 6 and used the generator included in ARtool (http://www.

cs.umb.edu/~laur/ARtool/), which is similar to the one presented in [5]. The artificial datasets

had ten million transactions. We used the FP-Growth and Apriori implementations in ARtool to

extract frequent itemsets and association rules. To compute the d-bound q, which is an upper bound

to the d-index d, we used Algorithm 1. In all our experiments we fixed δ = 0.1. In the experiments

involving absolute (resp. relative) ε-close approximations we set ε = 0.01 (resp. ε = 0.05). The

absolute constant c was fixed to 0.5 as estimated by [142]. This is reasonable because, again, c

does not depend in any way from D, ε, δ, the VC-dimension v of the range space, the d-index d or

the d-bound q, or any characteristic of the collection of FIs or ARs. No upper bound is currently

known for c′ when computing the sizes for relative ε-approximations. We used the same value 0.5

for c′ and found that it worked well in practice. For each dataset we selected a range of minimum

frequency thresholds and a set of values for K when extracting the top-K frequent itemsets. For

association rules discovery we set the minimum confidence threshold γ ∈ {0.5, 0.75, 0.9}. For each

dataset and each combination of parameters we created random samples with size as computed by

our theorems and with smaller sizes to evaluate the strictness of the bounds. We measured, for

each set of parameters, the absolute frequency error and the absolute confidence error, defined as

the error |fD(X)− fS(X)| (resp. |cD(Y )− cS(Y )|) for an itemset X (resp. an association rule Y ) in

the approximate collection extracted from sample S. When dealing with the problem of extracting

relative ε-close approximations, we defined the relative frequency error to be the absolute frequency

error divided by the real frequency of the itemset and analogously for the relative confidence error

(dividing by the real confidence). In the figures we plot the maximum and the average for these

quantities, taken over all itemsets or association rules in the output collection. In order to limit the

influence of a single sample, we computed and plot in the figures the maximum (resp. the average)

of these quantities in three runs of our methods on three different samples for each size.

http://fimi.ua.ac.be/data/
http://www.cs.umb.edu/~laur/ARtool/
http://www.cs.umb.edu/~laur/ARtool/
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The first important result of our experiments is that, for all problems (FIs, top-K FIs, ARs),

for every combination of parameters, and for every run, the collection of itemsets or of association

rules obtained using our methods always satisfied the requirements to be an absolute or relative

ε-close approximation to the real collection. Thus in practice our methods indeed achieve or ex-

ceed the theoretical guarantees for approximations of the collections FI(D, I, θ), TOPK(D, I, θ), and

AR(D, I, θ, γ). Given that the collections returned by our algorithms where always a superset of the

collections of interest or, in other words, that the recall of the collections we returned was always 1.0,

we measured the precision of the returned collection. In all but one case this statistic was at least

0.9 (out of a maximum of 1.0), suggesting relatively few false positives in the collections output. In

the remaining case (extracting FIs from the dataset BMS-POS), the precision ranged between 0.59

to 0.8 (respectively for θ = 0.02 and θ = 0.04). The probability of including a FI or an AR which

has frequency (or confidence, for ARs) less than θ (or γ) but does not violate the properties of a

ε-close approximation, and is therefore an “acceptable” false positive, depends on the distribution

of the real frequencies of the itemsets or ARs in the dataset around the frequency threshold θ (more

precisely, below it, within ε or εθ): if many patterns have a real frequency in this interval, then it is

highly probable that some of them will be included in the collections given in output, driving pre-

cision down. Clearly this probability depends on the number of patterns that have a real frequency

close to θ. Given that usually the lower the frequency the higher the number of patterns with that

frequency, this implies that our methods may include more “acceptable” false positives in the output

at very low frequency thresholds. Once again, this depends on the distribution of the frequencies

and does not violate the guarantees offered by our methods. It is possible to use the output of our

algorithms as a set of candidate patterns which can be reduced to the real exact output (i.e., with

no false positives) with a single scan of the dataset.

Evaluating the strictness of the bounds to the sample size was the second goal of our experiments.

In Fig. 3.1a we show the behaviour of the maximum frequency error as function of the sample size

in the itemsets obtained from samples using the method presented in Lemma 4 (i.e., we are looking

for an absolute ε-close approximation to FI(D, I, θ)). The rightmost plotted point corresponds to

the sample size computed by the theoretical analysis. We are showing the results for the dataset

BMS-POS replicated 40 times (d-index d = 81), mined with θ = 0.02. It is clear from the picture

that the guaranteed error bounds are achieved even at sample sizes smaller than what computed

by the analysis and that the error at the sample size derived from the theory (rightmost plotted
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(a) Absolute Itemset Frequency Error, BMS-POS dataset, d = 81, θ = 0.02, ε = 0.01, δ = 0.1.

(b) Relative Itemset Frequency Error, artificial dataset, v = 33, θ = 0.01, ε = 0.05, δ = 0.1.

Figure 3.1: Absolute / Relative ε-close Approximation to FI(D, I, θ)

point for each line) is one to two orders of magnitude smaller than the maximum tolerable error

ε = 0.01. This can be exmplained by the fact that the d-bound used to compute the sample size

is in practice, as we argued in Sect. 3.4.6 a quite loose upper bound to the real VC-dimension. In

Fig. 3.1b we report similar results for the problem of computing a relative ε-close approximation to

FI(D, I, θ) for an artificial dataset whose range space has VC-dimension v equal to the length of the

longest transaction in the dataset, in this case 33. The dataset contained 100 million transactions.

The sample size, given by Lemma 5, was computed using θ = 0.01, ε = 0.05, and δ = 0.1. The

conclusions we can draw from the results for the behaviour of the relative frequency error are similar

to those we got for the absolute case. For the case of absolute and relative ε-close approximation to

TOPK(D, I,K), we observed results very similar to those obtained for FI(D, I, θ), as it was expected,

given the closed connection between the two problems.

The results of the experiments to evaluate our method to extract a relative ε-close approximation

to AR(D, I, θ, γ) are presented in Fig. 3.2a and 3.2b. The same observations as before hold for the

relative frequency error, while it is interesting to note that the relative confidence error is even

smaller than the frequency error, most possibly because the confidence of an association rule is the
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(a) Relative Association Rule Frequency Error

(b) Relative Association Rule Confidence Error

Figure 3.2: Relative ε-close approximation to AR(D, I, θ, γ), artificial dataset, v = 33, θ = 0.01,
γ = 0.5, ε = 0.05, δ = 0.1.

ratio between the frequencies of two itemsets that appear in the same transactions and their sample

frequencies will therefore have similar errors that cancel out when the ratio is computed. Similar

conclusions can be made for the absolute ε-close approximation case.

From Fig. 3.1a, 3.1b, 3.2a, and 3.2b it is also possible to appreciate that, as the sample gets

smaller, the maximum and the average errors in the frequency and confidence estimations increase.

This suggests that using a fixed sampling rate or a fixed sample size can not guarantee good results

for any ε: not only the estimation of the frequency and/or of the confidence would be quite off from

the real value, but because of this, many itemsets that are frequent in the original dataset may be

missing from the output collection and many spurious (very infrequent) itemsets may be included

in it.

The major motivating intuition for the use of sampling in market basket analysis tasks is that

mining a sample of the dataset is faster than mining the entire dataset. Nevertheless, the mining time

does not only depend on the number of transactions, but also on the number of frequent itemsets.

Given that our methods suggest to mine the sample at a lowered minimum frequency threshold, this
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Figure 3.3: Runtime Comparison. The sample line includes the sampling time. Relative approxi-
mation to FIs, artificial dataset, v = 33, ε = 0.05, δ = 0.1

may cause an increase in running time that would make our method not useful in practice, because

there may be many more frequent itemsets than at the original frequency threshold. We performed

a number of experiments to evaluate whether this was the case and present the results in Fig. 3.3.

We mined the artificial dataset introduced before for different values of θ, and created samples of

size sufficient to obtain a relative ε-close approximation to FI(D, I, θ), for ε = 0.05 and δ = 0.1.

Figure 3.3 shows the time needed to mine the large dataset and the time needed to create and mine

the samples. It is possible to appreciate that, even considering the sampling time, the speed up

achieved by our method is around the order of magnitude (i.e. 10x speed improvement), proving the

usefulness of sampling. Moreover, given that the sample size, and therefore the time needed to mine

the sample, does not grow with the size of the dataset as long as the d-bound remains constant,

that the d-index computation can be performed online, and that the time to create the sample can

be made dependent only on the sample size using Vitter’s Method D algorithm [197], our method

is very scalable as the dataset grows, and the speed up becomes even more relevant because the

mining time for the large dataset would instead grow with the size of the dataset.

Comparing our results to previous work we note that the bounds generated by our technique

are always linear in the VC-dimension v associated with the dataset. As reported in Table 3.1,

the best previous work [33] presented bounds that are linear in the maximum transaction length ∆

for two of the six problems studied here. Figures 3.4a and 3.4b show a comparison of the actual

sample sizes for relative ε-close approximations to FI(D, I, θ) for as function of θ and ε. To compute

the points for these figures, we set ∆ = v = 50, corresponding to the worst possible case for our

method, i.e., when the VC-dimension of the range space associated to the dataset is exactly equal

to the maximum transaction length. We also fixed δ = 0.05 (the two methods behave equally as δ
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changes). For Fig. 3.4a, we fixed ε = 0.05, while for Fig. 3.4b we fixed θ = 0.05. From the Figures

we can appreciate that both bounds have similar, but not equal, dependencies on θ and ε. More

precisely the bound we present is less dependent on ε and only slightly more dependent on θ. It also

evident that the sample sizes given by the bound we present are always much smaller than those

presented in [33] (the vertical axis has logarithmic scale). In this comparison we used ∆ = v, but

almost all real datasets we encountered have v � ∆ as shown in Table 3.2 which would result in a

larger gap between the sample sizes provided by the two methods. On the other hand, we should

mention that the sample size given by [33] can be slightly optimized by using a stricter version of

the Chernoff bound, but this does not change the fact that it depends on the maximum transaction

length rather than on the VC-Dimension.

(a) Sample size as function of θ, ε = 0.05

(b) Sample size as function of ε, θ = 0.05

Figure 3.4: Comparison of sample sizes for relative ε-close approximations to FI(D, I, θ). ∆ = v = 50,
δ = 0.05.

Table 3.2: Values for maximum transaction length ∆ and d-bound q for real datasets

accidents BMS-POS BMS-Webview-1 kosarak pumsb* retail webdocs
∆ 51 164 267 2497 63 76 71472
q 46 81 57 443 59 58 2452
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3.6 Conclusions

In this chapter we presented a novel technique to derive random sample sizes sufficient to easily

extract high-quality approximations of the (top-K) frequent itemsets and of the collection of as-

sociation rules. The sample size are linearly dependent on the VC-Dimension of the range space

associated to the dataset, which is upper bounded by the maximum integer d such that there at

least d transactions of length at least d in the dataset. This bound is tight for a large family of

datasets.

We used theoretical tools from statistical learning theory to develop a very practical solution

to an important problem in computer science. The practicality of our method is demonstrated in

the extensive experimental evaluation which confirming our theoretical analysis and suggests that

in practice it is possible to achieve even better results than what the theory guarantees.

Samples of size as computed by our methods can be used to mine approximations of other

collection of itemsets, provided that one correctly define the approximation taking into account

the guarantees on the estimation of the frequency provided by the ε-approximation theorem. For

example, one can can use techniques like those presented in [146] on a sample to obtain a small

collection of patterns that describe the dataset as best as possible.

It may be possible to develop procedures that give a stricter upper bound to the VC-dimension

for a given dataset, or that other measures of sample complexity like the triangular rank [158],

shatter coefficients, or Rademacher inequalities [21], can suggest smaller samples sizes.

In the next chapter we build on the results presented here to develop and analyze a fast and

scalable algorithm for approximate FIs and ARs mining that leverages on the power of the MapRe-

duce distributed/parallel framework to achieve very high accuracy and confidence while exploiting

the available computational resources.

In Ch. 5 we flip the way we look at the itemsets mining problem and present a method to avoid

the inclusion of false positives (itemsets that are frequent only by chance) in the output.



Chapter 4

PARMA: Mining Frequent

Itemsets and Association Rules in

MapReduce

“A la Scala, il est d’usage de ne faire durer qu’une vingtaine de minutes ces petites

visites que l’on fait dans les loges.”1

Stendhal, La Chartreuse de Parme (The Charterhouse of Parma).

We now extend the results presented in Chapter 3 and introduce PARMA, a randomized parallel

algorithm for approximate frequent itemset mining, that makes the problem of Frequent Itemsets

and Association Rules mining (FIM) embarassingly parallel, thus exhibiting near-linear speedup

with the number of machines. PARMA combines random sampling and parallelization techniques in

a novel fashion. It mines, in parallel, a set of small random samples and then filters and aggregates

the collections of frequent itemsets or association rules obtained from each sample. Our work is

orthogonal to other approaches, like PFP [131], which focuses on parallelizing the mining phase in

order to decrease the corresponding component of the cost. Due to the use of random sampling,

the output of PARMA is an approximation of the collection of FIs or ARs in the dataset, but

leveraging on the results presented in Chapter 3, PARMA offers tight probabilistic guarantees on
This chapter is an extended version of a work originally appeared in the proceedings of CIKM’12 as [179].

1At La Scala it is customary to take no more than twenty minutes for those little visits one pays to boxes.

50
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the quality of the approximated collections returned in output. In particular it guarantees that the

output is an ε-approximation of the real collection with probability at least 1 − δ, where ε and δ

are parameters specified by the user (see Section 4.2 for formal definitions). PARMA is designed

on MapReduce [54], a novel parallel/distributed architecture that has raised significant interest in

the research and industry communities. MapReduce is capable of handling very large datasets and

efficiently executing parallel algorithms like PARMA.

To our knowledge PARMA is the first algorithm to exploit the combination of random sampling

and parallelization for the task of Association Rules Mining.

A number of previous works explored either parallel algorithms [29, 48, 60, 64, 141, 164, 181,

207] or random sampling (see Sect. 3.1) for the FIM task, but the two approaches have been seen

somewhat orthogonal until today. In PARMA, the disadvantages of either approach are evened

out by the advantages of the other. In the spirit of moving computation to the data to minimize

communication, we avoid data replication, and preserve the advantages of parallelization by using

of multiple independent small random samples of the dataset which are mined in parallel and have

only their results aggregated. Similarly, we are not subject to the inherent trade-off between the

size of the random sample and the accuracy of the approximation that can be obtained from it, as

PARMA would only have to mine more samples of the same size in parallel to get higher quality

approximations.

Although PARMA is not the first algorithm to use MapReduce to solve the FIM task, it differs

from and enhances previous works [50, 78, 96, 131, 132, 205, 211] in two crucial aspects. First, it

significantly reduces the data that is replicated and transmitted in the shuffle phase of MapReduce.

Second, PARMA is not limited to the extraction of Frequent Itemsets but can also directly compute

the collection of Association Rules in MapReduce. In previous works, association rules had to be

created sequentially after the Frequent Itemsets had been computed in MapReduce.

We conducted an extensive experimental evaluation to test the relative performance, scalability

and accuracy of PARMA across a wide range of parameters and datasets. Our results suggest

that PARMA can significantly outperform exact mining solutions, has near-linear speedup, and, as

data and nodes are scaled together, is able to achieve near constant runtimes. Also, our accuracy

evaluation shows that PARMA consistently computes approximated collections of higher quality

than what can be analytically guaranteed.

In this chapter:
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1. We present PARMA, the first randomized MapReduce algorithm for discovering approximate

collections of frequent itemsets or association rules with near-linear speedup.

2. We provide analytical guarantees for the quality of the approximate results generated by the

algorithm.

3. We demonstrate the effectiveness of PARMA on many datasets and compare the performance

of our implementation to that of several exact FIM algorithms on MapReduce.

4.1 Previous work

We already discussed the relevant previous work about general FI mining and the use of sampling

for this task in Sect. 3.1. We now focus on the contributions that are relevant for this chapter: the

mining of FIs in a parallel or distributed setting, the MapReduce framework of computation, and

its use to compute FIs and ARs.

The use of parallel and/or distributed algorithms for Association Rules Mining comes from the

impossibility to handle very large datasets on a single machine. Early contributions in this area

are presented in a survey by Zaki [207]. In recent years, the focus shifted to exploit architecture

advantages as much as possible, such as shared memory [181], cluster architecture [29] or the massive

parallelism of GPUs [64]. The main goal is to avoid communication between nodes as much as

possible and minimize the amount of data that are moved across the network [48, 60, 141, 164].

The MapReduce [54] paradigm enjoys widespread success across both industry and academia.

Research communities in many different fields uses this novel approach to distributed/parallel com-

putation to develop algorithms to solve important problems in computer science [43, 44, 83, 136, 170].

Not only MapReduce can easily perform computation on very large datasets, but it is also extremely

suited in executing embarassingly parallel algorithms which make a very limited use of communica-

tion. PARMA fits in this description so MapReduce is an appropriate choice for it.

A number of previous works [50, 78, 96, 131, 132, 205, 211] looked at adapting APriori and

FP-growth to the MapReduce setting. Somewhat naively, some authors [50, 132, 205] suggest a

distributed/parallel counting approach, i.e. to compute the support of every itemset in the dataset

in a single MapReduce round. This algorithm necessarily incurs in a huge data replication, given that

an exponential number of messages are sent to the reducers, as each transaction contains a number
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of itemsets that is exponential in its length. A different adaptation of APriori to MapReduce is

presented in [96, Chap.4]: similarly to the original formulation of APriori, at each round i, the

support for itemsets of length i is computed, and those that are deemed frequent are then used to

generate candidate frequent itemsets of length i+1, although outside of the MapReduce environment.

Apart from this, the major downsides of such approach are that some data replication still occurs,

slowing down the shuffling phase, and that the algorithm does not complete until the longest frequent

itemset is found. Given that length is not known in advance, the running time of the algorithm can

not be computed in advance. Also the entire dataset needs to be scanned at each round, which can

be very expensive, even if it is possible to keep additional data structures to speed up this phase.

An adaptation of FP-Growth to MapRreduce called PFP is presented by Li et al. [131]. First,

a parallel/distributed counting approach is used to compute the frequent items, which are then

randomly partitioned into groups. Then, in a single MapReduce round the transactions in the

dataset are used to generate group-dependent transactions. Each group is assigned to a reducer

and the corresponding group-dependent transactions are sent to this reducer which then builds

the local FP-tree and the conditional FP-trees recursively, computing the frequent patterns. The

group-dependent transactions are such that the local FP-trees and the conditional FP-trees built

by different reducers are independent. This algorithm suffers from a data replication problem: the

number of group-dependent transactions generated for each single transaction is potentially equal to

the number of groups. This means that the dataset may be replicated up to a number of times equal

to the number of groups, resulting in a huge amount of data to be sent to the reducers and therefore

in a slower synchronization/communication (shuffle) phase, which is usually the most expensive in

a MapReduce algorithm. Another practical downside of PFP is that the time needed to mine the

dependent FP-tree is not uniform across the groups. An empirical solution to this load balancing

problem is presented by Zhou et al. [211], although with no guarantees and by computing the groups

outside the MapReduce environment. An implementation of the PFP algorithm as presented in [131]

is included in Apache Mahout (http://mahout.apache.org). Ghoting et al. [78] present an high-

level library to perform various machine learning and data mining tasks using MapReduce. They

show how to implement the Frequent Itemset Mining task using their library. The approach is very

similar to that in [131], and the same observations apply about the performances and downsides of

this approach.

http://mahout.apache.org
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4.2 Preliminaries

In this chapter we show how to extract ε-close approximations of the collection of (top-k) Fre-

quent Itemsets and Association Rules using MapReduce (see Sect. 3.2 for definitions about FIs and

ARs). We slightly generalize the definitions of ε-close approximation of FI(D, I, θ) (Def. 6) and of

AR(D, I, θ, γ) (Def. 6) as follows.

Definition 10. Given two parameters ε1, ε2 ∈ (0, 1), an absolute (resp. relative) (ε1, ε2)-close

approximation of FI(D, I, θ) is a set C = {(A, fA,KA) : A ∈ 2I , fA ∈ KA ⊆ [0, 1]} of triplets

(A, fA,KA) where fA approximates fD(A) and KA is an interval containing fA and fD(A). C is such

that:

1. C contains all itemsets appearing in FI(D, I, θ);

2. C contains no itemset A with frequency fD(A) < θ − ε1 (resp. fD(A) ≤ θ(1− ε1);

3. For every triplet (A, fA,KA) ∈ C, it holds

(a) |fD(A)− fA| ≤ ε2 (resp. |fD(A)− fA| ≤ ε2fD(A)).

(b) fA and fD(A) belong to KA.

(c) |KA| ≤ 2ε2 (resp. |KA| ≤ 2ε2fD(A)).

If ε1 = ε2 = ε we refer to C as an absolute (resp. relative) ε-close approximation of FI(D, I, θ).

Through identity (3.1) we have that an absolute (resp. relative) (ε1, ε2)-close approximation to

FI
(
D, I, f (K)

D

)
is an (ε1, ε2)-approximation to TOPK(D, I,K).

For association rules, we generalize Def. 7 as follows.

Definition 11. Given two parameters ε1, ε2 ∈ (0, 1) an absolute (resp. relative) (ε1, ε2)-close ap-

proximation of AR(D, I, θ, γ) is a set

C = {(W, fW ,KW , cW ,JW ) | AR W, fW ∈ KW , cW ∈ JW }

of tuples (W, fW ,KW , cW ,JW ) where fW and cW approximate fD(W ) and cD(W ) respectively and

belong to KW ⊆ [0, 1] and JW ⊆ [0, 1] respectively. C is such that:

1. C contains all association rules appearing in AR(D, I, θ, γ);



55

2. C contains no association rule W with frequency fD(W ) < θ − ε1 (resp. fD(W ) < θ(1− ε1));

3. For every tuple (W, fW ,KW , cW ,JW ) ∈ C, it holds |fD(W ) − fW | ≤ ε2 and |KW | ≤ 2ε2

(resp. |fD(W )− fW | ≤ ε2fDs(W ) and |KW | ≤ 2ε2fD(W )).

4. C contains no association rule W with confidence cD(W ) < γ − ε1 (resp. cD(W ) < γ(1− ε1));

5. For every tuple (W, fW ,KW , cW ,JW ) ∈ C, it holds |cD(W ) − cW | ≤ ε2 and |JW | ≤ 2ε2

(resp. |cD(W )− cW | ≤ ε2cDs(W ) and |JW | ≤ 2ε2cD(W )).

If ε1 = ε2 = ε we refer to C as an absolute (resp. relative) ε-close approximation of AR(D, I, θ, γ).

It is easy to see that it is possible to modify Lemmas 4, 5, 6, 7, 9, and 8 to return absolute or

relative (ε, ε/2)-close approximations of the relevant collections of FIs or ARs.

4.2.1 MapReduce

MapReduce is a programming paradigm and an associated parallel and distributed implementation

for developing and executing parallel algorithms to process massive datasets on clusters of commodity

machines [54]. Algorithms are specified in MapReduce using two functions, map and reduce. The

input is seen as a sequence of ordered key-value pairs (k, v). The map function takes as input one

such (key, value) pair at a time, and can produce a finite multiset of pairs {(k1, v1), (k2, v2), · · · }. Let

U be the multiset union of all the multisets produced by the map function when applied to all input

pairs. We can partition U into sets Uk̄ indexed by a particular key k̄. Uk̄ contains all and only the

values v for which there are pairs (k̄, v) with key k̄ produced by the function map (Uk̄ is a multiset,

so a particular value v can appear multiple times in Uk̄). The reduce function takes as input a key

k̄ and the multiset Uk̄ and produce another set {(k1, v1), (k2, v2), · · · }. The output of reduce can be

used as input for another (different) map function to develop MapReduce algorithms that complete

in multiple rounds. By definition, the map function can be executed in parallel for each input pair.

In the same way, the computation of the output of reduce for a specific key k∗ is independent

from the computation for any other key k′ 6= k∗, so multiple copies of the reduce function can be

executed in parallel, one for each key k. We denote the machines executing the map function as

mappers and those executing the reduce function as reducers. The latter will be indexed by the key

k assigned to them, i.e., reducer r processes the multiset Ur. The data produced by the mappers are

split by key and sent to the reducers in the so-called shuffle step. Some implementations, including
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Hadoop and the one described by Google [54], use sorting in the shuffle step to perform the grouping

of map outputs by key. The shuffle is transparent to the algorithm designer but, since it involves

the transmission of (possibly very large amount of) data across the network, can be very expensive.

4.3 Algorithm

In this section we describe and analyze PARMA, our algorithm for extracting ε-close approximations

of FI(D, I, θ), TOPK(D, I, θ), and AR(D, I, θ, γ) from samples of a dataset D with probability at

least 1− δ. In this section we present the variant for the absolute case and FI(D, I, θ). The variants

for the relative cases and for TOPK(D, I, θ) and AR(D, I, θ, γ) can be easily derived from the one

we present here. We outline them in Sect. 4.3.4.

4.3.1 Design

We now present the algorithmic design framework on which we developed PARMA and some design

decisions we made for speeding up the computation.

Model When developing solutions for any computational problem, the algorithm designer must

always be aware of the trade-off between the available computational resources and the performance

(broadly defined) of the algorithm. In the parallel computation setting, the resources are usually

modeled through the parameters p and m, representing respectively the number of available pro-

cessors that can run in parallel and the amount of local memory available to a single processor. In

our case we will express m in terms of the number of transactions that can be stored in the main

memory of a single machine. When dealing with algorithms that use random samples of the input,

the performances of the algorithm are usually measured through the parameters ε and δ. The former

represents the desired accuracy of the results, i.e., the maximum tolerable error (defined according

to some distance measure) in the solution computed by the algorithm using the random sample

when compared to an exact solution of the computational problem. The parameter δ represents the

maximum acceptable probability that the previously defined error in the solution computed by the

algorithm is greater than ε. The measure we will use to evaluate the performances of PARMA in

our analysis is based on the concept of absolute ε-close approximation introduced in Definition 10.
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Trade-offs We are presented with a trade-off between the parameters ε, δ, p, and m. To obtain a

ε-approximation with probability at least 1 − δ, one must have a certain amount of computational

resources, expressed by p and m. On the other hand, given p and m, it is possible to obtain absolute

ε-close approximations with probability at least 1 − δ only for values of ε and δ larger than some

limits. By fixing any three of the parameters, it is possible to find the best value for the fourth by

solving an optimization problem. From Lemma 4 we know that there is a trade-off between ε, δ,

and the size w of a random sample from which it is possible to extract a (ε, ε/2)-approximation to

FI(D, I, θ) with probability at least 1−δ. If w ≤ m, then we can store the sample in a single machine

and compute the absolute ε-close approximation there using Lemma 4. For some combinations of

values for ε and δ, though, we may have that w > m, i.e. the sample would be too large to fit into the

main memory of a single processor, defeating one of the goals of using random sampling, that is to

store the set of transactions to be mined in main memory in order to avoid expensive disk accesses.

To address the issue of a single sample not fitting in memory, PARMA works on multiple samples,

say N with N ≤ p, each of size w ≤ m so that 1) each sample fits in the main memory of a single

processor and 2) for each sample, it is possible to extract an absolute (ε, ε/2)-close approximation of

FI(D, I, θ) from it with probability at least 1−φ, for some φ > δ. In the first stage, the samples are

created and mined in parallel and the so-obtained collections of Frequent Itemset are then aggregated

in a second stage to compute the final output. This approach is a perfect match for the MapReduce

framework, given the limited number of synchronization and communication steps that are needed.

Each stage is performed in a single MapReduce round. The computational and data workflow of

PARMA is presented in Figure 4.1, which we describe in detail in the following paragraphs.

Computing N and w From the above discussion it should be clear that, once p, m, ε and δ

have been fixed, there is a trade-off between w and N . In the MapReduce setting, often the most

expensive operation is the movement of data between the mappers and the reducers in the shuffle

phase. In PARMA, the amount of data to be shuffled corresponds to the sum of the sizes of the

samples, i.e., Nw, and to the amount of communication needed in the aggregation stage. This second

quantity is dependent on the number of frequent itemsets in the dataset, and therefore PARMA has

no control over it. PARMA tries to minimize the first quantity when computing N and w in order

to achieve the maximum speed. It is still possible to minimize for other quantities (e.g. ε or δ if

they have not been fixed), but we believe the most effective and natural in the MapReduce setting is
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Figure 4.1: A system overview of PARMA. Ellipses represent data, squares represent computations
on that data and arrows show the movement of data through the system.

the minimization of the communication. This intuition was verified in our experimental evaluation,

where communication proved to be the dominant cost. We can formulate the problem of minimizing

Nw as the following Mixed Integer Non Linear Programming (MINLP) problem:

• Variables: non-negative integer N , real φ ∈ (0, 1),

• Objective: minimize 2N/ε2(d+ log(1/φ)).

• Constraints:

N ≤ p (4.1)

φ ≥ e−mε
2/2+d (4.2)

N(1− φ)−
√
N(1− φ)2 log(1/δ) ≥ N/2 + 1 (4.3)

Note that, because of our requirement 2) on w, the sample size w is directly determined by φ through

Lemma 4, so the trade-off is really between N and φ, while w does not appear in the above problem.

Since φ is a probability we restrict its domain to the interval (0, 1), but it must also be such that
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the single sample size w is at most m, as required by 1) and expressed by Constraint (4.2). The

limit to the number of samples N is expressed by Constraint (4.1). The last constraint (4.3) is a

bit more technical and the need for it will be evident in the analysis of the algorithm. Intuitively, it

expresses the fact that an itemset must appear in a sufficiently high fraction (at least 1/2, possibly

more) of the collections obtained from the samples in the first stage in order to be included in the

output collection. Due to the integrality constraint on N , this optimization problem is not convex,

although when the constraint it is dropped the feasibility region is convex, and the objective function

is convex. It is then relatively easy and fast to find an integer optimal solution to the problem using

a global MINLP solver like BARON [182].

4.3.2 Description

In the following paragraphs we give a detailed description of PARMA. The reader is also referred to

Figure 4.1 for a schematic representation of PARMA’s data/computational workflow.

Stage 1: Sampling and Local Mining Once φ, w and N have been computed, PARMA enters

the first MapReduce round to create the N samples (phase Map 1 in Figure 4.1) and mine them

(Reduce 1). We see the input of the algorithm as a sequence

(1, τ1), (2, τ2), · · · , (|D|, τ|D|),

where the τi are transactions in D. In the Map phase, the input of themap function is a pair (tid, τ),

where tid is a natural from 1 to |D| and τ is a transaction in D. The map function produces in

output a pair (i, (`(i)τ , τ)) for each sample Si containing τ . The value `(i)τ denotes the number of times

τ appears in Si, 1 ≤ i ≤ N . We use random sampling with replacement and ensure that all samples

have size w, i.e.,
∑
τ∈D `

(i)
τ = w, ∀i. This is done by computing (serially) how many transactions

each mapper must send to each sample. In the Reduce phase, there are N reducers, with associated

key i, 1 ≤ i ≤ N . The input to reducer i is (i,Si), 1 ≤ i ≤ N . Reducer i mines the set Si of

transactions it receives using an exact sequential mining algorithm like Apriori or FP-Growth and

a lowered minimum frequency threshold θ′ = θ − ε/2 to obtain Ci = FI(Si, I, θ′). For each itemset

A ∈ Ci the Reduce function outputs a pair (A, (fSi(A), [fSi(A)− ε/2, fSi(A) + ε/2]).
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Stage 2: Aggregation In the second round of MapReduce, PARMA aggregates the result from

the first stage to obtain an absolute ε-close approximation to FI(D, I, θ) with probability at least

1− δ. The Map phase (Map 2 in Figure 4.1) is just the identity function, so for each pair

(A, (fSi(A), [fSi(A)− ε/2, fSi(A) + ε/2])

in the input the same pair is produced in the output. In the Reduce phase (Reduce 2) there is a

reducer for each itemset A that appears in at least one of the collections Cj (i.e., ∀A such that there

is a Cj containing a pair related to A). The reducer receives as input the itemset A and the set FA

of pairs

(fSi(A), [fSi(A)− ε/2, fSi(A) + ε/2])

for the samples Si such that A ∈ Ci. Now let

R = N(1− φ)−
√
N(1− φ)2 log(1/δ). (4.4)

The itemset A is declared globally frequent and will be present in the output if and only if |FA| ≥ R.

If this is the case, PARMA computes, during the Reduce phase of the second MapReduce round,

the estimation f̃(A) for the frequency fD(A) of the itemset A in D and the confidence interval KA.

The computation for f̃(A) proceeds as follows. Let [aA, bA] be the shortest interval such that there

are at least N −R + 1 elements from FA that belong to this interval. The estimation f̃(A) for the

frequency fD(A) of the itemset A is the central point of this interval:

f̃(A) = aA + bA − aA
2

The confidence interval KA is defined as

KA =
[
aA −

ε

2 , bA + ε

2

]
.

The output of the reducer assigned to the itemset A is

(A, (f̃(A),KA)).
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The output of PARMA is the union of the outputs from all reducers.

4.3.3 Analysis

We have the following result:

Lemma 12. The output of the PARMA is an absolute ε-close approximation of FI(D, I, θ) with

probability at least 1− δ.

Proof. For each sample Si, 1 ≤ i ≤ N we define a random variable Xi that takes the value 1 if

Ci = FI(Si, I, θ′) is an absolute (ε, ε/2)-close approximation of FI(D, I, θ), Xi = 0 otherwise. Given

our choices of w and θ′, we can apply Lemma 4 and have that Pr(Xi = 1) ≥ 1−φ. Let Y =
∑N
r=1Xr

and let Z be a random variable with binomial distribution with parameters N and 1 − φ. For any

constant Q < N(1− φ) we have

Pr(Y ≤ Q) ≤ Pr(Z ≤ Q) ≤ e−N(1−φ)(1− Q
N(1−φ) )2/2,

where the last inequality follows from an application of the Chernoff bound [154, Chap. 4]. We then

have, for our choice of φ and N and for Q = R (defined in Eq. (4.4)), that with probability at least

1−δ, at least R of the collections Ci are absolute (ε, ε/2)-close approximations of FI(D, I, θ). Denote

this event as G. For the rest of the proof we will assume that G indeed occurs.

Then ∀A ∈ FI(D, I, θ), A belongs to at leastR of the collections Ci, therefore a triplet (A, f̃(A),KA)

will be in the output of the algorithm. This means that Property 1 from Def. 10 holds.

Consider now any itemset B such that fD(B) < θ − ε. By definition of absolute (ε, ε/2)-close

approximation we have that B can only appear in the collections Ci that are not absolute (ε, ε/2)-

close approximations. Given that G occurs, then there are at most N −R such collections. But from

Constraint (4.3) and the definition of R in (4.4), we have that N −R < R, and therefore B will not

be present in the output of PARMA, i.e. Property 2 from Def. 10 holds.

Let now C be any itemset in the output, and consider the interval SC = [aC , bC ] as computed

by PARMA. SC contains at least N − R + 1 of the fSi(C), otherwise C would not be in the

output. By our assumption on the event G, we have that at least R of the fSi(C)’s are such that

|fSi(C)− fD(C)| ≤ ε/2. Then there is an index j such that |fSj (C)− fD(C)| ≤ ε/2 and such that

fSj (C) ∈ SC . Given also that fSj (C) ≥ aC , then fD(C) ≥ aC − ε/2, and analogously, given that
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fSj (C) ≤ bC , then fD(C) ≤ bC + ε/2. This means that

fD(C) ∈
[
aC −

ε

2 , bC + ε

2

]
= KC , (4.5)

which, together with the fact that f̃C ∈ KC by construction, proves Property 3.b from Def. 10. We

now give a bound to |SC | = bC − aC . From our assumption on the event G, there are (at least) R

values fSi(C) such that |fSi(C)−fD(C)| ≤ ε/2, then the interval [fD(C)−ε/2, fD(C)+ε/2] contains

(at least) R values fSi(C). Its length ε is an upper bound to |SC |. Then the length of the interval

KC = [aC − ε/2, bC + ε/2] is at most 2ε, as requested by Property 3.c from Def. 10. From this, from

(4.5), and from the fact that f̃(C) is the center of this interval we have |f̃(C) − fD(C)| ≤ ε, i.e.,

Property 3.a from Def. 10 holds.

4.3.4 Top-K Frequent Itemsets and Association Rules

The above algorithm can be easily adapted to computing, with probability at least 1 − δ, absolute

and relative ε-close approximations to TOPK(D, I,K) and to AR(D, I, θ, γ). The main difference

is in the formula to compute the sample size w (Lemma 4), and in the process to extract the local

collections from the samples. The case of top-K is presented in Lemma 6, while for the association

rule case we can use Lemma 9. These are minimal changes to the version of PARMA presented here,

and the modified algorithms guarantee the same levels of accuracy and confidence.

4.4 Implementation

The entire PARMA algorithm has been written as a Java library for Hadoop, the popular open

source implementation of MapReduce. Because all experiments were done using AmazonWeb Service

(AWS) Elastic MapReduce, the version of Hadoop used was 0.20.205, the highest supported by AWS.

The use of Java makes possible future integration with the Apache Mahout parallel machine learning

library (https://mahout.apache.org). Mahout also includes an implementation of PFP [131] that

we used for our evaluation of PARMA.

In PARMA, during the mining phase (i.e. during the reducer of stage 1), any frequent itemset or

association rule mining algorithm can be used. We wanted to compare the performances of PARMA

against PFP which only produces frequent itemsets, therefore we chose to use a frequent itemset

https://mahout.apache.org
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mining algorithm instead of an association rule mining algorithm. Again, this choice was merely for

ease of comparison with existing parallel frequent itemset mining algorithms as no such algorithms

for association rule mining exist. While there are many frequent itemset mining algorithms available,

we chose the FP-growth implementation provided by [47]. We chose FP-growth due to its relative

performance superiority to other Frequent Itemsets mining algorithms. Additionally, since FP-

growth is the algorithm that PFP has parallelized and uses internally, the choice of FP-growth for

the mining phase in PARMA is appropriate for a more natural comparison.

We also compare PARMA against the naive distributed counting algorithm (DistCount) for

computing frequent itemsets. In this approach, there is only a single MapReduce iteration. The

map breaks a transaction τ into its powerset P(τ) and emits key/value pairs in the form (A, 1) where

A is an itemset in P(t). The reducers simply count how many pairs they receive for each itemset

A and output the itemsets with frequency above the minimum frequency threshold. This is similar

to the canonical wordcount example for MapReduce. However, because the size of the powerset is

exponential in the size of the original transaction (specifically 2|τ |, where |τ | denotes the number

of items in a given transaction), this algorithm incurs massive network costs, even when combiners

are used. This is very similar to the algorithms presented in [50, 132, 205]. We have built our own

implementation of DistCount in Java using the Hadoop API.

4.5 Experimental evaluation

We evaluate the performance of PARMA using Amazon’s Elastic MapReduce platform. We used

instances of type m1.xlarge, which contain roughly 17GB of memory and 6.5 EC2 compute units.

For data, we created artificial dataset using the synthetic data generator from [49]. This implemen-

tation is based on the generator described in [5], which can be parameterized to generate a wide

range of data. We used two distinct sets of parameters to generate the datasets: the first set, shown

in Table 4.1, for the experiments comparing PARMA and the distributed counting algorithm (Dist-

Count), and the second set, shown in Table 4.2, for the experiments comparing PARMA and PFP.

The parameters were chosen to mimic real-world datasets on which PARMA would be run. For a

full description of the relevant parameters, we refer the reader to [5]. The reason we needed two

distinct datasets is that DistCount did not scale to the larger dataset sizes, as the amount of data it

generates in the map phase grows exponentially with the length of the individual transactions in the
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number of items 1000
average transaction length 5
average size of maximal potentially large itemsets 5
number of maximal potentially large itemsets 5
correlation among maximal potentially large itemsets 0.1
corruption of maximal potentially large itemsets 0.1

Table 4.1: Parameters used to generate the datasets for the runtime comparison between DistCount
and PARMA in Figure 4.2.

dataset. We found that DistCount would run out of memory using datasets with longer transactions,

and we had to generate datasets with both shorter and less transactions for its comparisons.

Because PARMA is an approximate algorithm, the choice of accuracy parameters ε and δ are

important, as is θ, the minimum frequency at which itemsets were mined. In all of our experiments,

ε = 0.05 and δ = 0.01. This means that the collection of itemsets mined by PARMA will be an

absolute 0.05-close approximation with probability 0.99. In practice, we show later that the results

are much more accurate than what this. For all experiments other than the minimum frequency

performance comparison in Figure 4.4 and for the accuracy comparison in Figures 4.6 and 4.7, θ was

kept constant at 0.1.

We focus on three main aspects in the experimental analysis of PARMA. First is the runtime

analysis. In this set of experiments we compare PARMA to PFP and DistCount using several

different datasets of varying size and mined with varying minimum frequency thresholds. We then

break down the runtime of PARMA into the map, reduce and shuffle phases of each of the two

stages. This demonstrates which parts of the algorithm have runtimes that increase as the data size

grows and which parts are relatively data independent. The second aspect is speedup, to show the

scalability of our algorithm. In these experiments, data and cluster size are varied to determine how

PARMA scales. Finally, because the output of PARMA is an absolute ε-close approximation of the

real set of frequent itemsets, we provide an accuracy analysis to verify that our results are indeed

within the desired quality bounds.

4.5.1 Performance analysis

For the performance analysis of PARMA, we analyze the relative performance against two exact

FIM algorithms on MapReduce, DistCount and PFP, on a cluster of 8 nodes. We also provide a

breakdown of the costs associated with each stage of PARMA.
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number of items 10000
average transaction length 10
average size of maximal potentially large itemsets 5
number of maximal potentially large itemsets 20
correlation among maximal potentially large itemsets 0.1
corruption of maximal potentially large itemsets 0.1

Table 4.2: Parameters used to generate the datasets for the runtime comparison between PFP and
PARMA in Figure 4.2.

Figure 4.2 (top) shows the comparison between PARMA and DistCount. As discussed previously,

due to limitations in the scalability of DistCount, we were unable to test on the larger datasets,

so the smaller datasets were generated using parameters from Table 4.1. For DistCount, longer

itemsets affect runtime the most, as the number of key/value pairs generated from each transaction

is exponential in the size of the transaction. This is not to say that more transactions does not affect

runtime, just that the length of those transactions also has a significant impact. Because of this,

it is possible to have datasets with fewer transactions but with more “long” transactions that take

longer to mine. This effect is seen in the first three datasets (1-3 million). Even though the number

of transactions significantly increases, the relative length of the longest transactions was actually

longer in the 1 million transaction dataset. Indeed, upon further inspection, we found that the 1

million transaction dataset had 25 transactions over 20 items in length, while the 2 and 3 million

transaction dataset had less than 15. Of course, since these datasets were generated independently

and with the same parameters, this was purely by chance. However, as the number of transactions

continues to increase, the exponential growth in the number of intermediate key/value pairs is seen

by the sharp increase in runtime. While we tried to test with a dataset with 6 million transaction,

DistCount ran out of memory. The lack of ability to handle either long individual transactions or a

large number of transactions in a dataset limits DistCount’s real-world applicability. The runtime

of PARMA is significantly faster than that of DistCount and, more importantly, nearly constant

across dataset sizes. The reasons for this will be discussed in detail later.

For the performance comparison with PFP, 10 datasets were generated using parameter values

from Table 4.2 and ranging in size from 10 to 50 million transactions. The results are shown in

Figure 4.2 (bottom). For every dataset tested, PARMA was able to mine the dataset roughly 30-

55% faster than PFP. The reason for the relative performance advantage of PARMA is twofold.

The first (and primary) reason is that for larger datasets the size of the dataset that PARMA has
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Figure 4.2: A runtime comparison of PARMA with DistCount and PFP.

sampled (and mined) is staying the same, whereas PFP is mining more and more transactions as the

dataset grows. The second reason is that as the dataset grows, PFP is potentially duplicating more

and more transactions as it assigns transactions to groups. A transaction that belongs to multiple

groups is sent to multiple reducers, resulting in higher network costs.

The most important aspect of the comparison of PFP to PARMA is that the runtimes as data

grows are clearly diverging due to the reasons discussed above. While 50 million transactions is very

sizable, it is not hard to imagine real-world datasets with transactions on the order of billions. Indeed,

many point-of-sale datasets would easily break this boundary. In these scenarios a randomized

algorithm such as PARMA would show increasing performance advantages over exact algorithms

such as any of the standard non-parallel algorithms or PFP, which must mine the entire dataset. At

that scale, even transmitting that data over the network (several times in the case of PFP) would

become prohibitive.

To understand the performance of PARMA it is important to analyze the runtimes at each

of the various stages in the algorithm. To do this, we have implemented runtime timers at very

fine granularities throughout our algorithm. The timers’ values are written to Hadoop job logs for

analysis. This breakdown allows us to not only analyze the overall runtime, but also the sections of

the algorithm whose runtimes are affected by an increase in data size. In Figure 4.3, a breakdown

of PARMA runtimes is shown for each of the six segments of the algorithm, which include a map,

shuffle and reduce phase for each of the two stages. Due to space limitations, we only show the

breakdown for a subset of the datasets we tested. We observed the same patterns for all datasets.

This breakdown demonstrates several interesting aspects of PARMA. First, the cost of the mining
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local frequent itemsets (stage 1, reduce) is relatively constant. For many frequent itemset mining

implementations, this cost will grow with the size of the input. This is not the case in PARMA,

because local frequent itemset mining is being done on constant-sized sample of the input. Indeed

another interesting observation, as expected, is that the only cost that increases as sample size

increases is the cost of sampling (stage 1, map). This is because in order to be sampled the input

data must be read, so larger input data means larger read times. In practice, this cost is minimal

and grows linearly with the input, hence it will never be prohibitive, especially considering all other

current algorithms must read the entire input data at least once, and in many cases multiple times.

There is one outlier in the graph, which is the dataset with 5 million transactions. Because each

dataset was independently generated, it is possible for a dataset to have a larger number of frequent

itemsets than other datasets, even if it has less transactions. This is the case with the 5 million

transaction dataset, which takes longer to run mine for both PARMA and PFP due to the relatively

greater number of frequent itemsets.
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Figure 4.3: A comparison of runtimes of the map/reduce/shuffle phases of PARMA, as a function
of number of transactions. Run on an 8 node Elastic MapReduce cluster.

Figure 4.4 shows the breakdown of PARMA runtimes as the minimum frequency at which the

data is mined at is changed. Data size was kept constant at 10 million transactions. Minimum

frequency is used by the local frequent itemset mining algorithm to prune itemsets; itemsets below

the minimum frequency are not considered frequent, nor is any superset since a superset must, by

definition, contain the not frequent set and therefore cannot be frequent itself. Intuitively, a lower

minimum frequency will mean more frequent itemsets are produced. Other than a runtime increase
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Figure 4.4: A comparison of runtimes of the map/reduce/shuffle phases of PARMA, as a function
of minimum frequency. Clustered by stage. Run on an 8 node Elastic MapReduce cluster.

in the local frequent itemset mining phase (stage 1, reduce), the effects of this can be seen in the

stage 2 shuffle phase as well, as there is more data to move across the network. Still, the added costs

of mining with lower frequencies are relatively small.

4.5.2 Speedup and scalability

To show the speedup of PARMA, we used a two-nodes cluster as the baseline. Because PARMA is

intended to be a parallel algorithm, the choice of a two-nodes cluster was more appropriate than the

standard single node baseline. For the dataset, we used a 10 million transaction database generated

using the parameters in Table 4.2. The results are shown in Figure 4.5a. The three lines on this

graph represent the relative speedup of both stage 1 and stage 2 as well as the overall PARMA

algorithm. The graph indicates that stage 1 is highly parallelizable and follows a near-ideal speedup

for up to 8 nodes, after which a slight degradation of speedup occurs. There are two reasons for

this slight degradation. In the map phase of stage 1, due to an implementation decision in Hadoop,

the smallest unit of data that can be split is one HDFS block. As we continue to add more nodes

to the cluster, we may have more available map slots than HDFS data blocks, resulting in some

slots being unused. Theoretically, this could be fixed by allowing smaller granularity splitting in

Hadoop. Another cause of the slightly sub-ideal speedup in stage 1 is from the reducer. Because
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the data in this experiment was held constant, the slight degradation in speedup as more than 8

nodes were added was a result of an inefficient over-splitting of transaction data. If each reducer

in stage 1 is mining a very small subset of the transactions, the overhead of building the FP-tree

begins to dominate the cost of mining the FP-tree. This is because the cost of mining the FP-tree is

relatively fixed. Thus, we can “over-split” the data by forcing the reducer to build a large FP-tree

only to mine a small set of transactions. For larger samples, the size of the cluster where speedup

degradation begins to occur would also increase, meaning PARMA would continue to scale.
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Figure 4.5: Speedup and scalability.

Also, as is clearly visible in the graph, the sub-ideal overall speedup is due largely to the poor

speedup of stage 2. Stage 2 is bound almost entirely by the communication costs of transmitting

the local frequent itemsets from stage 1 to the reducers that will do the aggregation. Because the

amount of local frequent itemsets does not change as more nodes are added, the communication for

this stage does not change. What does change is the number of itemsets each node must aggregate.

During the reduce phase, each node is assigned a set of keys. All key/value pairs emitted from

the map phase are sent to the reducer assigned their respective key. The reducer is in charge of

aggregating the values and emitting one aggregate value per key assigned to it. As more reducers are

added to the cluster, each reducer will have fewer keys assigned to it, and therefore must aggregate

across fewer values, resulting in faster aggregation. The small but existent positive change in the

line for stage 2 is a result of this slight speedup of the reduce phase.

Figure 4.5b depicts the scalability of PARMA as both the size of the dataset (i.e. number of

transactions) and the number of nodes in the cluster are increased. The data and nodes are scaled
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proportionally so that the ratio of data to nodes remains constant across all experiments. This

result shows that as nodes and data are increased proportionally, the total runtime actually begins

to decrease for larger datasets. This is because as nodes are added to the cluster, the runtime of

the Stage 1 reducer (FIM) is decreased while the relative costs of the Stage 1 mapper and Stage 2

remain the same. There is a leveling off of the runtime between the 40M and 80M datasets, which

can be explained using Amdhal’s law; because only portions of the algorithm are parallelizable, there

is a theoretical maximum speedup that is possible. Still, the constant runtime as data is increased

demonstrates PARMA’s potential scalability to real-world cluster and dataset sizes.

A very important aspect of PARMA that should be stressed again here is that the size of the

sample that will be mined does not depend directly on size of the original database, but instead on the

confidence parameters ε and δ. From a practical perspective, this means that assuming confidence

parameters are unchanged, larger and larger datasets can be mined with very little increase in overall

runtime (the added cost will only be the extra time spent reading the larger dataset initially during

sampling). Because of this, clusters do not need to scale with the data, and often a relatively modest

cluster size will be able to mine itemsets in a very reasonable time.

4.5.3 Accuracy

The output of PARMA is a collection of frequent itemsets which approximates the collection one

can obtain by mining the entire dataset. Although our analysis shows that PARMA offers solid

guarantees in terms of accuracy of the output, we conducted an extensive evaluation to assess the

actual performances of PARMA in practice, especially in relation to what can be analytically proved.

We compared the results obtained by PARMA with the exact collection of itemsets from the

entire dataset, for different values of the parameters ε, δ, and θ, and for different datasets. A first

important result is that in all the runs, the collection computed by PARMA was indeed an absolute

ε-close approximation to the real one, i.e., all the properties from Definition 10 were satisfied. This

fact suggests that the confidence in the result obtained by PARMA is actually greater than the level

1− δ suggested by the analysis. This can be explained by considering that we had to use potentially

loose theoretical bounds in the analysis to make it tractable.

Given that all real frequent itemsets were included in the output, we then focused on how many

itemsets with real frequency in the interval [θ − ε, θ) were included in the output. It is important

to notice that these itemsets would be acceptable false positives, as Definition 10 does not forbid
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θ Real FI’s Output AFP’s Max AFP’s
0.06 11016 11797 201636
0.09 2116 4216 10723
0.12 1367 335 1452
0.15 1053 299 415

Table 4.3: Acceptable False Positives in the output of PARMA

them to be present in the output. We stress again that the output of PARMA never contained

non-acceptable false positives, i.e. itemsets with real frequency less than the minimum frequency

threshold θ. The number of acceptable false positives included in the output of PARMA depends on

the distribution of the real frequencies in the interval [θ−ε, θ), so it should not be judged in absolute

terms. In Table 4.3 we report, for various values of θ, the number of real frequent itemsets (i.e., with

real frequency at least θ, the number of acceptable false positives (AFP) contained in the output of

PARMA, and the number of itemsets with real frequency in the interval [θ−ε, θ), i.e., the maximum

number of acceptable false positives that may be contained in the output of PARMA (Max AFP).

These numbers refers to a run of PARMA on (samples of) the 10M dataset, with ε = 0.05 and

δ = 0.01. It is evident that PARMA does a very good job in filtering out even acceptable false

positives, especially at lower frequencies, when their number increases. This is thanks to the fact

that an itemset is included in the output of PARMA if and only if it appears in the majority of the

collections obtained in the first stage. Itemsets with real frequencies in [θ − ε, θ) are not very likely

to be contained in many of these collections.

We conducted an evaluation of the accuracy of two other components of the output of PARMA,

namely the estimated frequencies for the itemsets in the output and the width of the confidence

bounds for these estimations. In Figure 4.6 we show the distribution of the absolute error in the

estimation, i.e. |f̃(X)− fD(X)| for all itemsets X in the output of PARMA, as θ varies. The lower

end of the “whisker” indicates the minimum error, the lower bound of the box corresponds to the

first quartile, the segment across the box to the median, and the upper bound of the box to the third

quartile. The top end of the whisker indicates the maximum error, and the central diamond shows

the mean. This figure (and also Figure 4.7) shows the values for a run of PARMA on samples of the

10M dataset, with ε = 0.05 and δ = 0.01. We can see that even the maximum values are one order

of magnitude smaller than the threshold of 0.05 guaranteed by the analysis, and many of the errors

are two or more orders of magnitude smaller. It is also possible to appreciate that the distribution of

the error would be heavily concentrated in a small interval if the maximum error were not so high,
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effectively an outlier. The fact that the average and the median of the error, together with the entire

“box” move down as the minimum frequency threshold decrease can be explained by the fact that

at lower frequencies more itemsets are considered, and this makes the distribution less susceptible

to outliers. Not only this is a sign of the high level of accuracy achieved by PARMA, but also of its

being consistently accurate on a very large portion of the output.
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Figure 4.6: Error in frequency estimations as frequency varies.
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Figure 4.7: Width of the confidence intervals as frequency varies.

Finally, in Figure 4.7 we show the distribution of the widths of the confidence intervals K(A) for

the frequency estimations f̃(A) of the itemsets A in the output of PARMA. Given that ε = 0.05,

the maximum allowed width was 2ε = 0.1. It is evident from the figures that PARMA returns much

narrower intervals, of size almost ε. Moreover, the distribution of the width is very concentrated, as

shown by the small height of the boxes, suggesting that PARMA is extremely consistent in giving

very high quality confidence intervals for the estimations. We state again that in all runs of PARMA

in our tests, all the confidence intervals contained the estimation and the real frequency, as requested

by Definition 10. As seen in the case of the estimation error, the distribution of the widths shifts

down at lower thresholds θ. This is motivated by the higher number of itemsets in the output of

PARMA at those frequencies. Their presence makes the distribution more robust to outliers. We
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can conclude that PARMA gives very narrow but extremely accurate confidence intervals across the

entirety of its output.

This analysis of the accuracy of various aspects of PARMA’s output shows that PARMA can

be very useful in practice, and the confidence of the end user in the collections of itemsets and

estimations given in its output can be even higher than what is guaranteed by the analysis.

4.6 Conclusions

In this chapter we described PARMA, a parallel algorithm for mining quasi-optimal collections of

frequent itemsets and association rules in MapReduce. We showed through theoretical analysis that

PARMA offers provable guarantees on the quality of the output collections. Through experimenta-

tion on a wide range of datasets ranging in size from 5 million to 50 million transactions, we have

demonstrated a 30-55% runtime improvement over PFP, the current state-of-the-art in exact parallel

mining algorithms on MapReduce. Empirically we were able to verify the accuracy of the theoretical

bounds, as well as show that in practice our results are orders of magnitude more accurate than is

analytically guaranteed. Thus PARMA is an algorithm that can scale to arbitrary data sizes while

simultaneously providing nearly perfect results. Indeed PARMA proved its practical usefulness as

it was adapted to a streaming setting and integrated by Yahoo in its SAMOA platform for massive

distributed streaming computation (http://yahoo.github.io/samoa/).

http://yahoo.github.io/samoa/


Chapter 5

Finding the True Frequent

Itemsets

“τὸ μὲν γὰρ λέγειν τὸ ὂν μὴ εἶναι ἢ τὸ μὴ ὂν εἶναι ψεῦδος, τὸ δὲ τὸ ὂν εἶναι καὶ τὸ μὴ ὂν

μὴ εἶναι ἀληθές”1

Aristotle, Metaphysics, 4.1011b25.

In this chapter we present the task of mining Frequent Itemsets (FIs) from a different point

of view, and show that we can use VC-dimension to avoid the inclusion of false positives in the

results of mining. In most applications, the set of FIs is not interesting per se. Instead, the mining

results are used to infer properties of the underlying process that generated the dataset. Consider

for example the following scenario: a team of researchers would like to identify frequent associations

(i.e., itemsets) between preferences among Facebook users. To this end, they set up an online survey

which is filled out by a small fraction of Facebook users (some users may even take the survey

multiple times). Using this information, the researchers want to infer the associations (itemsets)

that are frequent for the entire Facebook population. In fact, the whole Facebook population and the

online survey define the underlying process that generated the dataset observed by the researchers.

We are interested in answering the following question: how can we use the latter (the observed

dataset) to identify itemsets that are frequent in the former (the whole population)? This is a very

This chapter is an extended version of a work originally appeared in the proceedings of SDM’14 as [177].
1To say of what is that it is not, or of what is not that it is, is false, while to say of what is that it is, and of what

is not that it is not, is true

74
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natural question, as is the underlying assumption that the observed dataset is representative of the

generating process. For example, in market basket analysis, the observed purchases of customers are

used to infer the future purchase habits of all customers while assuming that the purchase behavior

that generated the dataset is representative of the one that will be followed in the future.

A natural and general model to describe these concepts is to assume that the transactions in

the dataset D are independent identically distributed (i.i.d.) samples from an unknown probability

distribution π defined on all possible transactions built on a set of items. Since π is fixed, each

itemset A has a fixed probability tπ(A) to appear in a transaction sampled from π. We call tπ(A)

the true frequency of A (w.r.t. π). The true frequency corresponds to the fraction of transactions

that would contain the itemset A among an hypothetical infinite set of transactions. The real goal

of the mining process is then to identify itemsets that have true frequency tπ at least θ. We call

such itemsets the True Frequent Itemsets (TFIs). In the market basket analysis example, D contains

the observed purchases of customers, the unknown distribution π describes the purchase behavior

of the customers as a whole, and we want to analyze D to find the itemsets that have probability

(i.e., true frequency) at least θ to be bought by a customer. Note that we made no assumption on

π, except from the fact that the transactions in the dataset are i.i.d. samples from π. This is in

contrast to other settings that assume that the generative distribution π is such that items appear

in transactions generated by π totally or partially independently from each other.

Since D represents only a finite sample from π, the set F of frequent itemsets of D w.r.t. θ

only provides an approximation of the True Frequent Itemsets: due to the stochastic nature of the

generative process, the set F may contain a number of false positives, i.e., itemsets that appear

among the frequent itemsets of D but whose true frequency is smaller than θ. At the same time,

some itemsets with true frequency greater than θ may have a frequency in D that is smaller than

θ (false negatives), and therefore not be in F . This implies that one can not aim at identifying all

and only the itemsets having true frequency at least θ. Even worse, from the data analyst’s point

of view, there is no guarantee or bound on the number of false positives reported in F . Consider the

following scenario as an example. Let A and B be two (disjoint) sets of pairs of items. The set A

contains 1,000 disjoint pairs, while B contains 10,000 disjoint pairs. Let π be such that, for any pair

(a, a′) ∈ A, we have tπ((a, a′)) = 0.1, and for any pair (b, b′) ∈ B, we have tπ((b, b′)) = 0.09. Let D

be a dataset of 10,000 transactions sampled from π. We are interested in finding pairs of items that

have true frequency at least θ = 0.095. If we extract the pairs of items with frequency at least θ in
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D, it is easy to see that in expectation 50 of the 1,000 pairs from A will have frequency in D below

0.095, and in expectation 400 pairs from B will have frequency in D above 0.095. Therefore, the

set of pairs that have frequency at least θ in D does not contain some of the pairs that have true

frequency at least θ (false negatives), but includes a huge number of pairs that have true frequency

smaller than θ (false positives).

In general, one would like to avoid false positives and at the same time find as many TFIs as

possible. These are somewhat contrasting goals, and care must be taken to achieve a good balance

between them. A naïve but overly conservative method to avoid false positives involves the use of

Chernoff and union bounds [154]. Given an itemset A in D, the quantity |D|fD(A) is a random

variable with Binomial distribution B(|D|, tπ(A)). It is possible to use standard methods like the

Chernoff and the union bounds to bound the deviation of the frequencies in the dataset of all itemsets

from their expectations. These tools can be used to compute a value θ̂ such that the probability

that a non-true frequent itemset B has frequency greater or equal to θ̂ is at most 1 − δ, for some

δ ∈ (0, 1). This method has the following serious drawback: in order to achieve such guarantee,

it is necessary to bound the deviation of the frequencies of all itemsets possibly appearing in the

dataset [124]. This means that, if the transactions are built on a set of n items, the union bound

must be taken over all 2n−1 potential itemsets, even if some or most of them may appear with very

low frequency or not at all in samples from π. As a consequence, the chosen value of θ̂ is extremely

conservative, despite being sufficient to avoid the inclusion of false positives in mining results. The

collection of itemsets with frequency at least θ̂ in D, although consisting (probabilistically) only of

TFIs, only contains a very small portion of them, due to the overly conservative choice of θ̂. (The

results of our experimental evaluation in Sect. 5.5 clearly show the limitations of this method.) More

refined algorithms are therefore needed to achieve the correct balance between the contrasting goals

of avoiding false positives and finding as many TFIs as possible.

Our contributions. The contributions we make are the following:

• We formally define the problem of mining the True Frequent Itemsets w.r.t. a minimum thresh-

old θ, and we develop and analyze an algorithm to identify a value θ̂ such that, with probability

at least 1− δ, all itemsets with frequency at least θ̂ in the dataset have true frequency at least

θ. Our method is completely distribution-free, i.e., it does not make any assumption about the

unknown generative distribution π. By contrast, existing methods to assess the significance
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of frequent patterns after their extraction require a well specified, limited generative model to

characterize the significance of a pattern. When additional information about the distribution

π is available, it can be incorporated in our method to obtain even higher accuracy.

• We analyze our algorithm using results from statistical learning theory and optimization. We

define a range space associated to a collection of itemsets and give an upper bound to its

(empirical) VC-dimension and a procedure to compute this bound, showing an interesting

connection with the Set-Union Knapsack Problem (SUKP) [82]. To the best of our knowledge,

we are the first to apply these techniques to the field of TFIs, and in general the first application

of the sample complexity bound based on empirical VC-dimension to the field of data mining.

• We implemented our algorithm and assessed its performances on simulated datasets with

properties – number of items, itemsets frequency distribution, etc.– similar to real datasets.

We computed the fraction of TFIs contained in the set of frequent itemsets in D w.r.t. θ̂,

and the number of false positives, if any. The results show that the algorithm is even more

accurate than the theory guarantees, since no false positive is reported in any of the many

experiments we performed, and moreover allows the extraction of almost all TFIs. We also

compared the set of itemsets computed by our method to those obtained with the “Chernoff

and union bounds” method presented in the introduction, and found that our algorithm vastly

outperforms it.

the firstwork:

Outline. In Sect. 5.1 we review relevant previous contributions. Sections 5.2 and 5.3 contain

preliminaries to formally define the problem and key concepts that we will use throughout the work.

Our proposed algorithm is described and analyzed in Sect. 5.4. We present the methodology and

results of our experimental evaluation in Sect. 5.5. Conclusions and future directions can be found

in Sect. 5.6.

5.1 Previous work

Given a sufficiently low minimum frequency threshold, traditional itemsets mining algorithms can

return a collection of frequent patterns so large to become almost uninformative to the human
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user. The quest for reducing the number of patterns given in output has been developing along

two different different directions suggesting non-mutually-exclusive approaches. One of these lines

of research starts from the observation that the information contained in a set of patterns can be

compressed with or without loss to a much smaller collection. This lead to the definition of concepts

like closed, maximal, non-derivable itemsets. This approach is orthogonal to the one we take and we

refer the interested reader to the survey by Calders et al. [30].

The intuition at the basis of the second approach to reduce the number of output patterns consists

in observing that a large portion of the patterns may be spurious, i.e., not actually interesting but

only a consequence of the fact that the dataset is just a sample from the underlying process that

generates the data, the understanding of which is the ultimate goal of data mining. This observation

led to a prolification of interestingness measures. In this work we are interested in a very specific

definition of interestingness that is based on statistical properties of the patterns. We refer the

reader to the surveys on different readers by Han et al. [98, Sect. 3] and Geng and Hamilton [76].

We remark that, as noted by Liu et al. [140], that the use of the minimum support threshold θ,

reflecting the level of domain significance, is complementary to the use of interestingness measures,

and that “statistical significance measures and domain significance measures should be used together

to filter uninteresting rules from different perspectives”. The algorithm we present can be seen as a

method to filter out patterns that are not interesting according to the measure represented by the

true frequency.

A number of works explored the idea to use statistical properties of the patterns in order to

assess their interestingness. While this is not the focus of our work, some of the techniques and

models proposed are relevant to our framework. Most of these works are focused on association

rules, but some results can be applied to itemsets. In these works, the notion of interestingness is

related to the deviation between the observed frequency of a pattern in the dataset and its expected

support in a random dataset generated according to a well-defined probability distribution that

can incorporate prior belief and that can be updated during the mining process to ensure that the

most “surprising” patterns are extracted. In many previous works, the probability distribution was

defined by a simple independence model: an item belongs to a transaction independently from other

items [59, 80, 95, 124, 152, 187]. In contrast, our work does not impose any restriction on the

probability distribution generating the dataset, with the result that our method is as general as

possible.
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Kirsch et al. [124] developed a multi-hypothesis testing procedure to identify the best support

threshold such that the number of itemsets with at least such support deviates significantly from its

expectation in a random dataset of the same size and with the same frequency distribution for the

individual items. In our work, the minimum threshold θ is an input parameter fixed by the user,

and we identify a threshold θ̂ ≥ θ to guarantee that the collection of FIs w.r.t. θ̂ does not contain

any false discovery.

Gionis et al. [80] present a method to create random datasets that can act as samples from a

distribution satisfying an assumed generative model. The main idea is to swap items in a given

dataset while keeping the length of the transactions and the sum over the columns constant. This

method is only applicable if one can actually derive a procedure to perform the swapping in such

a way that the generated datasets are indeed random samples from the assumed distribution. For

the problem we are interested in, such procedure is not available and indeed it would be difficult to

obtain a procedure that is valid for any distribution, given our goal to develop a method that makes

no assumption on the distribution. Considering the same generative model, Hanhijärvi [99] presents

a direct adjustment method to bound the probability of false discoveries by taking into consideration

the actual number of hypotheses to be tested.

Webb [202] proposes the use of established statistical techniques to control the probability of false

discoveries. In one of these methods (called holdout), the available data are split into two parts:

one is used for pattern discovery, while the second is used to verify the significance of the discovered

patterns, testing one statistical hypothesis at a time. A new method (layered critical values) to

choose the critical values when using a direct adjustment technique to control the probability of

false discoveries is presented by Webb [203] and works by exploiting the itemset lattice. The method

we present instead identify a threshold frequency such that all the itemsets with frequency above

the threshold are TFIs. There is no need to test each itemset separately and no need to split the

dataset.

Liu et al. [140] conduct an experimental evaluation of direct corrections, holdout data, and

random permutations methods to control the false positives. They test the methods on a very

specific problem (association rules for binary classification).

In contrast with the methods presented in the works above, ours does not employ an explicit

direct correction depending on the number of patterns considered as it is done in traditional mul-

tiple hypothesis testing settings. It instead uses the entire available data to obtain more accurate



80

results,without the need to re-sampling it to generate random datasets or to split the dataset in two

parts, being therefore more efficient computationally.

5.2 Preliminaries

In this section we introduce the definitions, lemmas, and tools that we will use throughout the work,

providing the details that are needed in later sections.

Given a ground set I of items, let π be a probability distribution on 2I . A transaction τ ⊆ I

is a single sample drawn from π. The length |τ | of a transaction τ is the number of items in τ . A

dataset D is a bag of n transactions D = {τ1, . . . , τn : τi ⊆ I}, i.e., of n independent identically

distributed (i.i.d.) samples from π. We call a subset of I an itemset. For any itemset A, let

T (A) = {τ ⊆ I : A ⊆ τ} be the support set of A. We define the true frequency tπ(A) of A with

respect to π as the probability that a transaction sampled from π contains A:

tπ(A) =
∑

τ∈T (A)

π(τ) .

Analogously, given a (observed) dataset D, let TD(A) denote the set of transactions in D con-

taining A. As we saw in previous chapters, the frequency of A in D is the fraction of transactions in

D that contain A: fD(A) = |TD(A)|/|D|. It is easy to see that fD(A) is the empirical average (and

an unbiased estimator) for tπ(A): E[fD(A)] = tπ(A).

In most applications the final goal of data mining is to gain a better understanding of the process

generating the data, i.e., of the distribution π, through the true frequencies tπ, which are unknown

and only approximately reflected in the dataset D. Therefore, we are interested in finding the

itemsets with true frequency tπ at least θ for some θ ∈ (0, 1]. We call these itemsets the True

Frequent Itemsets (TFIs) and denote their set as

TFI(π, I, θ) = {A ⊆ I : tπ(A) ≥ θ} .

If one is only given a finite number of random samples (the dataset D) from π as it is usually

the case, one can not aim at finding the exact set TFI(π, I, θ): no assumption can be made on the

set-inclusion relationship between TFI(π, I, θ) and FI(D, I, θ), because an itemset A ∈ TFI(π, I, θ)
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may not appear in FI(D, I, θ), and vice versa. One can instead try to approximate the set of TFIs,

which is what we aim at.

Goal. Given an user-specified parameter δ ∈ (0, 1), we aim at providing a threshold θ̂ ≥ θ such

that C = FI(D, I, θ̂) well approximates TFI(π, I, θ), in the sense that

1. With probability at least 1− δ, C does not contain any false positive:

Pr(∃A ∈ C : tπ(A) < θ) < δ .

2. C contains as many TFIs as possible.

The method we present does not make any assumption about π. It uses information from D, and

guarantees a small probability of false positives while achieving a high success rate.

5.3 The range space of a collection of itemsets

In this section we define the concept of a range space associated to a collection of itemsets and show

how to bound the VC-dimension and the empirical VC-dimension of this range space. We use these

definitions and results to develop our algorithm in later sections.

Definition 12. Given a collection C of itemsets built on a ground set I, the range space (2I ,R(C))

associated to C is a range space on 2I such that R(C) contains the support sets of the itemsets in C:

R(C) = {T (A) : A ∈ C} .

This is a generalization of the range space from Def. 8. Given a dataset D, Thm. 5 gives a bound

to EVC(D,R(C)), the empirical VC-dimension of R(C) on D in the following sense.

Theorem 7. Let C be a collection of itemsets and let D be a dataset. Let d be the maximum

integer for which there are at least d transactions τ1, . . . , τd ∈ D such that the set {τ1, . . . , τd} is an

antichain2, and each τi, 1 ≤ i ≤ d, contains at least 2d−1 itemsets from C. Then EVC(D,R(C)) ≤ d.
2An antichain is a collection of sets such no one of them is a subset of another.
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5.3.1 Computing the VC-Dimension

The naïve computation of d according to the definition in Thm. 7 requires to scan the transactions

one by one, compute the number of itemsets from C appearing in each transaction, and make sure

to consider only itemsets constituting antichains. Given the very large number of transactions in

typical dataset and the fact that the number of itemsets in a transaction is exponential in its length,

this method would be computationally too expensive. An upper bound to d (and therefore to

EVC(D,R(C))) can be computed by solving a Set-Union Knapsack Problem (SUKP) [82] associated

to C.

Definition 13 ([82]). Let U = {a1, . . . , a`} be a set of elements and let S = {A1, . . . , Ak} be a set

of subsets of U , i.e. Ai ⊆ U for 1 ≤ i ≤ k. Each subset Ai, 1 ≤ i ≤ k, has an associated non-negative

profit ρ(Ai) ∈ R+, and each element aj , 1 ≤ j ≤ ` as an associated non-negative weight w(aj) ∈ R+.

Given a subset S ′ ⊆ S, we define the profit of S ′ as P (S ′) =
∑
Ai∈S′ ρ(Ai). Let US′ = ∪Ai∈S′Ai.

We define the weight of S ′ as W (S ′) =
∑
aj∈US′

w(aj). Given a non-negative parameter c that

we call capacity, the Set-Union Knapsack Problem (SUKP) requires to find the set S∗ ⊆ S which

maximizes P (S ′) over all sets S ′ such that W (S ′) ≤ c.

In our case, U is the set of items that appear in the itemsets of C, S = C, the profits and the

weights are all unitary, and the capacity constraint is an integer `. We call this optimization problem

the SUKP associated to C with capacity `. It is easy to see that the optimal profit of this SUKP is

the maximum number of itemsets from C that a transaction of length ` can contain. In order to show

how to use this fact to compute an upper bound to EVC(D,R(C)), we need to define some additional

terminology. Let `1, . . . , `w be the sequence of the transaction lengths of D, i.e., for each value ` for

which there is at least a transaction in D of length `, there is one (and only one) index i, 1 ≤ i ≤ w

such that `i = `. Assume that the `i’s are labelled in decreasing order: `1 > `2 > · · · > `w. Let now

Li, 1 ≤ i ≤ w be the maximum number of transactions in D that have length at least `i and such

that for no two τ ′, τ ′′ of them we have either τ ′ ⊆ τ ′′ or τ ′′ ⊆ τ ′. Let now qi be the optimal profit

of the SUKP associated to C with capacity Li, and let bi = blog2 qic + 1. The sequences (`i)w1 and

a sequence (L∗i )w of upper bounds to (Li)w1 can be computed efficiently with a scan of the dataset.

The following lemma uses these sequences to show how to obtain an upper bound to the empirical

VC-dimension of C on D.

Lemma 13. Let j be the minimum integer for which bi ≤ Li. Then EVC(D, C) ≤ bj.
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Proof. If bj ≤ Lj , then there are at least bj transactions which can contain 2bj−1 itemsets from

C and this is the maximum bi for which it happens, because the sequence b1, b2, . . . , bw is sorted

in decreasing order, given that the sequence q1, q2, . . . , qw is. Then bj satisfies the conditions of

Lemma 7. Hence EVC(D, C) ≤ bj .

Corollary 2. Let q be profit of the SUKP associated to C with capacity equal to ` = |{a ∈ I : ∃A ∈

C s.t. a ∈ A}| (` is the number of items such that there is at least one itemset in C containing them).

Let b = blog2 qc+ 1. Then VC(2I ,R(C)) ≤ b.

Complexity and runtime considerations. Solving the SUKP optimally is NP-hard in the

general case, although there are known restrictions for which it can be solved in polynomial time

using dynamic programming [82]. Since we have unit weights and unit profits, our SUKP is equivalent

to the densest k-subhypergraph problem, which can not be approximated within a factor of 2O(logn)δ

for any δ > 0 unless 3STA ∈ DTIME(2n3/4+ε) [94]. A greedy algorithm by Arulselvan [11] allows a

constant factor approximation if each items only appear in a constant fraction of itemsets of C. For

our case, it is actually not necessary to compute the optimal solution to the SUKP: any upper bound

solution for which we can prove that there is no power of two between that solution and the optimal

solution would result in the same upper bound to the (empirical) VC-dimension, while substantially

speeding up the computation. This property can be specified in currently available optimization

problem solvers (e.g., CPLEX), which can then can compute the bound to the (empirical) VC-

dimension very fast even for very large instances with thousands of items and hundred of thousands

of itemsets in C, making this approach practical.

Refinements. It is possible to make some refinements to our computation of the empirical VC-

dimension of a collection C of itemsets on a dataset D. First of all, one can remove from C all

itemsets that never appear in D, as the corresponding ranges can not help shattering any set of

transactions in D. Identifying which itemsets to remove requires a single linear scan of D. Secondly,

when computing the capacities Li (i.e., their upper bounds L∗i ), we can ignore all the transactions

that do not contain any of the itemsets in C (or the filtered version of C), as there is no way of shatter

them using the ranges corresponding to itemsets in C. Both refinements aim at reducing the optimal

value of the SUKP associated to C, and therefore at computing a smaller bound to the empirical

VC-dimension of C on D. We remark that these refinements can not be used when computing the
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(non-empirical) VC-dimension.

The range space of all itemsets. The range space associated to 2I (seen as a collection of

itemsets) is particularly interesting for us. It is possible to compute bounds to VC(2I ,R(2I)) and

EVC(D,R(2I)) without having to solve a SUKP and using instead the d-index. Indeed, these are

both consequences of Thm. 5.

Corollary 3. Let D be a dataset with d-index d. Then EVC(D,R(2I)) ≤ d.

Corollary 4. VC(2I ,R(2I)) = |I| − 1.

5.4 Finding the True Frequent Itemsets

In this section we present an algorithm that receives in input a dataset D, a minimum frequency

threshold θ, and a confidence parameter δ ∈ (0, 1) and identifies a threshold θ̂ such that, with

probability at least δ, all itemsets with frequency at least θ̂ in D are True Frequent Itemsets with

respect to θ. The threshold θ̂ can be used to find a collection C = FI(D, I, θ̂) of itemsets such that

Pr(∃A ∈ C s.t. tπ(A) < θ) < δ.

The intuition behind the method is the following. Let B be the negative border of TFI(π, I, θ),

that is the set of itemsets not in TFI(π, I, θ) but such that all their proper subsets are in TFI(π, I, θ).

If we can find an ε such that D is an ε-approximation to (2I ,R(B), π) then we have that any itemset

A ∈ B has a frequency fD(A) in D less than θ̂ = θ + ε, given that it must be tπ(A) < θ. By the

antimonotonicity property of the frequency, the same holds for all itemsets that are supersets of

those in B. Hence, the only itemsets that can have frequency in D greater or equal to θ̂ = θ+ ε are

those with true frequency at least θ. In the following paragraphs we show how to compute ε.

Let δ1 and δ2 be such that (1 − δ1)(1 − δ2) ≥ 1 − δ. Let (2I ,R(2I) be the range space of all

itemsets. We use Corol. 4 (resp. Thm. 3) to compute an upper bound d′ to VC
(
(2I ,R(2I))

)
(resp. d′′

to EVC(D,R(2I)). Then we can use d′ in Thm. 1 (resp. d′′ in Thm. 2) to compute an ε′1 (resp. an

ε′′1) such that D is, with probability at least 1 − δ1, an ε′1-approximation (resp. ε′′1 -approximation)

to (2I ,R(2I), π).

Fact 1. Let ε1 = min{ε′1, ε′′1}. With probability at least 1 − δ1, D is an ε1-approximation to

(2I ,R(2I), π).
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We want to find an upper bound the (empirical) VC-dimension of (2I ,R(B). To this end, we

use the fact that the negative border of a collection of itemsets is a maximal antichain on 2I . Let

now W be the negative border of C1 = FI(D, I, θ − ε1), G = {A ⊆ I : θ − ε1 ≤ fD(A) < θ + ε1},

and F = G ∪W.

Lemma 14. Let Y be the set of maximal antichains in F . If D is an ε1-approximation to (2I ,R(2I), π),

then

1. maxA∈Y EVC(D,R(A)) ≥ EVC(D,R(B)), and

2. maxA∈Y VC
(
(2I ,R(A))

)
≥ VC

(
(2I ,R(B))

)
.

Proof. Given that D is an ε1-approximation to (R(2I), π), then TFI(π, I, θ) ⊆ G∪C1. From this and

the definition of negative border and of F , we have that B ⊆ F . Since B is a maximal antichain,

then B ∈ Y. Hence the thesis.

In order to compute upper bounds to VC
(
(2I ,R(B))

)
and EVC(R(B),D) we can solve slightly

modified SUKPs associated to F with the additional constraint that the optimal solution, which is

a collection of itemsets, must be a maximal antichain. Lemma 13 still holds even for the solutions

of these modified SUKPs. Using these bounds in Thms. 1 and 2, we compute an ε2 such that, with

probability at least 1 − δ2, D is an ε2-approximation to (R(B), π). Let θ̂ = θ + ε2. The following

Theorem shows that θ̂ has the desired properties.

Theorem 8. With probability at least 1− δ, FI(D, I, θ̂) contains no false positives:

Pr
(

FI(D, I, θ̂) ⊆ TFI(π, I, θ)
)
≥ 1− δ .

Proof. Consider the two events E1=“D is an ε1-approximation for (R(2I), π)” and E2=“D is an

ε2-approximation for (R(B), π)”. From the above discussion and the definition of δ1 and δ2 it follows

that the event E = E1 ∩ E1 occurs with probability at least 1− δ. Suppose from now on that indeed

E occurs.

Since E1 occurs, then Lemma 14 holds, and the bounds we compute by solving the modified SUKP

problems are indeed bounds to VC
(
(2I ,R(B))

)
and EVC(R(B,D)). Since E2 also occurs, then for

any A ∈ B we have |tπ(A)−fD(A)| ≤ ε2, but given that tπ(A) < θ because the elements of B are not

TFIs, then we have fD(A) < θ+ ε2. Because of the antimonotonicity property of the frequency and
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the definition of B, this holds for any itemset that is not in TFI(π, I, θ). Hence, the only itemsets

that can have a frequency in D at least θ̂ = θ + ε2 are the TFIs, so FI(D, I, θ̂) ⊆ TFI(π, I, θ), which

concludes our proof.

The pseudocode of our method is presented in Alg. 2.

Exploiting additional knowledge about π. Our algorithm is completely distribution-free, i.e.,

it does not require any assumption about the unknown distribution π. On the other hand, when

information about π is available, our method can exploit it to achieve better performances in terms

of running time, practicality, and accuracy. For example, in most applications π will not generate

any transaction longer than some known upper bound ` � |I|. Consider for example an online

marketplace like Amazon: it is extremely unlikely (if not humanly impossible) that a single customer

buys one of each available product. Indeed, given the hundred of thousands of items on sale, it is safe

to assume that all the transactions will contains at most ` items, for some `� |I|. Other times, like

in an online survey, it is the nature of the process that limits the number of items in a transaction,

in this case the number of questions. A different kind of information about the generative process

may consists in knowing that some combination of items may never occur, because “forbidden”

in some wide sense. Other examples are possible. All these pieces of information can be used to

compute better (i.e., stricter) upper bounds to the VC-dimension VC
(
(2I ,R(2I))

)
. For example,

if we know that π will never generate transactions with more than ` items, we can safely say that

VC
(
(2I ,R(2I))

)
≤ `, a much stricter bound than |I|−1 from Corol. 4. This may result in a smaller

ε1, a smaller ε, and a smaller θ̂, which allows to produce more TFIs in the output collection. In the

experimental evaluation, we show the positive impact of including additional information may on

the performances of our algorithm.

5.5 Experimental evaluation

We conducted an extensive evaluation to assess the performances of the algorithm we propose. In

particular, we used it to compute values θ̂ for a number of frequencies θ on different datasets, and

compared the collection of FIs w.r.t. θ̂ with the collection of TFIs, measuring the number of false

positives and the fraction of TFIs that were found.
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Dataset Freq. θ TFIs Times FPs Times FNs

accidents 0.2 889883 100% 100%

BMS-POS 0.005 4240 100% 100%

chess 0.6 254944 100% 100%

connect 0.85 142127 100% 100%

kosarak 0.015 189 45% 55%

pumsb* 0.45 1913 5% 80%

retail 0.0075 277 10% 20%

Table 5.1: Fractions of times that FI(D, I, θ) contained false positives and missed TFIs (false nega-
tives) over 20 datasets from the same ground truth.

Implementation. We implemented the algorithm in Python 3.3. To mine the FIs, we used the

C implementation by Grahne and Zhu [84]. Our solver of choice for the SUKPs was IBM® ILOG®

CPLEX® Optimization Studio 12.3. We run the experiments on a number of machines with x86-64

processors running GNU/Linux 3.2.0.

Datasets generation. We evaluated the algorithm using pseudo-artificial datasets generated by

taking the datasets from the FIMI’04 repository3 as the ground truth for the true frequencies tπ of

the itemsets. We considered the following datasets: accidents, BMS-POS, chess, connect, kosarak,

pumsb*, and retail. These datasets differ in size, number of items, and, more importantly for our

case, distribution of the frequencies of the itemsets [81]. We created a dataset by sampling 20 million

transactions uniformly at random from a FIMI repository dataset. In this way the the true frequency

of an itemset is its frequency in the original FIMI dataset. Given that our method to find the TFIs

is distribution-free, this is a valid procedure to establish a ground truth. We used these enlarged

datasets in our experiments, and use the original name of the datasets in the FIMI repository to

annotate the results for the datasets we generated.

False positives and false negatives in FI(D, I, θ). In the first set of experiments we evaluated

the performances, in terms of inclusion of false positives and false negatives in the output, of mining

the dataset at frequency θ. Table 5.1 reports the fraction of times (over 20 datasets from the same

ground truth) that the set FI(D, I, θ) contained false positives (FP) and was missing TFIs (false

negatives (FN)). In most cases, especially when there are many TFIs, the inclusion of false positives
3http://fimi.ua.ac.be/data/

http://fimi.ua.ac.be/data/
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when mining at frequency θ should be expected. This highlights a need for methods like the one

presented in this work, as there is no guarantee that FI(D, I, θ) only contains TFIs. On the other

hand, the fact that some TFIs have frequency in the dataset smaller than θ (false negatives) points

out how one can not aim to extract all and only the TFIs by using a fixed threshold approach (as

the one we present).

Control of the false positives (Precision). In this set of experiments we evaluated how well the

threshold θ̂ computed by our algorithm allows to avoid the inclusion of false negatives in FI(D, I, θ̂).

To this end, we used a wide range of values for the minimum true frequency threshold θ (see Table 5.2)

and fixed δ = 0.1. We repeated each experiment on 20 different enlarged datasets generated from

the same original FIMI dataset. In all the hundreds of runs of our algorithms, FI(D, I, θ̂) never

contained any false positive, i.e., always contained only TFIs. In other words, the precision of the

output was 1.0 in all our experiments. Not only our method can give a frequency threshold to

extract only TFIs, but it is more conservative, in terms of including false positives, than what the

theoretical analysis guarantees.

Inclusion of TFIs (Recall). In addition to avoid false positives in the results, one wants to

include as many TFIs as possible in the output collection. To this end, we assessed what fraction

of the total number of TFIs is reported in FI(D, I, θ̂). Since there were no false positives, this is

corresponds to evaluating the recall of the output collection. We fixed δ = 0.1, and considered

different values for the minimum true frequency threshold θ (see Table 5.2). For each frequency

threshold, we repeated the experiment on 20 different datasets sampled from the same original FIMI

dataset, and found very small variance in the results. We compared the fraction of TFIs that our

algorithm included in output with that included by the “Chernoff and Union bounds” (CU) method

we presented in Introduction. We compared two variants of the algorithms: one (“vanilla”) which

makes no assumption on the generative distribution π, and another (“additional info”) which assumes

that the process will not generate any transaction longer than twice the longest transaction found

in the original FIMI dataset. Both algorithms can be easily modified to include this information. In

Table 5.2 we report the average fraction of TFIs contained in FI(D, I, θ̂). We can see that the amount

of TFIs found by our algorithm is always very high: only a minimal fraction (often less than 3%) of

TFIs do not appear in the output. This is explained by the fact that the value ε2 computed in our
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method (see Sect. 5.4) is always smaller than 10−4. Moreover our solution uniformly outperforms

the CU method, often by a huge margin, since our algorithm does not have to take into account

all possible itemsets when computing θ̂. Only partial results are reported for the “vanilla” variant

because of the very high number of items in the considered datasets: the mining of the dataset is

performed at frequency threshold θ − ε1 and if there are many items, then the value of ε1 becomes

very high because the bound to the VC-dimension of R(2I) is |I|−1, and as a consequence we have

θ− ε1 ≤ 0. We stress, though, that assuming no knowledge about the distribution π is not realistic,

and usually additional information, especially regarding the length of the transactions, is available

and can and should be used. The use of additional information gives flexibility to our method and

improves its practicality. Moreover, in some cases, it allows to find an even larger fraction of the

TFIs.

5.6 Conclusions

The usefulness of frequent itemset mining is often hindered by spurious discoveries, or false positives,

in the results. In this work we developed an algorithm to compute a frequency threshold θ̂ such

that the collection of FIs at frequency θ̂ is a good approximation the collection of True Frequent

Itemsets. The threshold is such that that the probability of reporting any false positive is bounded by

a user-specified quantity. We used concepts from statistical learning theory and from optimization to

develop and analyze the algorithm. The experimental evaluation shows that the method we propose

can indeed be used to control the presence of false positives while, at the same time, extracting a

very large fraction of the TFIs from huge datasets. There are a number of directions for further

research. Among these, we find particularly interesting and challenging the extension of our method

to other definitions of statistical significance for patterns and to other definitions of patterns such

as sequential patterns [143]. Also interesting is the derivation of better lower bounds to the VC-

dimension of the range set of a collection of itemsets. Moreover, while this work focuses on itemsets

mining, we believe that it can be extended and generalized to other settings of multiple hypothesis

testing, and give another alternative to existing approaches for controlling the probability of false

discoveries.
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Algorithm 2: Compute freq. threshold θ̂ s. t. FI(D, I, θ̂) contains only TFIs with prob. at
least 1− δ.
Input : Dataset D, freq. threshold θ ∈ (0, 1), confidence δ ∈ (0, 1)
Output: Freq. threshold θ̂ s. t. FI(D, I, θ̂) contains only TFIs with prob. at least 1− δ.

1 δ1, δ2 ← 1−
√

1− δ // δ1 and δ2 do not need to have the same value
2 d′1 ← upper bound to VC(R(2I)) (e.g., |I| − 1)

3 ε′1 ←
√

c
|D|

(
d′1 + log 1

δ1

)
4 d′′1 ← upper bound to EVC(R(2I),D) // i.e., d-index of D (see Ch. 3)

5 ε′′1 ← 2
√

2d′′1 log(|D|+1)
|D| +

√
2 log 2

δ

|D|
6 ε1 ← min{ε′1, ε′′1}
7 C1 = FI(D, I, θ − ε1)
8 G = {A ⊆ I : θ − ε1 ≤ fD(A) < θ + ε1}
9 W ← negative border of C1

10 F = G ∪W
11 U ← {a ∈ I : ∃A ∈ F s.t. a ∈ A}
12 b′2 ← solveAntichainSUKP(U,F , |U |)
13 d′2 ← blog2 b

′
2c+ 1

14 ε′2 ←
√

c
|D|

(
d′2 + log 2

δ2

)
15 `1, . . . , `w ← transaction lengths of D // see Sect. 5.3.1
16 L1, . . . , Lw ← the maximum number of transactions in D that have length at least `i,

1 ≤ i ≤ w, and such that for no two τ ′, τ ′′ of them we have either τ ′ ⊆ τ ′′ or τ ′′ ⊆ τ ′
17 i← 0
18 while True do
19 b′′2 ← solveAntichainSUKP(U,F , `i)
20 d′′2 ← blog2 b

′′
2c+ 1

21 if d′′2 < Li then
22 break
23 else
24 i← i+ 1
25 end
26 end

27 ε′′2 ← 2
√

2d′′2 log(|D|+1)
|D| +

√
2 log 2

δ

|D|
28 ε2 ← min{ε′2, ε′′2}
29 return θ + ε2
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Reported TFIs (Average Fraction)

“Vanilla” (no info) Additional Info

Dataset Freq. θ TFIs CU Method This Work CU Method This Work

accidents

0.8 149 0.838 0.981 0.853 0.981
0.7 529 0.925 0.985 0.935 0.985
0.6 2074 0.967 0.992 0.973 0.992
0.5 8057 0.946 0.991 0.955 0.991
0.45 16123 0.948 0.992 0.955 0.992
0.4 32528 0.949 0.991 0.957 0.992
0.3 149545 0.957 0.989
0.2 889883 0.957 0.987

BMS-POS

0.05 59 0.845 0.938 0.851 0.938
0.03 134 0.879 0.992 0.895 0.992
0.02 308 0.847 0.956 0.876 0.956
0.01 1099 0.813 0.868 0.833 0.872
0.0075 1896 0.826 0.854
0.005 4240 0.762 0.775

chess

0.8 8227 0.964 0.991 0.964 0.991
0.775 13264 0.957 0.990 0.957 0.990
0.75 20993 0.957 0.983 0.957 0.983
0.65 111239 0.972 0.991
0.6 254944 0.970 0.989

connect

0.95 2201 0.802 0.951 0.802 0.951
0.925 9015 0.881 0.975 0.881 0.975
0.9 27127 0.893 0.978 0.893 0.978
0.875 65959 0.899 0.974
0.85 142127 0.918 0.974

kosarak

0.04 42 0.738 0.939 0.809 0.939
0.035 50 0.720 0.980 0.780 0.980
0.025 82 0.682 0.963
0.02 121 0.650 0.975
0.015 189 0.641 0.933

pumsb*

0.55 305 0.791 0.926 0.859 0.926
0.5 679 0.929 0.998 0.957 0.998
0.49 804 0.858 0.984 0.907 0.984
0.475 1050 0.942 0.996
0.45 1913 0.861 0.976

retail

0.03 32 0.625 1.00 0.906 1.00
0.025 38 0.842 0.973 0.972 0.973
0.0225 46 0.739 0.934 0.869 0.935
0.02 55 0.882 0.945
0.01 159 0.902 0.931
0.0075 277 0.811 0.843

Table 5.2: Recall. Average fraction (over 20 runs) of reported TFIs in the output of an algorithm
using Chernoff and Union bound and of the one presented in this work. For each algorithm we
present two versions, one (Vanilla) which uses no information about the generative process, and one
(Add. Info) in which we assume the knowlegde that the process will not generate any transaction
longer than twice the size of the longest transaction in the original FIMI dataset. In bold, the best
result (highest reported fraction).



Chapter 6

Approximating Betweenness

Centrality

“En la obra de Ts’ui Pên, todos los desenlaces occurren; cada uno es el punto de

partida de otras bifurcaciones. Alguna vez, los senderos de ese laberinto convergen: por

ejemplo, usted llega a esta casa, pero en uno de los pasados posibles usted es mi

enemigo, en otro mi amigo.”1

Jorge Luis Borges, El jardín de senderos que se bifurcan (The Garden of Forking Paths).

In this chapter we use VC-dimension to compute approximations of centrality indices of vertices

in a graph. Centrality indices are fundamental metrics for network analysis. They express the

relative importance of a vertex in the network. Some of them, e.g., degree centrality, reflect local

properties of the underlying graph, while others, like betweenness centrality, give information about

the global network structure, as they are based on shortest path computation and counting [159].

We are interested in betweenness centrality [9, 67], that is, for every vertex in the graph, the frac-

tion of shortest paths that goes through that vertex (see Section 6.2 for formal definitions) , and

on some variants of it [20, 23, 163]. Betweenness centrality has been used to analyze social and

protein interaction networks, to evaluate traffic in communication networks, and to identify impor-

tant intersections in road networks [73, 159]. There exist polynomial-time algorithms to compute
This chapter is an extended version of a work that originally appeared in the proceedings of WSDM’14 as [175].

1In the work of Ts’ui Pên, all possible outcomes occur; each one is the point of departure for other forkings.
Sometimes, the paths of this labyrinth converge: for example, you arrive at this house, but in one of the possible pasts
you are my enemy, in another, my friend.

92
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the exact betweenness centrality [22], but they are not practical for the analysis of the very large

networks that are of interest these days. Graphs representing online social networks, communication

networks, and the web graph have millions of nodes and billions of edges, making a polynomial-time

algorithm too expensive in practice. Given that data mining is exploratory in nature, approximate

results are usually sufficient, especially if the approximation error is guaranteed to be within user-

specified limits. In practice, the user is interested in the relative ranking of the vertices according to

their betweenness, rather than the actual value of the betweenness, so a very good estimation of the

value of each vertex is sufficiently informative for most purposes. It is therefore natural to develop

algorithms that trade off accuracy for speed and efficiently compute high-quality approximations

of the betweenness of the vertices. Nevertheless, in order for these algorithms to be practical it is

extremely important that they scale well and have a low runtime dependency on the size of the

network (number of vertices and/or edges).

Our contributions We present two randomized algorithms to approximate the betweenness cen-

trality (and some of its variants) of the vertices of a graph. The first algorithm guarantees that the

estimated betweenness values for all vertices are within an additive factor ε from the real values,

with probability at least 1 − δ. The second algorithm focuses on the top-K vertices with highest

betweenness and returns a superset of the top-K, while ensuring that the estimated betweenness for

all returned vertices is within a multiplicative factor ε from the real value, with probability at least

1 − δ. This is the first algorithm to reach such a high-quality approximation for the set of top-K

vertices. The algorithms are based on random sampling of shortest paths. The analysis to derive the

sufficient sample size is novel and uses notions and results from VC-dimension theory. We define a

range space associated with the problem at hand and prove strict bounds to its VC-dimension. The

resulting sample size does not depend on the size of the graph, but only on the maximum number of

vertices in a shortest path, a characteristic quantity of the graph that we call the vertex-diameter.

For some networks, we show that the VC-dimension is actually at most a constant and so the sample

size depends only on the approximation parameters and not on any property of the graph, a some-

what surprising fact that points out interesting insights. Thanks to the lower runtime dependency

on the size of the network, our algorithms are much faster and more scalable than previous contribu-

tions [24, 73, 112], while offering the same approximation guarantees. Moreover, the amount of work

performed by our algorithms per sample is also less than that of others algorithms. We extensively
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evaluated our methods on real graphs and compared their performances to the exact algorithm for

betweenness centrality [22] and to other sampling-based approximation algorithms [24, 73, 112],

showing that our methods achieve a huge speedup (3 to 4 times faster) and scale much better as the

number of vertices in the network grows.

Outline. We present related work in Sect. 6.1. Section 6.2 introduces the definitions and concepts

that we use throughout the capter. A range space for the problem at hand and the bounds to its VC-

dimension are presented in Sect. 6.3. Based on these results we develop and analyze algorithms for

betweenness estimation that we present in Sect. 6.4. Extensions of our methods to various variants

of the problem are presented in Sect. 6.5. Section 6.6 reports the methodology and the results of

our extensive experimental evaluation.

6.1 Related work

Over the years, a number of centrality measures have been defined [159]. We focus on betweenness

centrality and some of its variants.

Betweenness centrality was introduced in the sociology literature [9, 67]. Brandes [23] presents

a number of minor variants. A particularly interesting one, k-bounded-distance betweenness, limits

the length of the shortest paths considered when computing the centrality [20, 23, 167]. This is not

to be confused with k-path betweenness centrality defined by Kourtellis et al. [127], which considers

simple random walks that are not necessarily shortest paths. Dolev et al. [57] present a generalization

of betweenness centrality which takes into account routing policies in the network. Opsahl et al. [163]

define a new distance function between pair of vertices in order to penalize paths with a high number

of hops in a weighted network. This function induces a generalized and parametrized definition of

betweenness.

The need of fast algorithms to compute the betweenness of vertices in a graph arose as large

online social networks started to appear. Brandes [22] presents the first efficient algorithm for the

task, running in time O(nm) on unweighted graphs and O(nm + n2 logn) on weighted ones. The

algorithm computes, for each vertex v, the shortest path to every other vertex and then traverses

these paths backwards to efficiently compute the contribution of the shortest paths from v to the

betweenness of other vertices. For very large networks, the cost of this algorithm would still be
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prohibitive in practice, so many approximation algorithms were developed [13, 24, 73, 112, 135, 145].

The use of random sampling was one of the more natural approaches to speed up the computation of

betweenness. Inspired by the work of Eppstein and Wang [62], Jacob et al. [112] and independently

Brandes and Pich [24] present an algorithm that mimics the exact one, with the difference that,

instead of computing the contribution of all vertices to the betweenness of the others, it only considers

the contributions of some vertices sampled uniformly at random. To guarantee that all estimates

are within ε from their real value with probability at least 1 − δ, the algorithm from [24, 112]

needs O(log(n/δ)/ε2) samples. The analysis for the derivation of the sample size uses Hoeffding

bounds [105] and the union bound [154]. Geisberger et al. [73] noticed that this can lead to an

overestimation of the betweenness of vertices that are close to the sampled ones and introduced

different unbiased estimators that are experimentally shown to have smaller variance and do not

suffer from this overshooting. Our algorithm is different from these because we sample, each time,

a single random shortest path. This leads to a much smaller sample size and less work done for

each sample, resulting in a much faster way to compute approximations of the betweenness with the

same probabilistic guarantees. Although existing algorithms [24, 73, 112] can be extended to return

a superset of the top-K vertices with highest betweenness, they only offer an additive approximation

guarantee, while our algorithm for the top-K vertices offers a multiplicative factor guarantee, which

is much stricter. We delve more in the comparisons with these algorithms in Sect. 6.4.3 and 6.6.

A number of works explored the use of adaptive sampling, in contrast with the previous algo-

rithms (and ours) which use a fixed sample size. Bader et al. [13] present an adaptive sampling

algorithm which computes good estimations for the betweenness of high-centrality vertices, by keep-

ing track of the partial contribution of each sampled vertex, obtained by performing a single-source

shortest paths computation to all other vertices. Maiya and Berger-Wolf [145] use concepts from

expander graphs to select a connected sample of vertices. They estimate the betweenness from

the sample, which includes the vertices with high centrality. They build the connected sample by

adding the vertex which maximizes the number of connections with vertices not already in the sam-

ple. Modified versions of this algorithm and an extensive experimental evaluation appeared in [135].

The algorithm does not offer any guarantee on the quality of the approximations. Compared to

these adaptive sampling approaches, our methods ensure that the betweenness of all (or top-K)

vertices is well approximated, while using a fixed, predetermined amount of samples. Sarıyüce et al.

[183] present an algorithm that pre-processes the network in multiple ways by removing degree-1
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vertices and identical vertices, and splits it in separate components where the computation of be-

tweenness can be performed independently and then aggregated. They do not present an analysis

of the complexity of the algorithm.

Kranakis et al. [128] present a number of results on the VC-dimension of various range spaces

for graphs (stars, connected sets of vertices, sets of edges), but do not deal with shortest paths.

Abraham et al. [1] use VC-dimension to speed up shortest path computation but their range space

is different from the one we use: their ground set is the set of vertices while ours is defined on

shortest paths.

6.2 Graphs and betweenness centrality

We now formally define the concepts we use in this chapter.

Let G = (V,E) be a graph, where E ⊆ V × V , with n = |V | vertices and m = |E| edges. The

graph G can be directed or undirected. We assume that there are no self-loops from one vertex

to itself and no multiple edges between a pair of vertices. Each edge e ∈ E has a non-negative

weight w(e). Given a pair of distinct vertices (u, v) ∈ V × V , u 6= v, a path puv ⊆ V from u to

v is an ordered sequence of vertices puv = (w1, . . . , w|puv|) such that w1 = u, w|puv| = v and for

each 1 ≤ i < |puv|, (wi, wi+1) ∈ E. The vertices u and v are called the end points of puv and the

vertices in Int(puv) = puv \ {u, v} are the internal vertices of puv. The weight w(puv) of a path

puv = (u = w1, w2, · · · , wp|uv| = v) from u to v is the sum of the weights of the edges composing

the path: w(puv) =
∑|puv|−1
i=1 w((wi, wi+1)). We denote with |puv| the number of vertices composing

the path and call this the size of the path puv. Note that if the weights are not all unitary, it is not

necessarily true that w(puv) = |puv| − 1. A special and degenerate path is the empty path p∅ = ∅,

which by definition has weight w(p∅) =∞, no end points, and Int(p∅) = ∅.

Given two distinct vertices (u, v) ∈ V × V , the shortest path distance duv between u and v is the

weight of a path with minimum weight between u and v among all paths between u and v. If there

is no path between u and v, duv = ∞. We call a path between u and v with weight duv a shortest

path between u and v. There can be multiple shortest paths between u and v and we denote the set

of these paths as Suv and the number of these paths as σuv = |Suv|. If there is no path between u

and v, then Suv = {p∅}2. We denote with SG the union of all the Suv’s, for all pairs (u, v) ∈ V × V
2Note that even if p∅ = ∅, the set {p∅} is not empty. It contains one element.
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of distinct nodes u 6= v:

SG =
⋃

(u,v)∈V×V
u6=v

Suv .

We now define a characteristic quantity of a graph that we will use throughout the paper.

Definition 14. Given a graph G = (V,E), the vertex-diameter VD(G) of G is the size of the shortest

path in G with maximum size:

VD(G) = max {|p| : p ∈ SG} .

The vertex-diameter is the maximum number of vertices among all shortest paths in G. If all

the edge weights are unitary, then VD(G) is equal to diam(G) + 1, where diam(G) is the number of

edges composing the longest shortest path in G.

Given a vertex v, let Tv ⊆ SG be the set of all shortest paths that v is internal to:

Tv = {p ∈ SG : v ∈ Int(p)} .

In this work we are interested in the betweenness centrality of the vertices of a graph.

Definition 15. [9, 67] Given a graph G = (V,E), the betweenness centrality of a vertex v ∈ V is

defined as3

b(v) = 1
n(n− 1)

∑
puw∈SG

1Tv (p)
σuv

.

Figure 6.1 shows an example of betweenness values for the vertices of a (undirected, unweighted)

graph. It is intuitive, by looking at the graph, that vertices b and g should have higher betweenness

than the others, given that they somehow act as bridges between two sides of the network, and

indeed that is the case.

It is easy to see that b(v) ∈ [0, 1]. Brandes [22] presented an algorithm to compute the between-

ness centrality for all v ∈ V in time O(nm) for unweighted graphs and O(nm+n2 logn) for weighted

graphs.

We present many variants of betweenness in Sect. 6.5.
3We use the normalized version of betweenness as we believe it to be more suitable for presenting approximation

results.
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(a) Example graph

Vertex a b c d e f g h
b(v) 0 0.250 0.125 0.036 0.054 0.080 0.268 0

(b) Betweenness values

Figure 6.1: Example of betweenness values

6.3 A range space of shortest paths

We now define a range space of the shortest paths of a graph G = (V,E), and present a strict upper

bound to its VC-dimension. We use the range space and the bound in the analysis of our algorithms

for estimating the betweenness centrality of vertices of G.

The domain of the range space is the set SG of all shortest paths between vertices of G. The set

RG of ranges contains a subset of SG for each vertex v ∈ V , that is the set Tv of shortest paths that

v is internal to:

RG = {Tv : v ∈ V } .

We denote this range space as RG.

Given a graph G let H(G) be the maximum integer d such that there are h = blog2(d− 2)c+ 1

shortest paths {p1, . . . , ph} in SG of size at least d and such that the collection {Int(p1), . . . , Int(ph)}

is an anti-chain.

Lemma 15. VC ((SG,RG)) ≤ blog2(H(G)− 2)c+ 1.

Proof. Let ` > blog2(VD(G)−2)c+1 and assume for the sake of contradiction that VC ((SG,RG)) = `.

From the definition of VC-dimension there is a set Q ⊆ SG of size ` that is shattered by RG. For any

two shortest paths p′, p′′ in Q we must have neither Int(p′) ⊆ Int(p′′) nor Int(p′′) ⊆ Int(p′), otherwise

one of the two paths would appear in all ranges where the other one appears, and so it would be

impossible to shatter Q. Then Q must be such that the collection of the sets of internal vertices

of the paths in Q form an anti-chain. From this and from the definition of H(G) we have that Q

must contain a path p of size |p| ≤ H(G). There are 2`−1 non-empty subsets of Q containing the

path p. Let us label these non-empty subsets of Q containing p as S1, . . . , S2`−1 , where the labelling

is arbitrary. Given that Q is shattered, for each set Si there must be a range Ri in RG such that

Si = Q∩Ri. Since all the Si’s are different from each other, then all the Ri’s must be different from
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each other. Given that p belongs to each Si, then p must also belong to each Ri, that is, there are

2`−1 distinct ranges in RG containing p. But p belongs only to the ranges corresponding to internal

vertices of p, i.e., to vertices in Int(p). This means that the number of ranges in RG that p belongs

to is equal to |p| − 2. But |p| ≤ H(G) by definition of VD(G), so p can belong to at most H(G)− 2

ranges from RG. Given that 2`−1 > H(G)− 2, we reached a contradiction and there cannot be 2`−1

distinct ranges containing p, hence not all the sets Si can be expressed as Q∩Ri for some Ri ∈ RG.

Then Q cannot be shattered and VC ((SG,RG)) ≤ blog2(H(G)− 2)c+ 1.

Computing H(G) is not a viable option, but given that H(G) ≤ VD(G), we have the following

corollary.

Corollary 5. VC ((SG,RG)) ≤ blog2(VD(G)− 2)c+ 1.

Unique shortest paths. In the restricted case when the graph is undirected and every pair of

distinct vertices has either none or a unique shortest path between them, the VC-dimension of

(SG,RG) reduces to a constant. This is a somewhat surprising result with interesting consequences.

From a theoretical point of view, it suggests that there should be other characteristic quantities

of the graph different from the vertex diameter that control the VC-dimension of the range space

of shortest paths, and these quantities are constant on graph with unique shortest paths between

vertices. From a more practical point of view, we will see in Sect. 6.4 that this result has an

impact on the sample size needed to approximate the betweenness centrality of networks where the

unique-shortest-path property is satisfied or even enforced, like road networks [73]. In particular,

the resulting sample size will be completely independent from any characteristic of the network, and

will only be a function of the parameters controlling the desired approximation guarantees.

Lemma 16. Let G = (V,E) be an undirected graph with |Suv| ≤ 1 for all pairs (u, v) ∈ V × V .

Then VC ((SG,RG)) ≤ 3.

Proof. First of all, notice that in this restricted setting, if two different shortest paths p1 and p2

meet at a vertex u, then they either go on together or they separate never to meet again at any

other vertex v 6= u. This is easy to see: if they could separate at u and then meet again at some

v, then there would be two distinct shortest paths between u and v, which is a contradiction of the

hypothesis. Let us denote this fact as F.
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Assume now that VC ((SG,RG)) > 3, then there must be a set Q = {p1, p2, p3, p4} of four shortest

paths that can be shattered by RG. Then there is a vertex w such that Tw ∩Q = Q, i.e., all paths

in Q go through w. Let x be the farthest predecessor of w along p1 that p1 shares with some other

path from Q, and let y be the farthest successor of w along p1 that p1 shares with some other path

from Q. It is easy to see that if either x or y (or both) do not exist, then Q cannot be shattered, as

we would incur in a contradiction of fact F.

Let us then assume that both x and y exist. Let Qx = Tx ∩Q and Qy = Ty ∩Q. Because of fact

F, all paths in Qx must go through the same vertices between x and w and all paths in Qy must

go through the same vertices between w and y. This also means that all paths in Qx ∩Qy must go

through the same vertices between x and y. If Qx ∪Qy 6= Q, let p∗ ∈ Q \ (Qx ∪Qy). Then from the

definition of x and y and from fact F we have that there is no vertex v such that Tv ∩Q = {p1, p
∗},

which implies that Q can not be shattered.

Suppose from now on that Qx ∪ Qy = Q. If Qx ∩ Qy = Q, then all the paths in Q go through

the same vertices between x and y. From this and the definition of x and y we have that there is no

vertex v such that, for example, Tv ∩ Q = {p1, p2}, hence Q cannot be shattered. Suppose instead

that Qx ∩ Qy 6= Q and let S = (Qx ∩ Qy) \ {p1}. If S 6= ∅ then there is at least a path p′ ∈ S

which, from the definition of S and fact F, must go through all the same vertices as p1 between x

and y. Moreover, given that Qx ∩ Qy 6= Q, there must be a path p∗ ∈ Q \ {p1} different from p1

such that p∗ /∈ S. Then, from the definition of x, y, and S, and from the existence of p′, there can

be no vertex v such that Tv ∩Q = {p1, p
∗}, hence Q cannot be shattered. Assume now that S = ∅

and consider the case Qx = {p1, p2, p3}, Qy = {p1, p4} (all other cases follow by symmetry with this

case). Consider the set {p1, p3}. From the definition of x and Qx, and from fact F we have that

there can not be a vertex v between the end point of p1 before x and w such that Tv ∩Q = {p1, p3}.

At the same time, from the definition of y and from fact F, we have that such a v can not be between

w and the end point of p1 after y. This implies that Q can not be shattered.

We showed that in all possible cases we reached a contradiction and Q, which has size 4, can not

be shattered by RG. Hence VC ((SG,RG)) ≤ 3.

It is natural to ask whether the above lemma or a similar result also holds for directed graphs.

Fact F does not hold for directed graphs so the above proof does not extend immediately. In Fig. 6.2

we show a directed graph. For any pair of vertices in the graph, there is at most a unique shortest
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Figure 6.2: Directed graph G = (V,E) with |Suv| ≤ 1 for all pairs (u, v) ∈ V × V and such that it
is possible to shatter a set of four paths.

path connecting them. Consider now the following four directed shortest paths:

• pA = {1, 2, 4, 6, 7, 13, 14, 16, 17, 18, 22, 21}

• pB = {8, 9, 10, 5, 12, 13, 14, 16, 17, 18, 26, 27}

• pC = {25, 24, 26, 18, 19, 15, 14, 7, 6, 5, 4, 3}

• pD = {23, 20, 22, 17, 16, 15, 14, 7, 6, 5, 10, 11}

It is easy to check that the set {pA, pB , pC , pD} is shattered, so the above lemma is not true for

directed graphs. It is an open problem whether it is true for a different constant.

6.3.1 Tightness

The bound presented in Corol. 5 (and therefore Lemma 15) is strict in the sense that for each d ≥ 1 we

can build a graphGd with vertex-diameter VD(Gd) = 2d+1 and such that the range space (SGd ,RGd)

associated to the set of shortest paths of Gd has VC-dimension exactly d = blog2(VD(Gd)− 2)c+ 1.

We now introduce a class G = (Gd)d≥1 of graphs indexed by d. The graphs in G are the ones for

which we can show the tightness of the bound to the VC-dimension of the associated range space.

We call the graph Gd ∈ G the dth concertina graph. Figure 6.3a shows G1, G2, G3, and G4. The

generalization to higher values of d is be straightforward. By construction, VD(Gd) = 2d + 1, so

that blog2(VD(Gd)− 2)c+ 1 = d. The 3(2d−1) vertices of Gd can be partitioned into three classes,

top, bottom, and middle, according to their location in a drawing of the graph similar to those in

Fig. 6.3a. Gd has 2d−1 − 1 top vertices, 2d−1 − 1 bottom vertices, and 2d−1 + 2 middle vertices.

For each top vertex v, let f(v) be the corresponding bottom vertex, i.e., the bottom vertex u whose

neighbors are the same middle vertices that are neighbors of v. Among the middle vertices, the two
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with degree 1 are special and are called the end vertices of Gd and denoted as v` and vr, where the

labels can be arbitrarily assigned. We now build a set Q of d shortest paths from v` to vr and show

that it is shattered by RGd , therefore proving that VC ((SGd , RGd)) ≥ d. This fact, together with

Corol. 5, allows us to conclude that VC (SGd , RGd)) = d.
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(c) Graph G with
VC ((SG,RG)) = 3.

Figure 6.3: Graphs for which the bound is tight.

Lemma 17. VC ((SGdRGd)) = d.

Proof. As we said, the d paths in Q go from v` to vr. From this and the definition of Gd it should be

clear that they must go through all the middle vertices of Gd. Consider now the set S = 2Q \{Q, ∅}.

We now build a map r from the elements of S to the set of top and bottom vertices of Gd. We can

partition S in two sets A and B as follows: for each unordered pair (s′, s′′) of elements in S such

that s′ ∩ s′′ = ∅ and s′ ∪ s′′ = Q we put s′ in A and s′′ in B. It is easy to see that the size of A

(|A| = 2d−1 − 1) equals the number of top vertices of Gd, and analogously for B and the number

of bottom vertices. The bijection r will map the elements of A to the top vertices of Gd and the

elements of B to the bottom vertices. For each s′ ∈ A, let c(s′) be the unique element s′′ of B

such that s′ ∩ s′′ = ∅ and s′ ∪ s′′ = Q (i.e., c(s′) = Q \ s′). Let rA be an arbitrary one-to-one map

from the elements of A to the top vertices of Gd. Consider now the inverse map r−1
A from the top

vertices to the elements of A. We can create another map rB from B to the bottom vertices of Gd

that maps the element c(r−1
A (v)) of B to the bottom vertex f(v) corresponding to v, for each top

vertex v. A path p ∈ Q goes through a top vertex v if and only if p ∈ r−1
A (v). Analogously, p goes

through a bottom vertex u if and only if p ∈ r−1
B (u). It is easy to see that, if we combine rA and rB ,

we obtain a map r from S to the set of top and bottom vertices of Gd. An example of a possible r

for G3 is presented in Fig. 6.3b. We now show that for each s ∈ S, s = Q∩Tr(s). This is easy to see

as r(s) is internal to all paths in s, by definition of r(s) and of the paths in Q. On the other end,

no path from c(s) goes through r(s) because it goes through the corresponding vertex of r(s) (top if
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r(s) is a bottom vertex, bottom otherwise). It is also straightforward to see that, if we let vQ be any

arbitrary middle vertex different from v` or vr, we have Q = Q ∩ TvQ , given that all paths in Q go

through all the middle vertices. Also, given that v` is not internal to any path, we have ∅ = Q∩Tv` .

Then all subsets of Q can be expressed as the intersection between Q and a range from RGd , which

means that Q can be shattered and therefore VC ((SG,RGd)) ≥ d.

From Corol. 5 we know that VC ((SG,RGd)) ≤ d, so it must be VC ((SG,RGd)) = d.

The upper bound presented in Lemma 16 for the case of unique shortest paths is also strict in

the same sense.

Lemma 18. There is a graph G = (V,E) with |Suv| ≤ 1 for all pairs (u, v) ∈ V × V such that the

range space (SG,RG) associated to the shortest paths in G has VC-Dimension exactly 3.

Proof. Consider the graph G in Fig. 6.3c. Let p1 = (a, b, c, e, i, j), p2 = (m, f, e, i, k, l), p3 =

(d, c, e, f, g, h) be three paths. We now show that Q = {p1, p2, p3} can be shattered by RG, which

implies VC ((SG,RG)) ≥ 3. We have ∅ = Q ∩ Ta, {p1} = Q ∩ Tb, {p2} = Q ∩ Tk, {p3} = Q ∩ Tg,

{p1, p2} = Q ∩ Ti, {p1, p3} = Q ∩ Tc, {p2, p3} = Q ∩ Tf , {p1, p2, p3} = Q ∩ Te, Hence all subsets of

Q can be expressed as the intersection between Q and some range in RG which means that Q can

be shattered and VC ((SG,RG)) ≥ 3. Lemma 16 gives us an upper bound VC ((SG,RG)) ≤ 3, so we

can conclude that VC ((SG,RG)) = 3.

Although the example in Fig. 6.3c is a tree, this is not a requirement for either Lemma 16 or

Lemma 18: in a weighted graph with cycles (i.e., not a tree) the weights may be such that there is

a unique shortest path between any pair of connected vertices.

6.4 Algorithms

In this section we present our algorithms to compute a set of approximations for the betweenness

centrality of the (top-K) vertices in a graph through sampling, with probabilistic guarantees on the

quality of the approximations.

6.4.1 Approximation for all the vertices

The intuition behind the algorithm to approximate the betweenness values of all vertices is the

following. Given a graph G = (V,E) with vertex-diameter VD(G) and two parameters ε, δ ∈ (0, 1)



104

we first compute a sample size r using (2.2) with

d = blog2(VD(G)− 2)c+ 1 .

The resulting sample size is

r = c

ε2

(
blog2(VD(G)− 2)c+ 1 + ln 1

δ

)
. (6.1)

This is sufficient to achieve the desired accuracy (expressed through ε) with the desired confidence

(expressed through 1 − δ). The algorithm repeats the following steps r times: 1. it samples a pair

u, v of distinct vertices uniformly at random, 2. it computes the set Suv of all shortest paths between

u and v, 3. it selects a path p from Suv uniformly at random, 4. it increases by 1/r the betweenness

estimation of each vertex in Int(p). Note that if the sampled vertices u and v are not connected,

we can skip steps 3 and 4 because we defined Suv = {p∅}. Denoting with S the set of the sampled

shortest paths, the unbiased estimator b̃(w) for the betweenness b(w) of a vertex w is the sample

average

b̃(w) = 1
r

∑
p∈S

1Int(p)(w) = 1
r

∑
p∈S

1Tw(p) .

There are two crucial steps in this algorithm: the computation of VD(G) and the sampling of a

path uniformly at random from Suv. We first deal with the latter, and then present a linear-time

constant-factor approximation algorithm for VD(G). Algorithm 3 presents the pseudocode of the

algorithm, including the steps to select a random path. The computeAllShortestPaths(u, v) on

line 8 is a call to a modified Dijkstra’s (or BFS) algorithm to compute the set Suv, with the same

modifications as [22]. The getDiameterApprox() procedure computes an approximation for VD(G).

Unique shortest paths. When, for each pair (u, v) of vertices of G, either there is a unique

shortest path from u to v or v is unreachable from u, then one can apply Lemma 16 and obtain a

smaller sample size

r = c

ε2

(
3 + ln 1

δ

)
to approximate the betweenness values of all the vertices. This is an interesting result: the number

of samples needed to compute a good approximation to all vertices is a constant and completely

independent from G. Intuitively, this means that the algorithm is extremely fast on graphs with
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this property. Unique shortest paths are common or even enforced in road networks by slightly

perturbing the edge weights or having a deterministic tie breaking policy [73].

Sampling a shortest path. Our procedure to select a random shortest path from Suv is inspired

by the dependencies accumulation procedure used in Brandes’ exact algorithm [22]. Let u and v be

the vertices sampled by our algorithm (Step 7 of Alg. 3). We assume that u and v are connected

otherwise the only possibility is to select the empty path p∅. Let y be any vertex belonging to at

least one shortest path from u to v. Following Brandes [22], we can compute σuy and Suy while

we compute the set Suv of all the shortest paths from u to v. We can then use this information

to select a shortest path p uniformly at random from Suv as follows. For each vertex w let Pu(w)

be the subset of neighbors of w that are predecessors of w along the shortest paths from u to w.

Let p∗ = {v}. Starting from v, we select one of its predecessors z ∈ Pu(v) using weighted random

sampling: each z ∈ Pu(v) has probability σuz/
∑
w∈Pu(v) σuw of being sampled. We add z to p∗ and

then repeat the procedure for z. That is, we select one of z’s predecessors from Pu(z) using weighted

sampling and add it to p∗, and so on until we reach u. Note that we can update the estimation of

the betweenness of the internal vertices along p∗ (the only ones for which the estimation is updated)

as we compute p∗.

Lemma 19. The path p∗ built according to the above procedure is selected uniformly at random

among the paths in Suv.

Proof. The probability of sampling p∗ = (u, z1, . . . , z|p∗|−2, v) equals to the product of the probabil-

ities of sampling the vertices internal to p∗, hence

Pr(p∗) =
σuz|p∗|−2

σuv

σuz|p∗|−3

σuz|p∗|−2

· · · 1
σuz2

= 1
σuv

where we used [22, Lemma3] which tells us that for w 6= u,

σuw =
∑

j∈Pu(w)

σuj

and the fact that for z1, which is a neighbor of u, σuz1 = 1.
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Algorithm 3: Computes approximations b̃(v) of the betweenness centrality b(v) for all vertices
v ∈ V .
Input : Graph G = (V,E) with |V | = n, ε, δ ∈ (0, 1)
Output: A set of approximations of the betweenness centrality of the vertices in V

1 foreach w ∈ V do
2 b̃(v)← 0
3 end
4 VD(G)←getVertexDiameter(G)
5 r ← (c/ε2)(blog2(VD(G)− 2)c+ ln(1/δ))
6 for i← 1 to r do
7 (u, v)←sampleUniformVertexPair(V )
8 Suv ←computeAllShortestPaths(u, v)
9 if Suv 6= {p∅} then

//Random path sampling and estimation update
10 j ← v
11 s← v
12 t← v
13 while t 6= u do
14 sample z ∈ Ps(t) with probability σuz/σus
15 if z 6= u then
16 b̃(z)← b̃(z) + 1/r
17 s← t
18 t← z

19 end
20 end
21 end
22 end
23 return {(v, b̃(v)), v ∈ V }

Approximating the vertex-diameter. The algorithm presented in the previous section requires

the value of the vertex-diameter VD(G) of the graph G (line 4 of Alg. 3). Computing the exact

value of VD(G) could be done by solving the All Pair Shortest Paths (APSP) problem, and taking

the shortest path with the maximum size. Algorithms for exactly solving APSP problem such as

Johnson’s which runs in O(V 2 log V +V E) or Floyd-Warshall’s (Θ(V 3)), would defeat our purposes:

once we have all the shortest paths for the computation of the diameter, we could as well compute the

betweenness of all the vertices exactly. Given that Thm. 1 (and Thm. 1) only requires an upper bound

to the VC-dimension of the range set, an approximation of the vertex-diameter would be sufficient

for our purposes. Several refined algorithms for approximating the diameter are known [7, 19, 180],

with various running times and quality of approximations. We briefly present a well-known and

simple approximation algorithm that has the right balance of accuracy and speed for our purposes.

Let G = (V,E) be an undirected graph where all the edge weights are equal. It is a well-known
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result that one can obtain a 2-approximation ṼD(G) of the vertex-diameter VD(G) of G in time

O(V + E) in the following way: 1. select a vertex v ∈ V uniformly at random, 2. compute the

shortest paths from v to all other vertices in V , and 3. finally take ṼD(G) to be the sum of the

lengths of the two shortest paths with maximum size (which equals to the two longest shortest

paths) from v to two distinct other nodes u and w. The approximation guarantee follows from the

next lemma.

Lemma 20. VD(G) ≤ ṼD(G) ≤ 2VD(G).

Proof. Let v ∈ V be a vertex that we choose uniformly at random from the set V . Let also

u,w ∈ V be the two vertices such that the sum of the sizes of the shortest paths pvu and pvw is

maximized among all the shortest paths that have v as a source. We have ṼD(G) ≤ 2VD(G) because

|pvu|, |pvw| ≤ VD(G), so |pvu| + |pvw| ≤ 2VD(G). To see that ṼD(G) ≥ VD(G), consider a pair of

vertices x and z such that the length of a shortest path between x and z is equal to VD(G). Let

pxv be a shortest path between x and v and let pvz be a shortest path between v and z. From the

properties of the shortest paths pvu, pvw we have |pvu| + |pvw| ≥ |pvx| + |pvz|. Since the graph is

undirected |ps,t| = |pt,s| for every s, t ∈ V . Therefore:

ṼD(G) = |pvu|+ |pvw| ≥ |pvx|+ |pvz| = |pxv|+ |pvz| ≥ VD(G) .

For the last inequality we used the fact that since VD(G) is the size of the shortest path from x to

z, then every other path (in this case p′xz which is the merge of pxv and pvz) has greater or equal

length from px,z.

In case we have multiple connected components in G, we compute an upper bound to the vertex

diameter of each component separately by running the above algorithm on each component, and

then taking the maximum. The connected components can be computed in O(n+m) by traversing

the graph in a Breadth-First-Search (BFS) fashion starting from a random v. The time complexity

of the approximation algorithm in the case of multiple connected components is again O(n + m)

since the sum of the vertices of individual components is n and the sum of edges is m.

The use of the above 2-approximation in the computation of the sample size from line 6 of Alg. 3

results in at most c/ε2 additional samples than if we used the exact value VD(G). The computation

of ṼD(G) does not affect the running time of our algorithm: for the construction of the first sample
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we can reuse the shortest paths from the sampled vertex v that we used to obtain the approximation.

Specifically, we can sample a new vertex u 6= v and then choose with uniform probability one of the

(already computed) shortest paths between v and u.

If the graph is directed and/or not all edge weights are equal, the computation of a good ap-

proximation to VD(G) becomes more problematic. In particular, notice that there is no relationship

between VD(G) and diam(G) when G is weighted, as the shortest path with maximum size may

not be the shortest path with maximum weight. In these cases, one can use the size (number of

vertices) of the largest Weakly Connected Component (WCC), as a loose upper bound to VD(G).

The WCC’s can again be computed in O(n+m) using BFS. This quantity can be as high as n but

for the computation of the sample size we use its logarithm, mitigating the crudeness of the bound.

In this case our sample size is comparable to that proposed by Brandes and Pich [24]. Nevertheless

the amount of work done per sample by our algorithm is still much smaller (see Sect. 6.4.3 and 6.6

for more details). In practice, it is possible that the nature of the network suggests a much better

upper bound to the vertex-diameter of the graph, resulting in a smaller sample size.

Analysis. Algorithm 3 offers probabilistic guarantees on the quality of all approximations of the

betweenness centrality.

Lemma 21. With probability at least 1 − δ, all the approximations computed by the algorithm are

within ε from their real value:

Pr
(
∃v ∈ V s.t. |b(v)− b̃(v)| > ε

)
< δ .

Proof. For each puv ∈ SG let

πG(puv) = 1
n(n− 1)

1
σuv

.

It is easy to see that πG is a probability distribution and πG(puv) is the probability of sampling the

path puv during an execution of the loop on line 6 in Alg. 3, given the way that the vertices u and

v are selected and Lemma 19.

Consider the range set RG and the probability distribution πG. Let S be the set of paths sampled

during the execution of the algorithm. For r as in (6.1), Thm. 1 tells us that the sample S is a

ε-approximation to (RG, πG) with probability at least 1 − δ. Suppose that this is indeed the case,



109

then from Def. 2 and the definition of RG we have that

∣∣∣∣∣∣πG(Tv)−
1
r

∑
p∈S

1Tv (p)

∣∣∣∣∣∣ =
∣∣πG(Tv)− b̃(v)

∣∣ ≤ ε,∀v ∈ V .

From the definition of πG we have

πG(Tv) = 1
n(n− 1)

∑
puw∈Tv

1
σuw

= b(v),

which concludes the proof.

Time and space complexity. Clearly the runtime of the algorithm is dominated by the compu-

tation of the shortest path at each step, which takes time O(|V | + |M |) if the graph is unweighted

(BFS algorithm) and time O(|E|+ |V | log |V |) otherwise (Dijkstra’s algorithm with Fibonacci heap).

This time must then be multiplied by r as in (6.1) to obtain the final time complexity. The space

requirements are dominated by the amount of memory needed to store the graph, so they are either

O(|V |2) if using an adjacency matrix, or O(|V |+ |E|) if using |V | adjacency lists.

6.4.2 High-quality approximation of the top-K betweenness vertices

Very often in practice one is interested only in identifying the vertices with the highest betweenness

centrality, as they are the “primary actors” in the network. We present here an algorithm to compute

a very high-quality approximation of the set TOPK(K,G) of the top-K betweenness vertices in a

graph G = (V,E). Formally, let v1, . . . , vn be a labelling of the vertices in V such that b(vi) ≥ b(vj)

for 1 ≤ i < j ≤ n. Then TOPK(K,G) is defined as the set of vertices with betweenness at least

b(vK):

TOPK(K,G) = {(v, b(v)), : v ∈ V and b(v) ≥ b(vK)} .

Note that TOPK(K,G) may contain more than K vertices.

Our algorithm works in two phases. Each phase is basically a run of the algorithm for approxi-

mating the betweenness of all vertices. The two phases differ in the way they compute the number

of paths to sample and the additional operations at the end of each phase. In the first phase, we

compute a lower bound `′ to b(vK). In the second phase we use `′ to compute the number of samples

r needed to obtain a relative (`′, ε)-approximation to (RG, πG). We use r samples to approximate



110

the betweenness of all vertices again, and return a collection of vertices that is, with high probability,

a superset of TOPK(K,G).

Let ṼD(G) be an upper bound to the vertex-diameter of G. Given ε, δ ∈ (0, 1), let δ′, δ′′ be two

positive reals such that (1− δ′)(1− δ′′) ≥ (1− δ). Let

r′ = c

ε2

(
blog2(ṼD(G)− 2)c+ 1 + log 1

δ′

)
.

Let b̃′k be the K-th highest estimated betweenness obtained using Algorithm 3 where r = r′, and

let `′ = b̃K − ε, and

r′′ = c′

ε2`′

(
(blog2(ṼD(G)− 2)c+ 1) log 1

`′
+ log 1

δ′′

)
.

We run Algorithm 3 with r = r′′ and let b̃′′K be the so-obtained K-th highest estimated betweenness.

Let `′′ = min{b̃′′(v)/(1 + ε) : v ∈ V s.t. b̃′′(v) ≥ b̃′′K}. We return the collection T̃OPK(K,G) of

vertices v such that b̃′′(v) ∗ (1 + ε)/(1− ε) ≥ `′′:

T̃OPK(K,G) =
{
v ∈ V : b̃′′(v)1 + ε

1− ε ≥ `
′′
}

.

The pseudocode of the algorithm is presented in Algorithm 4.

Algorithm 4: High-quality approximation of the top-K betweenness vertices
Input : a graph G = (V,E) with |V | = n, a positive integer K ≤ n, real values ε, δ ∈ (0, 1)
Output: a superset of TOPK(K,G), with high-quality estimation of the betweenness for the

vertices in the returned set.
1 δ′, δ′′ ← two positive reals such that (1− δ′)(1− δ′′) ≥ (1− δ)
2 ṼD(G)← upper bound to VD(G)

//First phase

3 r′ ← c
ε2

(
blog2(ṼD(G)− 2)c+ 1 + log 1

δ′′

)
4 B′ = {(v, b̃′(v)) : v ∈ V } ← output of Algorithm 3 with r = r′

5 b̃′K ← K-th highest betweenness value from B′, ties broken arbitrarily
6 `′ ← b̃′K − ε
7 r′′ ← c′

ε2`′

(
(blog2(ṼD(G)− 2)c+ 1) log 1

`′ + log 1
δ′′

)
//Second phase

8 B′′ = {(v, b̃′′(v)) : v ∈ V } ← output of Algorithm 3 with r = r′′

9 b̃′′K ← K-th highest betweenness value from B′′, ties broken arbitrarily
10 `′′ ← min{b̃′′(v)/(1 + ε) : v s.t. b̃′′(v) ≥ b̃′′K}
11 return {(v, b̃′′(v)) : v ∈ V s.t. b̃′′(v) 1+ε

1−ε ≥ `
′′}
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Analysis. The following lemma shows the properties of the collection T̃OPK(K,G).

Lemma 22. With probability at least 1− δ,

1. TOPK(K,G) ⊆ T̃OPK(K,G), and

2. for all v ∈ TOPK(K,G) we have |b̃′′(v)− b(v)| ≤ εb(v), and

3. no vertex u ∈ T̃OPK(K,G)\TOPK(K,G) has an estimated betweenness greater than `′(1 + ε).

Proof. We start by proving 1. From Thm. 1 we know that, with probability at least 1−δ′, a sample of

size r′ is a ε-approximation to (RG, πG) and from Thm. 3 we have that with probability at least 1−δ′′

a sample of size r′′ is a relative (`′, ε)-approximation to (RG, πG). Suppose both these events occur,

which happens with probability at least 1− δ. Then it is easy to see that `′ ≤ b(vK), as there must

be at least K vertices with exact betweenness greater or equal to `′. Consider now `′′. Following the

same reasoning as for `′, it should be clear that `′′ ≤ b(vK). The vertices included in T̃OPK(K,G)

are all and only those vertices that may have exact betweenness at least `′′, which implies that all

vertices that have exact betweenness at least b(vK) are included in T̃OPK(K,G). Points 2 and 3 in

the thesis follow from the properties of the relative (`′, ε)-approximation (Def. 3).

The advantage of using our algorithm to approximate the collection of top-K betweenness vertices

consists in the very high-quality approximation of the betweenness values for the returned set of

vertices: they are all within a multiplicative factor ε from their exact values. By reverse-sorting

them according to the approximated betweenness, one can obtain a ranking that is very similar to

the original exact one. Previous algorithms could not achieve such a good ranking as they were only

able to approximate the betweenness values to within an additive error ε. The cost of computing the

high quality approximation for the top-K vertices is the cost of an additional run of our algorithm

to compute good approximations for all the vertices.

6.4.3 Discussion

Jacob et al. [112] and independently Brandes and Pich [24] present a sampling-based algorithm to

approximate the betweenness centrality of all the vertices of the graph. The algorithm (which we

call BP) creates a sample S = {v1, . . . , vr} of r vertices drawn uniformly at random and computes

all the shortest paths between each vi to all other vertices in the graph. Their estimation b̃BP(u) for
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b(u) is

b̃BP(u) = 1
(n− 1)r

∑
vi∈S

∑
w 6=vi
w 6=u

∑
p∈Sviw

1Int(p)(u)
|Sviw|

.

As it was for Algorithm 3, the key ingredient to ensure a correct approximation for the betweenness

centrality is the computation of the sample size r. Inspired by the work of Eppstein and Wang [62],

Brandes and Pich [24] prove that, to obtain good (within ε) estimations for the betweenness of all

vertices with probability at least 1− δ, it must be

r ≥ 1
2ε2

(
lnn+ ln 2 + ln 1

δ

)
.

From this expression it should be clear that this sample size is usually much larger than ours, as in

practice VD(G) � n. For the same reason, this algorithm would not scale well as the network size

increases (see also Sect. 6.6).

Another interesting aspect in which our algorithm and BP differ is the amount of work done per

sample. Our algorithm computes a single set Suv for the sampled pair of vertices (u, v): it performs

a run of Dijkstra’s algorithm (or of BFS) from u, stopping when v is reached. BP instead computes

all the sets Suw from the sampled vertices u to all other vertices, again with a single run of Dijkstra

or BFS, but without the “early-stopping condition” that we have when we reach v. Although in the

worst case the two computations have the same time complexity4, in practice we perform many fewer

operations, as we can expect v not to always be very far from u and therefore we can terminate early.

This fact has a huge impact on the running time. Our algorithm also touches many fewer edges than

BP. The latter can touch all the edges in the graph at every sample, while our computation exhibits

a much higher locality, exploring only a neighborhood of u until v is reached. The results of our

experimental evaluation presented in Sect. 6.6 highlights this and other advantages of our method

over the one from [24, 112]. It would be interesting to explore the the possibility of using bidirectional

A∗ search [121, 171] to further speed up the computation for each sample of our algorithms.

The analysis of Algorithm 1 allow us to obtain a tighter analysis for the algorithm by Brandes

and Pich [24] and Jacob et al. [112].

Lemma 23. Fix r > 0 and let w ∈ V . Let b̃BP(w) be the estimation of the betweenness b(w)

computed by BP using r samples, and let b̃(w) be the estimation computed by Algorithm 3 using r
4It is a well-known open problem whether there is an algorithm to perform a single s, t-shortest path computation

between a pair of vertices with smaller worst-case time complexity than the Single Source Shortest Path computation.
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samples. The estimator b̃BP(w) is uniformly better than the estimator b̃(w). I.e., for any value of

b(w) and r, we have

Var[b̃BP(w)] ≤ Var[b̃(w)] .

Proof. Consider the quantity

Var[b̃(w)]−Var[b̃BP(w)] .

We will show that the above quantity is greater than or equal to 0, proving the thesis. Since

E[b̃(w)] = E[b̃BF(w)] = b(w) and using the definition of variance, we only need to show

E[(b̃(w))2]− E[(b̃BF(w))2] ≥ 0 . (6.2)

Let start from computing E[(b̃BF(w))2]. For every vertex v, we define αv as

αv = 1
n− 1

∑
u∈V
u6=v

∑
p∈Svu

1Int(p)(w)
σvu

.

Note that

b(w) = 1
n

∑
v∈V

α(v) . (6.3)

Consider, for 1 ≤ i ≤ r, the contribution Xi to b̃BP(w) of the paths computed from the ith sampled

vertex. Xi is a random variable that takes value αv with probability 1/n, for all v ∈ V . We have

E[Xi] =
∑
v∈V

1
n
αv = b(w) and E[X2

i ] = 1
n

∑
v∈V

α2
v,∀1 ≤ i ≤ r . (6.4)

Clearly

b̃BP(w) = 1
r

r∑
i=1

Xi .

The variables Xi’s are independent and identically distributed so

E[(b̃BP(w))2] = 1
r2E

( r∑
i=1

Xi

)2
 = 1

r2

r∑
i=1

E[X2
i ] +

r∑
j=i+1

(E[Xi]E[Xj ])


= 1
r

1
n

∑
v∈V

α2
v + r − 1

r
(b(w))2, (6.5)
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where we used (6.4).

We now compute E[(b̃(w))2]. Consider the contribution Yi to b̃(w) of the ith sampled path by

Algorithm 1, for 1 ≤ i ≤ r. Yi is a random variable that takes value 1Int(p)(w) with probability π(p),

for every shortest path p ∈ SG. We have

E[Yi] = E[Y 2
i ] = b(w),∀1 ≤ i ≤ r . (6.6)

By definition,

b̃(w) = 1
r

r∑
i=1

Yi .

The random variables Yi are independent and identically distributed so

E[(b̃(w))2] = 1
r2E

( r∑
i=1

Yi

)2
 = 1

r2

r∑
i=1

E[Y 2
i ] +

r∑
j=i+1

E[Yi]E[Yj ]


= 1
r

b(w) + r − 1
r

(b(w))2, (6.7)

where we used (6.6).

We can now rewrite the left side of (6.2) using (6.3), (6.5), and (6.7):

E[(b̃(w))2]− E[(b̃BF(w))2] = 1
r

b(w) + r − 1
r

(b(w))2 − 1
r

1
n

∑
v∈V

α2
v −

r − 1
r

(b(w))2

= 1
r

1
n

∑
v∈V

(αv − α2
v) .

Since αv ∈ [0, 1], we have αv − α2
v ≥ 0 for all v, and our proof is complete.

The following lemma is an easy consequence of the above.

Lemma 24. BP has lower expected Mean Squared Error than Algorithm 1:

E[MSEBP] ≤ E[MSE] .

Proof. We have

E[MSEBP] = E

[
1
n

∑
v∈V

(
b̃BP(w)− b(v)

)2] = 1
n

∑
v∈V

E
[(

b̃BP(w)− b(v)
)2] = 1

n

∑
v∈V

Var[b̃BP(w)],
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where we used the linearity of expectation and the fact that the estimator b̃BP(w) is unbiased for

b(w) (E[b̃BP(w)] = b(w)]). Analogously for Algorithm 1:

E[MSE] = 1
n

∑
v∈V

Var[b̃(w)] .

Hence

E[MSE]− E[MSEBP] = 1
n

∑
v∈V

(
Var[b̃(w)]−Var[b̃BP(w)]

)
,

and from Lemma 23 we have that each addend of the sum is non-negative and so is the above

expression, concluding our proof.

The estimator b̃BP(w) has lower variance and MSE than b̃(w), which means that it can give

better estimations of the betweenness values in practice using the same number of samples. Before

always opting for BP (or for the algorithm by Geisberger et al. [73], whose estimators have even

lower variance than those of BP) with a number of samples equal to the one in (6.1), one should

nevertheless take into account two facts. Firstly, we do not currently have a proof that BP (or

the algorithm from [73]) can compute, with a number of samples as in (6.1), a good (within ±ε)

approximation of the betweenness of all vertices with probability at least 1− δ. We conjecture this

fact could be proven using pseudodimension [10, Chap. 11]. Secondly we already argued that per

sample, the computation of b̃BP(w) requires more time than the one for b̃A1(w). The difference

would be even larger if Algorithm 3 can be adapted to use bidirectional search [121, 171].

We can conclude this discussion stating that Algorithm 3, BP, and the algorithm by Geisberger

et al. [73] share the same design principles, but choose different trade-offs between accuracy and

speed.

6.5 Variants of betweenness centrality

In this section we discuss how to extends our results to some variants of betweenness centrality.
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6.5.1 k-bounded-distance betweenness

A “local” variant of betweenness, called k-bounded-distance betweenness5 only considers the contri-

bution of shortest paths of size up to k + 1 [20, 23]. For k > 1 and any pair of distinct vertices

u, v ∈ V , u 6= V , let S(k)
uv ⊆ Suv be the set of shortest paths from u to v of size at most k + 1, with

σ
(k)
uv = |S(k)

uv |, and let S(k)
G be the union of all the S(k)

uv . Let T (k)
v ⊆ Tv be the set of all shortest paths

of size up to k that v is internal to, for each v ∈ V .

Definition 16. [20, 23] Given a graph G = (V,E) and an integer k > 1, the k-bounded-distance

betweenness centrality of a vertex v ∈ V is defined as

bb(k)(v) = 1
n(n− 1)

∑
puw∈S(k)

G

1T (k)
v

(p)

σ
(k)
uw

.

For the case of k-bounded-distance betweenness, if we let R(k)
G = {T (k)

v : v ∈ V }, it is easy to

bound VC
(

(S(k)
G ,R(k)

G )
)
following the same reasoning as in Lemma 15.

Lemma 25. VC
(

(S(k)
G ,R(k)

G )
)
≤ blog2(k − 1)c+ 1.

Given this result, the sample size on line 6 of Alg. 3 can be reduced to

r = c

ε2

(
blog2(k − 1)c+ 1 + ln 1

δ

)

and the computation of the shortest paths on line 8 can be stopped after we reached the vertices

that are k “hops” far from u.

6.5.2 α-weighted betweenness

Opsahl et al. [163] defined a parametric variant of betweenness centrality for weighted networks that

can be seen as a generalization of the classical definition. The goal behind this new definition is to

give the analyst the possibility of “penalizing” shortest paths with many vertices, given the intuition

that there is a cost to be paid to have a message go through a vertex. The core of the new definition

is a different weight function of a path puv = (w1 = u,w2, . . . , w|puv| = v) between two vertices
5Bounded-distance betweenness is also known as k-betweenness. We prefer the former denomination to avoid

confusion with k-path betweenness from [127].
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(u, v), parametrized by a real parameter α ≥ 0:

dα,uv =
|puv|−1∑
i=1

(w((wi, wi+1)))α . (6.8)

Clearly for α = 0, the weights are considered all equal to 1, and for α = 1, the definition falls back

to duv. For 0 < α < 1, paths with fewer vertices and higher weights are favored over longer paths

with lighter edges[163]. The definition of shortest path distance, shortest path, and of betweenness

centrality follow as before from (6.8). Dijkstra’s shortest paths algorithm can be adapted to compute

shortest paths according to the distance function in (6.8). To avoid confusion, we call the betweenness

centrality computed using the shortest paths according to the distance function in (6.8), the α-

weighted betweenness and denote it with bα(w).

For α-weighted betweenness we have that the VC-dimension of the range space defined on the

shortest paths according to the distance from (6.8) is still bounded by blog2(VD(G)−2)c+1. Clearly,

the vertex-diameter VD(G) is now defined as the maximum number of vertices in a shortest path

according to (6.8).

No special arrangements are needed to obtain an approximation of α-weighted betweenness for

all vertices. The sample size is the same as in (6.1).

6.5.3 k-path betweenness

Another interesting variant of betweenness centrality does not consider shortest paths, but rather

simple random walks of size up to k+ 1, expressing the intuition that information in a network does

not necessarily spread across shortest paths but has a high probability of “fading out” after having

touched at most a fixed number of vertices.

Definition 17 ([127]). Given a graph G = (V,E) and a positive integer k, the k-path centrality

pb(k)(v) of v ∈ V is defined as the average6, over all possible source vertices s, of the probability

that a simple random walk originating from s and extinguishing after having touched (at most) k+1

vertices (s included) goes through v.

We can define another range space (Sp,k
G ,Rp,k

G ) if we are interested in k-path betweenness. The

domain Sp,k
G of the range space now is the set of all simple random walks starting from any vertex of

6We take the average, rather than the sum, as defined in the original work by Kourtellis et al. [127], to normalize
the value so that it belongs to the interval [0, 1]. This has no consequences on the results.
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and of size up to k+ 1. For each vertex v ∈ V , the range Rv is the subset of Sp,k
G containing all and

only the random walks from Sp,k
G that have v as internal vertex. It is easy to see that VC

(
Sp,k
G ,Rp,k

G )
)

is at most blog2(k − 1) + 1 following the same reasoning as in Lemma 15 and Lemma 25.

For the case of k-path betweenness, the algorithm is slightly different: for

r = c

ε2

(
blog2(k − 1)c+ 1 + ln 1

δ

)

iterations, rather than sampling a pair of vertices (uv), computing Suv, and then sampling a shortest

path between them, we first sample a single vertex and an integer ` uniformly at random from

[1, k + 1]. We then sample a simple random walk touching ` vertices, while updating the estimated

betweenness of each touched vertex by adding 1/r to its estimation. The method to sample a simple

random walk is described in [127].

Kourtellis et al. [127] show that this algorithm can estimate, with probability at least 1− 1/n2,

all the k-path betweenness values to within an additive error n−1/2+α/(n − 1) using 2n1−2αk2 lnn

samples, for α ∈ [−1/2, 1/2]. We can obtain the same guarantees with a much lower number r of

samples, precisely

r = 2n1−2α
(

lnn+ blog2(k − 1)c+ 1
2

)
.

In conclusion, we presented a tighter analysis of the algorithm by Kourtellis et al. [127].

6.5.4 Edge betweenness

Until now we focused on computing the betweenness centrality of vertices. It is also possible to

define a betweenness centrality index for edges of a graph G = (V,E) [9, 23]. Edge betweenness

is useful, for example, to develop heuristics for community detection [160]. Given e ∈ E, the edge

betweenness eb(e) of e is defined as the fraction of shortest paths that contain e, meaning that if

e = (u, v), then a path p contains e if u and v appear consecutively in p. Formally,

eb(e) = 1
n(n− 1)

∑
puv∈SG

1puv (e)
σuv

,∀e ∈ E .

We can then define a range space (SG, ERG) that contains |E| ranges Re, one for each e ∈ E,

where Re is the set of shortest paths containing the edge e. By following the same reasoning as

Lemma 15 we have that VC ((SG, ERG)) ≤ b(log2(VD(G)− 1)c+ 1. Using this result we can adapt
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the sample sizes for Alg. 3 and 4 to compute good approximations of betweenness for the (top-k)

edges.

TimeBP
TimeVC

Graph Properties diam-2approx
Graph |V | |E| VD(G) min max

oregon1-010331 10,670 22,002 9 4.39 4.75
oregon1-010526 11,174 23,409 10 4.26 4.73

ca-HepPh 12,008 237,010 13 3.06 3.33
ca-AstroPh 18,772 396,160 14 3.26 3.76
ca-CondMat 23,133 186,936 15 3.75 4.08
email-Enron 36,692 421,578 12 3.60 4.16

(a) Undirected graphs
TimeBP
TimeVC

Graph Properties diam-exact diam-UB
Graph |V | |E| VD(G) min max min max

wiki-Vote 7,115 103,689 7 3.35 3.69 1.05 1.27
p2p-Gnutella25 22,687 54,705 11 5.45 5.78 1.94 2.09

cit-HepTh 27,770 352,807 14 3.58 3.83 1.39 1.61
cit-HepPh 34,546 421,578 12 4.91 5.01 1.60 1.71

p2p-Gnutella30 36,682 88,328 10 5.02 5.46 2.08 2.22
soc-Epinions1 75,879 508,837 13 4.20 4.25 1.35 1.38

(b) Directed graphs

Figure 6.4: Graph properties and running time ratios.

6.6 Experimental evaluation

We conducted an experimental evaluation of our algorithms, with two major driving goals in mind:

study the behavior of the algorithms presented in this paper and compare it with that of other

related algorithms [22, 24, 73, 112], in terms of accuracy of the estimation, execution time, work

performed, and scalability as function of the network size.

Implementation and environment. We implemented our algorithms, the one presented in [24,

112] and the linear scaling version from [73] in C, by extending the implementation of the exact

algorithm [22] contained in igraph [51]7. The implementations are similarly engineered, given that
7The implementations are available at http://cs.brown.edu/~matteo/centrsampl.tar.bz2.

http://cs.brown.edu/~matteo/centrsampl.tar.bz2
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they are based on the same subroutines for the computation of the shortest path (Dijkstra’s algorithm

for weighted graphs, BFS for unweighted ones), and they received similar amounts of optimization.

We exposed our implementations through Python 3.3.1, which was used for running the simulations.

We run the experiments on a quad-core AMD Phenom™II X4 955 Processor with 16GB of RAM,

running Debian wheezy with a Linux kernel version 3.2.0.

Datasets. In our evaluation we used a number of graphs from the Stanford Large Network Dataset

Collection8. These are all real world datasets including online social networks, communication

(email) networks, scientific citation and academic collaboration networks, road networks, Amazon

frequent co-purchased product networks, and more. Basic information about the graphs we used

are reported in the two leftmost columns of Figs. 6.4b and 6.4a. We refer the reader to the SLNDC

website for additional details about each dataset. To evaluate scalability we also created a number

of artificial graphs of different sizes (1,000 to 100,000 vertices) using the Barabási-Albert model [14]

as implemented by igraph [51].

Diameter approximation. As we discussed in the previous sections the number of samples that

the proposed algorithm requires depends on the vertex-diameter of the graph. For the computation

of the vertex-diameter in case of undirected graphs we used the 2-approximation algorithm that we

briefly described in Sect. 6.4. We denote this as “diam-2-approx” when reporting results in this

section. For directed graphs, we computed the number of samples using both the exact value of the

vertex-diameter (indicated as diam-exact) as well as the trivial upper bound |V | − 2 (indicated as

diam-UB).

6.6.1 Accuracy

Our theoretical results from Sect. 6.4 guarantee that, with probability at least 1− δ, all estimations

of the betweenness values for all vertices in the graph are within ε for their real value. We run

Algorithm 3 five times for each graph and each value of ε in {0.01, 0.015, 0.02, 0.04, 0.06, 0.08, 0.1}.

The parameter δ was fixed to 0.1 and we used c = 0.5 in (2.2) to compute the sample size, as

suggested by Löffler and Phillips [142]. As far as the confidence is concerned, we report that in

all the hundreds of runs we performed, the guarantee on the quality of approximation was always
8http://snap.stanford.edu/data/index.html

http://snap.stanford.edu/data/index.html
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satisfied, not just with probability 1−δ (= 0.9). We evaluated how good the estimated values are by

computing the average estimation error (
∑
v∈V |b(v)− b̃(v)|)/|V | across five runs of our algorithm

and taking the average and the standard deviation of this measure, for different values of ε. We

also compute the maximum error |b(v) − b̃(v)| overall. The results are reported in Fig. 6.5a for

the directed graph p2p-Gnutella30, in Fig. 6.5c for the directed graph ca-HepPh, in Fig. 6.5b for

the undirected graph soc-Epinions1, and in Fig. 6.5d for the undirected graph email-Enron. It is

evident that the maximum error is an error of magnitude smaller than the guaranteed value of ε

and that the average error is almost two orders of magnitude smaller than the guarantees, and

the Avg+Stddev points show that the estimation are quite concentrated around the average. We

can conclude that in practice the algorithm performs even better than guaranteed, achieving higher

accuracy and confidence than what the theoretical analysis indicates. This is due to a number of

factors, like the fact that we use an upper bound to the VC-dimension of the range set.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
10

−5

10
−4

10
−3

10
−2

epsilon

A
b

s
o

lu
te

 e
s

ti
m

a
ti

o
n

 e
rr

o
r

p2p−Gnutella30−d, |V|=36,682, |E|=88,328, δ=0.1, runs=5

 

 

Avg (diam−UB)

Avg+Stddev (diam−UB)

Max (diam−UB)

Avg (diam−exact)

Avg+Stddev (diam−exact)

Max (diam−exact)

(a) p2p-Gnutella30 (directed)

0 0.01(96513) 0.015(42895) 0.02(24129) 0.04(6033) 0.06(2681) 0.08(1509) 0.1(966) 0.15

10
−4

10
−3

10
−2

epsilon (sample size)

A
b

s
o

lu
te

 e
s

ti
m

a
ti

o
n

 e
rr

o
r 

soc−Epinions1,|V|=75,879,|E|=508,837,δ=0.1,runs=5

 

 

Avg (diam−exact)

Avg+Stddev (diam−exact)

Max (diam−exact)

Avg (diam−UB)

Avg+Stddev (diam−UB)

Max (diam−UB)

(b) soc-Epinions1 (directed)

0 0.01(36513) 0.015(16228) 0.02(9129) 0.04(2283) 0.06(1015) 0.08(571) 0.1(366) 0.15
10

−4

10
−3

10
−2

epsilon (sample size)

A
b

s
o

lu
te

 e
s

ti
m

a
ti

o
n

 e
rr

o
r

ca−HepPh,|V|=12,008,|E|=237,010,δ=0.1,runs=5

 

 

Avg (diam−2approx)

Avg+Stddev (diam−2approx)

Max (diam−2approx)

(c) ca-HepPh (directed)

0 0.01 0.020.02 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.110.110.03

10
−4

10
−3

10
−2

10
−1

epsilon

A
b

s
o

lu
te

 e
s

ti
m

a
ti

o
n

 e
rr

o
r

email−Enron−u,|V|=36,692,|E|=367,662,δ=0.1,runs= 5

 

 

Avg (diam−2approx)

Avg+Stddev (diam−2approx)

Max (diam−2approx)

(d) email-Enron (undirected)

Figure 6.5: Betweenness estimation error |b̃(v)−b(v)| evaluation for directed and undirected graphs
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Figure 6.6: Running time (seconds) comparison between VC, BP, and the exact algorithm.

6.6.2 Runtime

We compared the running time of Algorithm 3 (denoted in the following as VC to that of the

algorithm from [24, 73, 112] (denoted as BP), and to that of the exact algorithm [22]. As VC and BP

give the same guarantees on the accuracy and confidence of the computed estimations, it makes sense

to compare their running times to evaluate which is faster in achieving the goal. The performances

of the algorithm proposed in [73] takes the same time as BP, because it follows the same sampling

approach and only differs in the definiton of the estimator for the betweenness, so we do not report

those. The algorithms VC and BP take parameters ε and δ and compute the sample size accordingly.

We run each experiments five times for each value of ε, and measured the average running time across

the runs. The results are presented in Figs. 6.4 and 6.6. In Fig. 6.4a we report the minimum and the

maximum ratio of the running time of BP over VC, taken over the ratios obtained by running the

algorithms with the different values of ε. As it can be seen from this table our algorithm performs

significantly faster, more than 300%. Similar results are reported for directed graphs in Fig. 6.4b.
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The diam-UB and the diam-exact values can be seen as the two extremes for the performance of

Algorithm 3 in terms of runtime. In the case of the diam-exact we have as few samples as possible

(for VC) since we use the exact value of the vertex-diameter, whereas in the case of diam-UB we

have as many samples as possibles because we use the worst case estimation for the vertex-diameter

of the graph. From Fig. 6.4a we can see that the value for the vertex-diameter that we consider in

the case of diam-UB (|V | − 2) is many orders of magnitudes greater than the actual value, which

translates in a significant increase of the number of samples. But even in the case of this crude

vertex-diameter approximation (diam-UB), the VC algorithm performs uniformly faster than BP. In

the case where the exact value of the diameter was used, we can see that our algorithm computes

an estimation of the betweenness that satisfies the desired accuracy and confidence guarantees 3 to

5 times faster than BP. In Fig. 6.6a we study the directed graph p2p-Gnutella30 and we present

the measurements of the average running time of the algorithms for different values of ε, using the

exact algorithm from [22] as baseline. The VC algorithm requires significantly less time than the

BP algorithm. The figure also shows that there are values of ε for which BP takes more time than

the exact algorithm, because the resulting sample size is larger than the graph size. Given that

VC uses fewer samples and does fewer operations per sample, it can be used with lower ε than BP,

while still saving time compared to the exact computation. Figure 6.6d shows the average running

time of the algorithms for the undirected graph email-Enron. The behavior is similar to that for the

undirected case. Algorithm 3 is faster than BP for two reasons, both originating from from our use

of results from the VC-dimension theory: 1) we use a significantly smaller amount of samples and

2) VC performs the same amount of computations per sample as BP only in the worst case. Indeed

our algorithm needs only to find the shortest path between a sampled pair of vertices, whereas the

algorithms from [24, 73] need to compute the shortest paths between a sampled source and all the

other vertices. In our experimental evaluation we found out that the running time of the algorithms

is directly proportional to the number of edges touched during the shortest path computation. The

use of bidirectional A* search [121, 171] can help in lowering the number of touched edges for VC

and therefore the runtime of our algorithm (BP would not benefit from this improvement). This is

a possible direction for future research.
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6.6.3 Scalability

In Sect. 6.4.3 we argued about the reasons why Algorithm 3 is more scalable than BP, while still

offering the same approximation guarantees. To evaluate our argument in practice, we created a

number of graphs of increasing size (1,000 to 100,000 vertices) using the Barabási-Albert [14] and

run the algorithms on them, measuring their running time. We report the results in Fig. 6.7. The

most-scalable algorithm would be completely independent from the size (number of vertices) of the

graph, corresponding to a flat (horizontal) line in the plot. Therefore, the less steep the line, the

more independent from the network size would be the corresponding algorithm. From the figure, we

can appreciate that this is the case for VC, which is much more scalable and independent from the

size of the sample than BP. This is very important, as today’s networks are not only huge, but they

also grow rapidly, and algorithms to mine them must scale well with graph size.
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Figure 6.7: Scalability on random Barabási-Albert [14] graphs.

6.7 Conclusions

In this chapter we presented two random-sampling-based algorithms for accurately and efficiently

estimate the betweenness centrality of the (top-K) vertices in a graph, with high probability. Our

algorithms are based on a novel application of VC-dimension theory, and therefore take a different

approach than previous ones achieving the same guarantees [24, 73, 112]. The number of samples

needed to approximate the betweenness with the desired accuracy and confidence does not depend

on the number of vertices in the graph, but rather on a characteristic quantity of the network

that we call vertex-diameter. In some cases, the sample size is completely independent from any

property of the graph. Our methods can be applied to many variants of betweenness, including edge
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betweenness. Our algorithms perform much less work than previously presented methods. As a

consequence, they are much faster and scalable, as verified in the extensive experimental evaluation

using many real and artificial graphs.



Chapter 7

Estimating the selectivity of SQL

queries

“Man hört nur die Fragen, auf welche man imstande ist, ein Antwort zu geben.”1

Friedrich Nietzsche, Die fröhliche Wissenschaft (The gay science), Book III, Aph. 196.

In this chapter we examine how it is possible to use VC-dimension to compute a good sample of

a database that can be used for estimating the selectivity of SQL queries.

As advances in technology allow for the collection and storage of vast databases, there is a

growing need for advanced machine learning techniques for speeding up the execution of queries on

such large datasets. In this chapter we focus on the fundamental task of estimating the selectivity,

or output size, of a database query, which is a crucial step in a number of query processing tasks

such as execution plan optimization and resource allocation in parallel and distributed databases.

The task of efficiently obtaining such accurate estimates has been extensively studied in previous

work with solutions ranging from storage of pre-computed statistics on the distribution of values in

the tables, to online sampling of the databases, and to combinations of the two approaches [70, 71,

79, 89, 90, 107, 108, 129, 138, 139, 172]. Histograms, simple yet powerful statistics of the data in the

tables, are the most commonly used solution in practice, thanks to their computational and space

efficiency. However, there is an inherent limitation to the accuracy of this approach when estimating
This chapter is an extended version of a work that originally appeared in the proceedings of ECML PKDD

2011 [178].
1We only hear the questions to which we are in a position to find an answer.
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the selectivity of queries that involve either multiple tables/columns or correlated data. Running the

query on freshly sampled data gives more accurate estimates at the cost of delaying the execution

of the query while collecting random samples from a disk or other large storage medium and then

performing the analysis itself. This approach is therefore usually more expensive than a histogram

lookup. Our goal is to exploit both the computational efficiency of using pre-collected data and the

provable accuracy of estimates obtained by running a query on a properly sized random sample of

the database.

We apply VC-dimension to develop and analyze a novel technique to generate accurate estimates

of query selectivity. A major theoretical contribution of this work, which is of independent interest,

is an explicit bound to the VC-dimension of various classes of queries, viewed as indicator functions

on the Cartesian product of the database tables. In particular, we show an upper bound to the

VC-dimension of a class of queries that is a function of the maximum number of Boolean, select and

join operations in any query in the class, but it is not a function of the number of different queries in

the class. By adapting a fundamental result from the VC-dimension theory to the database setting,

we develop a method that for any family of queries, defined by its VC-dimension, builds a concise

sample of the database, such that with high probability, the execution of any query in the class

on the sample provides an accurate estimate for the selectivity of the query on the original large

database. The error probability holds simultaneously for the selectivity estimate of all queries in the

collection, thus the same sample can be used to evaluate the selectivity of multiple queries, and the

sample needs to be refreshed only following major changes in the database. The size of the sample

does not depend on the size (number of tuples) in the database, just on the complexity of the class

of queries we plan to run, measured by its VC-dimension. Both the analysis and the experimental

results show that accurate selectivity estimates can be obtained using a sample of a surprisingly

small size (see Table 7.2 for concrete values), which can then reside in main memory, with the net

result of a significant speedup in the execution of queries on the sample.

A technical difficulty in applying the VC-dimension results to the database setting is that they

assume the availability of a uniform sample of the Cartesian product of all the tables, while in

practice it is more efficient to store a sample of each table separately and run the queries on the

Cartesian product of the samples, which has a different distribution than a sample of the Cartesian

product of the tables. We develop an efficient procedure for constructing a sample that circumvents

this problem (see Sect. 7.4).
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We present extensive experimental results that validate our theoretical analysis and demonstrate

the advantage of our technique when compared to complex selectivity estimation techniques used

in PostgreSQL and the Microsoft SQL Server. The main advantage of our method is that it gives

provably accurate predictions for the selectivities of all queries with up to a given complexity (VC-

dimension) specified by the user before creating the sample, while techniques like multidimensional

histograms or join synopses are accurate only for the queries for which they are built.

Note that we are only concerned with estimating the selectivity of a query, not with approxi-

mating the query answer using a sample of the database. Das [52] presents a survey of the possible

solutions to this latter task.

Outline. The rest of the chapter is organized as follows. We review the relevant previous work

in Sect. 7.1. In Sect. 7.2 we give the necessary definition and formulate the problem of selectivity

estimation. Our main analytical contribution, a bound on the VC dimension of class of queries is

presented in Sect. 7.3. The application of these results for selectivity estimation is given in Sect. 7.4.

Experiments are presented in Sect. 7.5.

7.1 Related work

Methods to estimate the selectivity (or cardinality of the output) of queries have been extensively

studied in the database literature primarily due to the importance of this task to query plan optimiza-

tion and resource allocation. A variety of approaches have been explored, ranging from the use of

sampling, both online and offline, to the pre-computation of different statistics such as histograms, to

the application of methods from machine learning [41, 101], data mining [86], optimization [37, 148],

and probabilistic modeling [77, 174].

The use of sampling for selectivity estimation has been studied mainly in the context of online

sampling [138, 139], where a sample is obtained, one tuple at a time, after the arrival of a query

and it used only to evaluate the selectivity of that query and then discarded. Sampling at random

from a large database residing on disk is an expensive operation [26, 74, 162], and in some cases

sampling for an accurate cardinality estimate is not significantly faster than full execution of the

query [91, 92].

A variety of sampling and statistical analysis techniques has been tested to improve the efficiency
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of the sampling procedures and in particular to identify early stopping conditions. These include

sequential sampling analysis [89, 108], keeping additional statistics to improve the estimation [90],

labelling the tuples and using label-dependent estimation procedures [70], or applying the cumulative

distribution function inversion procedure [204]. Some works also looked at non-uniform sampling [12,

63] and stratified sampling [37, 119]. Despite all these relevant contributions, online sampling is still

considered too expensive for most applications. An off-line sampling approach was explored by Ngu

et al. [161], who used systematic sampling (requiring the tuples in a table to be sorted according

to one of the attributes) with a sample size dependent on the number of tuples in the table. Their

work does not give any explicit guarantee on the accuracy of the predictions. Chaudhuri et al. [37]

present an approach which uses optimization techniques to identify suitable strata before sampling.

The obtained sample is such that the mean square error in estimating the selectivity of queries

belonging to a given workload is minimized, but there is no quality guarantee on the maximum

error. Haas [87] developed Hoeffding inequalities to bound the probability that the selectivity of a

query estimated from a sample deviates more than a given amount from its expectation. However,

to estimate the selectivity for multiple queries and obtain a given level accuracy for all of them,

simultaneous statistical inference techniques like the union bound should be used, which are known

to be overly conservative when the number of queries is large [153]. In contrast, our result holds

simultaneously for all queries within a given complexity (VC-dimension).

A technical problem arises when combining join operations and sampling. As pointed out by

Chaudhuri et al. [36], the Cartesian product of uniform samples of a number of tables is different

from a uniform sample of the Cartesian product of those tables. Furthermore, given a size s, it is

impossible to a priori determine two sample sizes s1 and s2 such that uniform samples of these sizes

from the two tables will give, when joined together along a common column, a sample of the join

table of size s. In Sect. 7.4 we explain why only the first issue is of concern for us and how we

circumvent it.

In practice most database systems use pre-computed statistics to predict query selectivity [71, 79,

107, 117, 129], with histograms being the most commonly used representation. The construction,

maintenance, and use of histograms were thoroughly examined in the literature [111, 113, 149,

173], with both theoretical and experimental results. In particular Chaudhuri et al. [35] rigorously

evaluated the size of the sample needed for building a histogram providing good estimates for the

selectivities of a large group of (select only, in their case) queries. Kaushik et al. [122] extensively
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compared histograms and sampling from a space complexity point of view, although their sample-

based estimator did not offer a uniform probabilistic guarantee over a set of queries and they only

consider the case of foreign-key equijoins. We address both these points in our work. Although very

efficient in terms of storage needs and query time, the quality of estimates through histograms is

inherently limited for complex queries because of two major drawbacks in the use of histograms:

intra-bucket uniformity assumption (i.e., assuming a uniform distribution for the frequencies of

values in the same bucket) and inter-column independence assumption (i.e., assuming no correlation

between the values in different columns of the same or of different tables). Different authors suggested

solutions to improve the estimation of selectivity without making the above assumptions [27, 56, 172,

198, 200]. Among these solutions, the use of multidimensional histograms [28, 172, 188, 198] seems

the most practical. Nevertheless, these techniques are not widespread due to the extra memory and

computational costs in their implementation.

Efficient and practical techniques for drawing random samples from a database and for updat-

ing the sample when the underlying tables evolve have been extensively analyzed in the database

literature [26, 74, 75, 88, 114].

In Sect. 2.1 we mentioned some uses of VC-dimension in the database literature. To the best of

our knowledge, our work is the first to provide explicit bounds on the VC-dimension of SQL queries

and to apply the results to query selectivity estimation.

7.2 Database queries and selectivity

We outline here some basic definitions about databases, queries, and selectivity. We refer the

reader to complete textbooks for additional information [72]. We consider a database D of k tables

T1, . . . , Tk. A table is a two-dimensional representation of data. Its rows are called tuples and it can

have multiple columns. We denote a column C of a table T as T .C and, for a tuple t ∈ T , the value

of t in the column C as t.C. We denote the domain of the values that can appear in a column T .C

as D(T .C). Table 7.1 shows two examples of database tables, Customers and CarColors. Our focus

is on queries that combine select and join operations, defined as follows. We do not take projection

operations into consideration because their selectivities have no impact on query optimization.

Definition 18. Given a table T with columns T .C1, . . . , T .C`, a selection query q on T is an

operation which returns a subset S of the tuples of T such that a tuple t of T belongs to S if and
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Table 7.1: Example of database tables.

Customers
Name Street ZipCode PhoneNumber

John Doe Pratt Av. 02906 401-1234567
Jim Clark Morris Rd. 02906 502-8902134

Greta Garbo Pitman St. 05902 853-9876543

CarColor
Name Color

John Doe Blue
Jane Doe Red

Greta Garbo Red

only if the values in t satisfy a condition C (the selection predicate) expressed by q. In full generality,

C is the Boolean combination of clauses of the form T .Ci op ai, where T .Ci is a column of T , “op”

is one of {<,>,≥,≤,=, 6=} and ai is an element of the domain of T .Ci.

As an example, the selection query

SELECT ∗ FROM Customers, WHERE Customers.ZipCode = 02906

would return the first and second row of Table 7.1.

We assume that all D(T .Ci) are such that it is possible to build total order relations on them.

This assumptions does not exclude categorical domains from our discussion, because the only mean-

ingful values for “op” for such domains are “=” and “ 6=”, so we can just assume an arbitrarily but

fixed order for the categories in the domain.

Definition 19. Given two tables T1 and T2, a join query q on a common column C (i.e., a column

present both in T1 and T2) is an operation which returns a subset of the Cartesian product of the

tuples in T1 and T2. The returned subset is defined as the set

{(t1, t2) : t1 ∈ T1, t2 ∈ T2, s.t. t1.C op t2.C}

where “op” is one of {<,>,≥,≤,=, 6=}.

An example of a join query is the following:

SELECT ∗ FROM Customers, CarColors WHERE Customers.Name = CarColors.Name
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This query would return the following tuples:

(John Doe,Pratt Av., 02906, 401-1234567,Blue),

(Greta Garbo,Pitman St., 05902, 853-9876543,Red)

The column Name is reported only once for clarity.

Our definition of a join query is basically equivalent to that of a theta-join [72, Sect.5.2.7], with

the limitation that the join condition C can only contain a single clause, i.e., a single condition on the

relationship of the values in the shared column C and only involve the operators {<,>,≥,≤,=, 6=}

(with their meaning on D(C)). The pairs of tuples composing the output of the join in our definition

have a one-to-one correspondence with the tuples in the output of the corresponding theta-join.

Definition 20. Given a set of ` tables T1, . . . , T`, a combination of select and join operations is a

query returning a subset of the Cartesian product of the tuples in the sets S1, . . . , S`, where Si is

the output of a selection query on Ti. The returned set is defined by the selection queries and by a

set of join queries on S1, . . . , S`.

As an example, the query

SELECT ∗ FROM Customers, CarColors WHERE Customers.Name = CarColors.Name

AND Customers.ZipCode = 02906 AND CarColors.Color = Red

combines select and joins operations. It returns no tuple (empty answer), as there is no individual

reported in both tables with zipcode 02906 and a red car.

Definition 21. Given a query q, a query plan for q is a directed binary tree Tq whose nodes are the

elementary (i.e., select or join) operations into which q can be decomposed. There is an edge from

a node a to a node b if the output of a is used as an input to b. The operations on the leaves of the

tree use one or two tables of the database as input. The output of the operation in the root node of

the tree is the output of the query.

It follows from the definition of a combination of select and join operations that a query may

conform with multiple query plans. Nevertheless, for all the queries we defined there is (at least) one

query plan such that all select operations are in the leaves and internal nodes are join nodes [72].
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To derive our results, we use these specific query plans.

Two crucial definitions that we use throughout the work are the cardinality of the output of a

query and the equivalent concept of selectivity of a query.

Definition 22. Given a query q and a database D, the cardinality of its output is the number of

elements (tuples if q is a selection query, pairs of tuples if q is a join query, and `-uples of tuples

for combinations of join and select involving ` tables) in its output, when run on D. The selectivity

σ(q) of q is the ratio between its cardinality and the product of the sizes of its input tables.

Our goal is to store a succinct representation (sample) S of the database D such that an execution

of a query on the sample S will provide an accurate estimate for the selectivity of each operation in

the query plan when executed on the database D.

7.3 The VC-dimension of classes of queries

In this section we develop a general bound to the VC-dimension of classes of queries. We define

appropriate range spaces (D,R) as follows. For a class of select queries Q on a table T , D is the set

of all tuples in the input table, and R the family of the outputs (as sets of tuples) of the queries in

Q when run on T . For a class Q of queries combining select and join operations, D is the Cartesian

product of the associated tables and R is the family of outcomes of queries in Q, seen as `-uples of

tuples, if ` tables are involved in the queries of Q. When the context is clear we identify the R with

a class of queries.

When the ranges represent all the possible outputs of queries in a class Q applied to database

tables D, the VC-dimension of the range space is the maximum number of tuples such that any

subset of them is the output of a query in Q.

In Sect. 7.4 we use an ε-approximation (Def. 2) to compute good estimates of the selectivities

of all queries in Q. We obtain a small approximation set through probabilistic construction. The

challenge in applying Thm. 1 to our setting is computing the VC-dimension of a range space defined

by a class of queries.

We start by computing the VC-dimension of simple select queries on one column and then move

to more complex queries (multi-attributes select queries, join queries). We then extend our bounds

to general queries that are combinations of multiple select and join operations.
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7.3.1 Select queries

Let T be a table with m columns T .C1, . . . , T .Cm, and n tuples. For a fixed column T .C, consider

the set ΣC of the selection queries in the form

SELECT ∗ FROM T WHERE T .Ci op a (7.1)

where op is an inequality operator (i.e., either “≥” or “≤”)2 and a ∈ D(T .C).

Let q1, q2 ∈ ΣC be two queries. We say that q1 is equivalent to q2 (and denote this fact as

q1 = q2) if their outputs are identical, i.e., they return the same set of tuples when they are run on

the same database. Note that q1 = q2 defines a proper equivalence relation.

Let Σ∗C ⊆ ΣC be a maximum subset of ΣC that contains no equivalent queries, i.e., it contains

one query from each equivalent class.

Lemma 26. Let T be a table with m columns Ci, 1 ≤ i ≤ m, and consider the set of queries

Σ∗T =
m⋃
i=1

Σ∗Ci ,

where Σ∗Ci is defined as in the previous paragraph. Then, the range space S = (T ,Σ∗T ) has VC-

dimension at most m+ 1.

Proof. We can view the tuples of T as points in the m-dimensional space ∆ = D(T .C1)×D(T .C2)×

. . .×D(T .Cm). A tuple t ∈ T such that t.C1 = a1, t.C2 = a2, . . . , t.Cm = am is represented on the

space by the point (a1, a2, . . . , am).

The queries in Σ∗T can be seen as half spaces of ∆. In particular any query in Σ∗T is defined as

in (7.1) and can be seen as the half space

{(x1, . . . , xi, . . . , xm) : xj ∈ D(Tj) for j 6= i, and xi op ai} ⊆ ∆ .

It then follows from Lemma 1 that VC(S) ≤ m+ 1.

We now extend these result to general selection queries. Consider the set Σ2∗
T of queries whose

selection predicate can be expressed as the Boolean combination of the selection predicates of at
2The operators “>” and “<” can be reduced to “≥” and “≤” respectively.
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most two queries from Σ∗T . These are the queries of the form:

SELECT ∗ FROM T WHERE T .X1 op1 a1 bool T .X2 op2 a2

where T .X1 and T .X2 are two columns from T (potentially, T .X1 = T .X2), a1 ∈ D(T .X1), a2 ∈

D(T .X2), “opi” is either “≥” or “≤” and “bool” is either “AND” or “OR”. Note that, in particular the

queries in the form

SELECT ∗ FROM T WHERE T .X1 eqop a

where eqop is either “=” or “ 6=”, belong to Σ2∗
T because we can rewrite a selection predicate containing

one of these operators as a selection predicate of two clauses using “≥” and “≤” joined by either

AND (in the case of “=”) or OR (in the case of “ 6=”).

By applying Lemma 2, we have that the VC-dimension of the range space (T ,Σ2∗
T ) is at most

3(m+ 1)2 log((m+ 1)2), where m is the number of columns in the table T .

We can generalize this result to b Boolean combinations of selection predicates as follows.

Lemma 27. Let T be a table with m columns, let b > 0 and let Σb∗T be the set of selection queries

on T whose selection predicate is a Boolean combination of b clauses. Then, the VC-dimension of

the range space Sb = (T ,Σb∗T ) is at most 3((m+ 1)b) log((m+ 1)b).

Note that we can not apply the bound used in the proof of Lemma 26: once we apply Boolean

operations on the outputs of the individual select operation, the set of possible outputs, Sb = (T ,Σb∗T )

, may form complex subsets, including unions of disjoint (half-open) axis aligned-rectangles and/or

intersections of overlapping ones that cannot be represented as a collection of half spaces. Thus, we

need to resort to a different technique.

Proof. The output of a query q in Σb∗T can be seen as the Boolean combination (i.e., union and

intersection) of the outputs of at most b "simple" select queries qi from Σ∗T where each of these

queries qi is as in (7.1). An AND operation in the predicate of q implies an intersection of the outputs

of the corresponding two queries qi and qj , while an OR operation implies a union of the outputs.

The thesis follows by applying Lemma 2.
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7.3.2 Join queries

Let T1 and T2 be two distinct tables, and let R1 and R2 be two families of (outputs of) select queries

on the tuples of T1 and T2 respectively. Let S1 = (T1, R1), S2 = (T2, R2) and let VC(S1),VC(S2) ≥ 2.

Let C be a column along which T1 and T2 are joined, and let TJ = T1×T2 be the Cartesian product

of the two tables.

For a pair of queries r1 ∈ R1, r2 ∈ R2, let

Jop
r1,r2

= {(t1, t2) : t1 ∈ r1, t2 ∈ r2, t1.C op t2.C},

where op ∈ {>,<,≥,≤,=, 6=}. Jop
r1,r2

is the set of ordered pairs of tuples (one from T1 and one from

T2 that forms the output of the join query

SELECT ∗ FROM T1, T2 WHERE r1 AND r2 AND T1.C op T2.C . (7.2)

Here we simplify the notation by identifying select queries with their predicates. We have Jop
r1,r2

⊆

r1 × r2 and Jop
r1,r2

⊆ TJ . Let

JC = {Jop
r1,r2

| r1 ∈ R1, r2 ∈ R2, op ∈ {>,<,≥,≤,=, 6=}}.

JC is the set of outputs of all join queries like the one in (7.2), for all pairs of queries in R1 × R2

and all values of “op”. We present here an upper bound to the VC-dimension of the range space

SJ = (TJ , JC).

Lemma 28. VC(SJ) ≤ 3(VC(S1) + VC(S2)) log((VC(S1) + VC(S2))).

Proof. Let v1 = VC(S1) and v2 = VC(S2). Assume that a set A ⊆ TJ is shattered by JC , and |A| = v.

Consider the two cross-sections A1 = {x ∈ T1 : (x, y) ∈ A} and A2 = {y ∈ T2 : (x, y) ∈ A}. Note

that |A1| ≤ v and |A2| ≤ v and by [8, Corol. 14.4.3], |PR1(A1)| ≤ g(v1, v) ≤ vv1 and |PR2(A2)| ≤

g(v2, v) ≤ vv2 . For each set r ∈ PJC (A) (i.e., for each subset r ⊆ A, given that PJC (A) = 2A) there

is a pair (r1, r2), r1 ∈ R1, r2 ∈ R2, and there is op, such that r = A ∩ Jop
r1,r2

. Each of such pair

(r1, r2) identifies a distinct pair (r1 ∩ A1, r2 ∩ A2) ∈ PR1(A1) × PR2(A2), therefore each element of

PR1(A1)× PR2(A2) can be identified at most 6 times, the number of possible values for “op”.

In particular, for a fixed “op”, an element of PR1(A1)× PR2(A2) can be identified at most once.
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To see this, consider two different sets s1, s2 ∈ PJC (A). Let the pairs (a1, a2), (b1, b2), a1, b1 ∈ R1,

a2, b2 ∈ R2, be such that s1 = A ∩ Jop
a1,a2

and s2 = A ∩ Jop
b1,b2

. Suppose that a1 ∩ A1 = b1 ∩ A1

(∈ PR1(A1)) and a2 ∩ A2 = b2 ∩ A2 (∈ PR2(A2)). The set s1 can be seen as {(t1, t2) : t1 ∈

a1 ∩ A1, t2 ∈ a2 ∩ A2 s.t. t1.C op t2.C}. Analogously the set s2 can be seen as {(t1, t2) : t1 ∈

b1 ∩ A1, t2 ∈ b2 ∩ A2 s.t. t1.C op t2.C}. But given that a1 ∩ A1 = b1 ∩ A1 and a2 ∩ A2 = b2 ∩ A2,

this leads to s1 = s2, a contradiction. Hence, a pair (c1, c2), c1 ∈ PR1(A1), c2 ∈ PR2(A2) can only

be identified at most 6 times, one for each possible value of “op”.

Thus,|PJC (A)| ≤ 6|PR1(A1)| · |PR2(A2)|. A could not be shattered if |PJC (A)| < 2v. Since

|PJC (A)| ≤ 6|PR1(A1)| · |PR2(A2)| ≤ 6g(v1, v)g(v2, v) ≤ 6vv1+v2 ,

it is sufficient to have 6vv1+v2 ≤ 2v, which holds for v > 3(v1 + v2) log(v1 + v2).

The relative complexity of this proof is due to the fact that the result of a join between the

output of two selection queries obviously depends on the two selection predicates, and we can not

ignore this.

The above results can be generalized to any query plan represented as a tree where the select

operations are in the leaves and all internal nodes are join operations. As we said earlier, such a

tree exists for any query.

Lemma 29. Consider the class Q of queries that can be seen as combinations of select and joins

on u > 2 tables T1, . . . , Tu. Let Si = (Ti, Ri), i = 1, . . . , u be the range space associated with the

select queries on the u tables. Let vi = VC(Si). Let m be the maximum number of columns in a

table Ti. We assume m ≤
∑
i vi.3 Let SQ = (T1 × · · · × Tu, RQ) be the range space associated with

the class Q. The range set RQ is defined as follows. Let ρ = (r1, . . . , ru), ri ∈ Ri, and let ω be

a sequence of u − 1 join conditions representing a possible way to join the u tables Ti, using the

operators {>,<,≥,≤,=, 6=}. We define the range

Jωρ = {(t1, . . . , tu) : ti ∈ ri, s.t. (t1, . . . , tu) satisfies ω}.
3The assumption m ≤

∑
i
vi is reasonable for any practical case.
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RQ is the set of all possible Jωρ . Then,

VC(SQ) ≤ 4u(
∑
i

VC(Si)) log(u
∑
i

VC(Si)).

Note that this Lemma is not just an extension of Lemma 28 to join queries between two mul-

ticolumns tables. Instead, it is an extension to queries containing joins between multiple tables

(possibly between multicolumns tables).

Proof. Assume that a set A ⊆ TJ is shattered by RQ, and |A| = v. Consider the cross-sections

Ai = {x ∈ Ti : (y1, . . . , yi−1, x, yi+1, . . . , yu) ∈ A}, 1 ≤ i ≤ u. Note that |Ai| ≤ v and by [8,

Coroll. 14.4.3] |PRi(Ai)| ≤ g(vi, v) ≤ vvi . For each set r ∈ PJC (A) (i.e., for each subset r ⊆ A,

given that PJC (A) = 2A) there is a sequence ρ = (r1, . . . , ru), ri ∈ Ri, and there is an ω, such

that r = A ∩ Jωρ . Each sequence ρ identifies a distinct sequence (r1 ∩ A1, r2 ∩ A2, . . . , ru ∩ Au) ∈

PR1(A1) × · · · × PRu(Au), therefore each element of PR1(A1) × · · · × PRu(Au) can be identified at

most 6u−1 times, one for each different ω.

In particular, for a fixed ω, an element of PR1(A1) × · · · × PRu(Au) can be identified at most

once. To see this, consider two different sets s1, s2 ∈ PJC (A). Let the vectors ρa = (a1, . . . , au),

ρb = (b1, . . . , bu), ai, bi ∈ Ri, be such that s1 = A∩Jωρa and s2 = A∩Jωρb . Suppose that ai∩Ai = bi∩Ai

(∈ PRi(Ai)). The set s1 can be seen as {(t1, . . . , tu) : ti ∈ ai ∩ Ai, s.t. (t1, . . . , tu) satisfies ω}.

Analogously the set s2 can be seen as {(t1, . . . , tu) : ti ∈ bi ∩ Ai, s.t. (t1, . . . , tu) satisfies ω}. But

given that ai ∩ Ai = bi ∩ Ai, this leads to s1 = s2, a contradiction. Hence, a vector (c1, . . . , cu),

ci ∈ PRi(Ai), can only be identified at most a finite number ` of times, once for each different ω.

For each of the u− 1 join conditions composing ω we need to choose a pair (T1.A, T1.B) expressing

the columns along which the tuples should be joined. There are at most g =
(
um
2
)
such pairs (some

of them cannot actually be chosen, e.g., those of the type (T1.A, T1.B)). There are then
(
g

u−1
)
ways

of choosing these u − 1 pairs. For each choice of u − 1 pairs, there are 6(u−1) ways of choosing the

operators in the join conditions (6 choices for op for each pair). We have

` ≤
((um

2
)

u− 1

)
· 6(u−1) ≤ (mu)2u.

Thus, |PJC (A)| ≤ `|PR1(A1)| · · · · · |PRu(Au)|. A could not be shattered if |PJC (A)| < 2v. Since we
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have

|PJC (A)| ≤ ` · |PR1(A1)| · · · · · |PRu(Au)| ≤ ` · g(v1, v)g(v2, v) . . . g(vu, v) ≤

≤ (mu)2u · vv1+···+vu ,

then it is sufficient to have

(mu)2uv
∑v

i=1
vi ≤ 2v,

which holds for v > 4u (
∑
i vi) log(u

∑
i vi).

7.3.3 Generic queries

Combining the above results we prove:

Theorem 9. Consider a class Qu,m,b of all queries with up to u − 1 join and u select operations,

where each select operation involves no more than m columns and b Boolean operations, then

VC(Qu,m,b) ≤ 12u2(m+ 1)b log((m+ 1)b) log(3u2(m+ 1)b log((m+ 1)b)).

Note that Thm. 9 gives an upper bound to the VC-dimension. Our experiments suggest that in

most cases the VC-dimension and the corresponding minimum sample size are even smaller.

7.4 Estimating query selectivity

We apply the theoretical result on the VC-dimension of queries to constructing a concrete algorithm

for selectivity estimation and query plan optimization.

7.4.1 The general scheme

Our goal is to apply Def. 2 and Thm. 1 to compute an estimate of the selectivity of SQL queries.

Let Qu,m,b be a class of queries as in Thm. 9. The class Qu,m,b defines a range space S = (D,R)

such that D is the Cartesian product of the tables involved in executing queries in Qu,m,b, and R is

the family of all output sets of queries in Qu,m,b. Let S be an ε-approximation of S and let R be the

output set of a query q ∈ Qu,m,b when executed on the original dataset, then D ∩R = R and R ∩ S
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is the output set when the query is executed on the sample (see details below). Thus, by Def. 2,

∣∣∣∣ |D ∩R||D|
− |S ∩R|

|S|

∣∣∣∣ = |σD(q)− σS(q)| ≤ ε,

i.e., the selectivity of a query q ∈ Qu,m,b on an ε-approximation of (D,R) is within ε of the selectivity

of q when executed on the original set of tables. Note that for any execution plan of a query

q ∈ Qu,m,b, all the queries that correspond to subtrees rooted at internal nodes of the plan are

queries in Qu,m,b. Thus, by running query q on an ε-approximation of (D,R) we obtain accurate

estimates for the selectivity of all the subqueries defined by its execution plan.

7.4.2 Building and using the sample representation

We apply Thm. 1 to probabilistically construct an ε-approximation of (D,R). A technical difficulty

in algorithmic application of the theorem is that it is proven for a uniform sample of the Cartesian

product of all the tables in the database, while in practice it is more efficient to maintain the table

structure of the original database in the sample. It is easier to sample each table independently, and

to run the query on a sample that consists of subsets of the original tables rather than re-writing

the query to run on a Cartesian product of tuples. However, the Cartesian product of independent

uniform samples of tables is not a uniform sample of the Cartesian product of the tables [36]. We

developed the following procedure to circumvent this problem. Assume that we need a uniform

sample of size t from D, which is the Cartesian product of ` tables T1, . . . , T`. We then sample t

tuples uniformly at random (with replacement) from each table Ti, to form a sample table Si. We

add an attribute sampleindex to each Si and we set the value in the added attribute for each tuple in

Si to a unique value in [1, t]. Now, each sample table will contain t tuples, each tuple with a different

index value in [1, t]. Given an index value i ∈ [1, t], consider the set of tuples Xi = {x1, . . . , x`},

xj ∈ Si such that x1.sampleindex = x2.sampleindex = · · · = x`.sampleindex = i. Xi can be seen

as a tuple sampled from D, and the set of all Xi, i ∈ [1, t] is a uniform random sample of size t from

D. We run queries on the sample tables, but in order to estimate the selectivity of a join operation

we count a tuple Y in the result only if the set of tuples composing Y is a subset of Xi for some

i ∈ [1, t]. This is easily done by scanning the results and checking the values in the sampleindex

columns (see Algorithms 5 and 6).

Theorem 10. The ComputeSelectivity procedure (in Alg. 6) executes a query on the Cartesian
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Algorithm 5: CreateSample(s, (T1, . . . , Tk))
input : sample size s, tables T1, ..., Tk.
output: sample tables S1, ...,Sk with t tuples each.

1 for j ← 1 to k do
2 Sj ← ∅
3 end
4 for i← 1 to s do
5 for j ← 1 to k do
6 t← drawRandomTuple(Tj)
7 t.sampleindexj ← i
8 Sj ← Sj ∪ {t}
9 end

10 end

Algorithm 6: ComputeSelectivity(S, op)
input : elementar database operation op, sample database S = (S1, . . . ,Sk) of size s.
output: the selectivity of op.

1 Oop ← executeOperation(S, op);
2 (`1, . . . , `j)← indexes of the sample tables involved in op ;
3 i← 0;
4 for tuple ∈ Oop do
5 if tuple.sampleindex`1 = tuple.sampleindex`2 = · · · = tuple.sampleindex`j then

i← i+ 1;
6 end
7 selectivity ← i/s;

product of independent random samples of the tables but outputs the selectivity that corresponds to

executing the query on a random sample of the Cartesian product of the original tables.

Proof. The CreateSample procedure chooses from each table a random sample of t tuples and adds

to each sampled tuple an index in [1, t]. Each sample table has exactly one tuple with each index

value, and the Cartesian product of the sample tables has exactly one element that is a concatenation

of tuples, all with the same index i in their tables. Restricting the selectivity computation to these

t elements (as in ComputeSelectivity) gives the result.

Note that our method circumvent the major difficulty pointed out by Chaudhuri et al. [36]. They

also proved that, in general, it is impossible to predict sample sizes for given two tables such that

the join of the samples of two tables will result in a sample of a required size out of the join of the

two tables. Our method does not require a sample of a given size from the result of a join. The

VC-dimension sampling technique requires only a sample of a given size from the Cartesian product

of the tables, which is guaranteed by the above procedure.
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Identifying the optimal query plan during query optimization may require executing several

candidate query plans on the sample. A standard bottom-up candidate plan generation allows

us to execute sub-plans once, store their results and reuse them multiple times as they will be

common to many candidate plans. While the overhead of this execution-based selectivity estimation

approach will still likely be higher than that of pre-computation based techniques (e.g., histograms),

the reduced execution times of highly optimized plans enabled by better estimates, especially for

complex and long-running queries, will more than compensate for this overhead. Thus, storing

intermediate results that are common to several executions will speed up the total execution time

on the sample. The significant improvement in the selectivity estimates in complex queries well

compensates for the extra work in computing the selectivity estimates.

7.5 Experimental evaluation

This section presents the results of the experiments we run to validate our theoretical results and to

compare our selectivity estimation method with standard techniques implemented in PostgreSQL

and in Microsoft SQL Server.

Goals. The first goal of the experiments is to evaluate the practical usefulness of our theoretical

results. To assess this, we run queries on a large database and on random samples of different sizes.

We use the selectivity of the each query in the random samples as an estimator for the selectivity in

the large database with the adjustments for join operations, as described in the previous Section. We

compute the error between the estimate and the actual selectivity to show that the thesis of Thm. 1

is indeed valid in practice. The use of a large number of queries and of a variety of parameters

allows us to evaluate the error rate as a function of the sample size. We then compare our method

with the commonly used selectivity estimation based on precomputed histograms (briefly described

in Sect. 7.5.1). We use histograms with a different number of buckets to show that, no matter how

fine-grained the histograms might be, as soon as the inter-column and intra-bucket assumptions are

no longer satisfied, our approach gives better selectivity estimates.
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7.5.1 Selectivity estimation with histograms

In many modern database systems, the query optimizer relies on histograms for computing data

distribution statistics to help determine the most efficient query plans. In particular, PostgreSQL

uses one-dimensional equi-depth (i.e., equal frequency buckets) histograms and a list of the most

common values (MCV) for each column (of a database table) to compute optimizer statistics. The

MCV information stores the most frequent N items (by default N = 100) and their frequency for

each column. The histograms (by default with 100 bins) are built for the values not stored in the

MCV list. The selectivity of a constraint A = x, where A is a column and x is a value is computed

from the MCV list if x is in the MCV list or from the histogram bin that contains x if x is not in the

MCV list. The selectivity of a range constraint such as A < x is computed with information from

both the MCV list and the histogram, i.e., the frequencies of the most common values less than x

and the frequency estimate for A < x from the histogram will be added to obtain the selectivity.

In PostgreSQL, the histograms and the MCV lists for the columns of a table are built using a

random sample of the tuples of the table. The histograms and the MCV list for all columns of a table

are based on the same sample tuples (and are therefore correlated). The sample size is computed for

each column using a formula based on the table size, histogram size, and a target error probability

developed by Chaudhuri et al. [35] and the largest sample size required by the columns of a table is

used to set the sample size of the table.

Finally, the join selectivity of multiple constraints are computed using the attribute indepen-

dence assumption: e.g., selectivities are added in case of an OR operator and multiplied for an

AND operator. Therefore, large selectivity estimation errors are possible for complex queries and

correlated inputs.

7.5.2 Setup

Original tables. The tables in our large database were randomly generated and contain 20 million

tuples each. There is a distinction between tables used for running selection queries and tables used

for running join (and selection) queries. For tables on which we run selection queries only, the

distributions of values in the columns fall in two different categories:

• Uniform and Independent: The values in the columns are chosen uniformly and inde-

pendently at random from a fixed domain (the integer interval [0, 200000], the same for all



144

columns). Each column is treated independently from the others.

• Correlated: Two columns of the tables contain values following a multivariate normal distri-

bution with mean M = µI2,2 and a non-identity covariance matrix Σ (i.e., the values in the

two different columns are correlated).

The tables for join queries should be considered in pairs (A,B) (i.e., the join happens along a common

column C of tables A and B). The values in the columns are chosen uniformly and independently

at random from a fixed domain (the integer interval [0, 200000], the same for all columns). Each

column is treated independently from the others.

Sample tables. We sampled tuples from the large tables uniformly, independently, and with

replacement, to build the sample tables. For the samples of the tables used to run join queries, we

drew random tuples uniformly at random from the base tables independently and added a column

sampleindex to each tuple such that each tuple drawn from the same base table has a different value

in the additional column and with tuples from different tables forming an element of the sample (of

the Cartesian product of the base tables) if they have the same value in this additional column, as

described in Sect. 7.4.2.

For each table in the original database we create many sample tables of different sizes. The sizes

are either fixed arbitrarily or computed using (2.2) from Thm. 1. The arbitrarily sized sample tables

contain between 10000 and 1.5 million tuples. To compute the VC-dimension-dependent sample

size, we fixed ε = 0.05, δ = 0.05, and c = 0.5. The parameter d was set to the best bound to the

VC-dimension of the range space of the queries we were running, as obtained from our theoretical

results. If we let m be the number of columns involved in the selection predicate of the queries and

b be the number of Boolean clauses in the predicate, we have that d depends directly on m and

b, as does the sample size s through (2.2) in Thm. 1. For selection queries, we used m = 1, 2 and

b = 1, 2, 3, 5, 8, with the addition of the combination m = 5, b = 5. We run experiments on join

queries only for some combinations of m and b (i.e., for m = 1 and b = 1, 2, 5, 8) due to the large

size of the resulting sample tables. Table 7.2 shows the sample sizes, as number of tuples, for the

combinations of parameters we used in our experiments.
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Table 7.2: VC-Dimension bounds and samples sizes, as number of tuples, for the combinations of
parameters we used in our experiments.

Query type
Select Join

Columns (m) Boolean clauses (b) VC-dim Sample size VC-dim Sample size

1

1 2 1000 4 1400
2 4 1400 16 3800
3 6 2800 36 7800
5 10 2600 100 20600
8 16 3800 256 51800

2

2 31 6800
3 57 12000
5 117 24000
8 220 44600

5 5 294 59400

Histograms. We built histograms with a different number of buckets, ranging from 100 to 10000.

Due to limitations in PostgreSQL, incrementing the number of buckets in the histograms also incre-

ments the number of values stored in the MCV list. Even if this fact should have a positive influence

on the quality of the selectivity estimates obtained from the histograms, our results show that the

impact is minimal, especially when the inter-column independence and the intra-bucket uniformity

assumptions are not satisfied. For SQL Server, we built the standard single-column histograms

and computed the multi-column statistics which should help obtaining better estimations when the

values along the columns are correlated.

Queries. For each combination of the parameters m and b and each large table (or pair of large

tables, in the case of join) we created 100 queries, with selection predicates involving m columns and

b Boolean clauses. The parameters in each clause, the range quantifiers, and the Boolean operators

connecting the different clauses were chosen uniformly at random to ensure a wide coverage of

possible queries.

7.5.3 Results

Selection queries. The first result of our experiments is that, for all the queries we ran, on all

the sample tables, the estimate of the selectivity computed using our method was within ε (= 0.05)

from the real selectivity. The same was not true for the selectivity computed by the histograms. As
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an example, in the case of m = 2, b = 5 and uniform independent values in the columns, the default

PostgreSQL histograms predicted a selectivity more than ε off from the real selectivity for 30 out of

100 queries. Nevertheless, in some of cases the histograms predicted a selectivity closer to the actual

one than what our method predicted. This is especially true when the histogram independence

assumption holds (e.g., for m = 2, b = 5 the default histograms gave a better prediction than our

technique in 11 out of 100 cases). Similar situations also arise for SQLServer.
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SQLServ avg
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Figure 7.1: Selectivity prediction error for selection queries on a table with uniform independent
columns – Two columns (m = 2), five Boolean clauses (b = 5).

Since the selectivity estimated by the our method was always within ε from the actual, we

report the actual percent error, i.e., the quantity e% = 100|p(σq)−σD(q)|
σD(q) where p(σq) is the predicted

selectivity. We analyze the average and the standard deviation of this quantity on a set of queries

and the evolution of these measures as the sample size increases. We can see from Fig. 7.1 and 7.2

that both the average and the standard deviation of the percentage error of the prediction obtained

with our method decrease as the sample size grows (the rightmost plotted sample size is the one

from Table 7.2, i.e., the one computed in Thm.1. More interesting is the comparison in those figures

between the performance of the histograms and the performance of our techniques in predicting

selectivities. When the assumptions of the histograms hold, as is the case for the data plotted in

Fig. 7.1, the predictions obtained from the histograms are good.

But as soon as the data are correlated (Fig. 7.2), our sampling method gives better predictions

than the histograms even at the smallest sample sizes and keeps improving as the sample grows

larger. It is also interesting to observe how the standard deviation of the prediction error is much

smaller for our method than for the histograms, suggesting a much higher consistency in the quality
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Figure 7.2: Selectivity prediction error for selection queries on a table with correlated columns –
Two columns (m = 2), eight Boolean clauses (b = 8).

of the predictions. In Fig. 7.2 we do not show multiple curves for the different PostgreSQL histograms

because increasing the number of buckets had very marginal impact on the quality of the estimates,

sometimes even in the negative sense (i.e., an histogram with more buckets gave worse predictions

than an histogram with fewer buckets), a fact that can be explained with the variance introduced

by the sampling process used to create the histograms. For the same reason we do not plot multiple

lines for the prediction obtained from the multi-columns and single-column statistics of SQL Server:

even when the multi-column statistics were supposed to help, as in the case of correlated data,

the obtained prediction were not much different from the ones obtained from the single-column

histograms.

Join queries. The strength of our method compared to histograms is even more evident when we

run join queries, even when the histograms independent assumptions are satisfied. In our experi-

ments, the predictions obtained using our technique were always within ε from the real values, even

at the smallest sample sizes, but the same was not true for histograms. For example, in the case

of m = 1 and b = 5, 135 out of 300 predictions from the histograms were more than ε off from the

real selectivities. Figure 7.3 shows the comparison between the average and the standard deviation

of the percentage error, defined in the previous paragraph, for the histograms and our method. The

numbers include predictions for the selection operations at the leaves of the query tree.

Again, we did not plot multiple curves for histograms with a different number of buckets be-

cause the quality of the predictions did not improve as the histograms became more fine-grained.

To understand the big discrepancy between the accurate predictions of our method and the wrong
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Figure 7.3: Selectivity prediction error for join queries queries. One column (m = 1), one Boolean
clause (b = 1).

estimates computed by the histograms in PostgreSQL we note that for some join queries, the his-

tograms predicted an output size on the order of the hundreds of thousands of tuples but the actual

output size was zero or a very small number of tuples. Observing the curves of the average and

the standard deviation of the percentage error for the prediction obtained with our method, we can

see that at the smaller sample sizes the quality of the predictions only improves minimally with the

sample size. This is due to the fact that at small sizes our prediction for the join operation is very

often zero or very close to zero, because the output of the query does not contain enough pairs of

tuples from the sample of the Cartesian product of the input table (i.e., pairs of tuples with the

same value in the sampleindex column). In these cases, the prediction can not be accurate at all

(i.e., the error is 100% if the original output contained some tuples, or 0% if the query returned an

empty set in the large databases). As soon as the sample size grows more, we can see first a jump to

higher values of the percentage error, which then behaves as expected, i.e., decreasing as the sample

size increases.

In Fig. 7.3 we also show a comparison between the percentage error of predictions obtained using

our method in two different ways: the “theoretically correct” way that makes use of the number of

pairs of tuples with the same value in the sampleindex column and the “practitioner” way which

uses the size of the output of the join operation in the sample, therefore ignoring the sampleindex

column. Recall that we had to add the sampleindex column because Thm. 1 requires a uniform

sample of the Cartesian product of the input tables. As it is evident from Fig. 7.3, the “practitioner”

way of predicting selectivity gives very good results at small sample sizes (although it does not offer
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theoretical guarantees). These results are similar in spirit, although not equivalent, to the theoretical

conclusions presented by Haas et al. [93] in the setting of selectivity estimation using online sampling.

7.6 Conclusions

We develop a novel method for estimating the selectivity of queries by executing it on a concise,

properly selected, sample of the database. We present a rigorous analysis of our method and extensive

experimental results demonstrating its efficiency and the accuracy of its predictions.

Most commercial databases use histograms built on a single column, for selectivity estimation.

There has also been significant research on improving the estimate using multidimensional his-

tograms [28, 172, 188, 198] and join synopses [2]. The main advantage of our method is that it gives

uniformly accurate estimates for the selectivity of any query within a predefined VC-dimension range.

Methods that collect and store pre-computed statistics give accurate estimates only for the relations

captured by the collected statistics, while estimate of any other relation relies on an independence

assumption. To match the accuracy of our new method with histograms and join synopses one

would need to create, for each table, a multidimensional histogram where the number of dimensions

is equal to the number of columns in the tables. The space needed for a multidimensional histogram

is exponential in the number of dimensions, while the size of our sample representation is almost

linear in that parameter. Furthermore, to estimate the selectivity for join operations one would need

to create join synopses for all pairs of columns in the database, again in space that grows exponential

in the number of columns.

VC-dimension, often considered only a theoretical tool, leads to an efficient and practical tool

for an important problem in database management.



Chapter 8

Conclusions and Future Directions

“Costanzia. Non chi comincia ma quel che persevera.”1

Leonardo da Vinci.

The major goal of the work that led to this dissertation was to verify whether VC-dimension could

be used to develop practical sample size bounds for important data analytics problems. We showed

that it is possible to compute tight upper bounds to the VC-dimension of relevant problems from

different areas of data analytics: knowledge discovery, graph analysis, and database management.

The upper bounds that we found are characteristic quantities of the dataset or of the problem

at hands. Not only they can be easy to compute, but they are usually small in practice. This

means that the sample size needed to obtain high quality approximations of the results for the

problem at hand may not need to depend on the size of the dataset or on the number of patterns

or “questions” that one is interested to answer using the data. The sample sizes obtained using our

bounds are small and can fit into main memory, partially solving the issue of analyzing very large

datasets. Indeed, the practicality of our results is exemplified by the fact that one of our algorithms

(PARMA, see Ch. 4) was adapted and implemented to be used in SAMOA [53] at Yahoo (see also

http://yahoo.github.io/samoa/).

Despite the many advantages of using VC-dimension when deriving sample sizes for randomized

algorithms, it should not be considered a “one-size-fits-all method”. Indeed, its applicability at large

may be hindered by the following factors:
1Constancy. Not he who begins, but he who perseveres.
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• Need for an efficient algorithm to compute bounds to the VC-dimension. Bounding

the VC-dimension of a problem is challenging but good bounds can be found. Nevertheless,

even if the bound is tight and it is a characteristic quantity of the dataset or of the problem at

hand, actually computing this quantity may be computational expensive. We saw an example

of this issue in Sect. 6.4.1, when dealing with the computation of the vertex-diameter of a

directed or weighted graph. In that case, we could use a fast-to-compute loose approximation

of the vertex diameter thanks to the presence of the logarithm of the vertex diameter in the

bound of the VC-dimension from Lemma 15. Without a fast procedure to compute the upper

bound to the VC-dimension (and therefore the needed sample size), the use of VC-dimension

is severely limited.

• Need for an efficient sampling procedure. A bound to the VC-dimension is not sufficient:

the second necessary component is a sampling procedure to sample points of the domain

according to the appropriate probability distribution. We described an example of how to

develop such a sampling procedure in Sect. 6.4.1. It is of crucial importance that the sampling

procedure is fast, otherwise many advantages of using sampling may be lost.

• Need of drawing independent samples. In order to apply Thm. 1, we need independent

samples from the distribution. At times, this may be a limitation. For example we saw in

Sect. 6.4.3 that the algorithm from [24] draws multiple shortest paths at each step but they are

dependent, as they all originate from the same vertex. By doing this, the algorithm collects

more information, resulting in low variance in the estimation, but we were not able to show

that it actually computes an ε-approximation to the betweenness of all the vertices. Recent

developments extends Thm. 1 to the case of ergodic sampling, therefore opening the possibility

that the independence requirement may be relaxed [3, 4, 31, 191].

• Dependency on ε. If the probability mass of a range R is smaller than ε, then a sample of

size as suggested by (2.2) may not contain any point in R. This is especially annoying when

a lot of ranges may have very small probability masses. In this case, a lower ε should be

used in order to compute acceptable approximations of these probability masses. The obvious

drawback in using a lower ε is that it directly corresponds to a larger sample. Given that the

sample size depends on 1/ε2, even a small decrease in ε may lead to a substantial increase

in the number of samples. A larger sample means a slower algorithm, and the advantages of
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using sampling may be lost or hindered. Before considering the use of VC-dimension, it is

therefore necessary to assess whether we are interested in good approximations of very small

probability masses.

Future directions

In this dissertation we studied the development and analysis of fast and efficient algorithms for data

analytics by taking into consideration different aspects of the problem and different solutions. For

each of these, there are a number of possible directions for future research.

• VC-dimension is one of many concepts from the broad field of statistical learning theory. Other

tools and results include data-dependent sample complexity bounds based on Rademacher

averages, pseudodimension, VC-shatter coefficients, Bayesian uniform bounds, just to name

a few [10, 21, 55]. We showed that VC-dimension can be have a practical impact to speed

up algorithms for data analytics, but it would be interesting to pursuit the use of these other

concepts for the creation of new algorithm or to further reduce the number of samples needed

to approximate.

• In this work we focused on “one-shot” sampling, i.e., the algorithms create a single sample

with size sufficient to obtain an approximation of desired quality. Data-dependent bounds based

on Rademacher averages can be useful to develop progressive sampling algorithms that start

from a small sample size and check a stopping condition to understand whether they sampled

enough to obtain a good approximation [61, 120]. The challenge in creating such algorithms is

in the development and analysis of a stopping condition that can detect when to stop as soon

as possible.

• A bound on the VC-dimension allows to estimate the probability masses associated to ranges or,

equivalently, the expectations of 0-1 functions using their empirical averages. Pseudodimension

instead works for real-valued functions. Since many datasets are real valued or can be seen as

collection of real valued functions (e.g., audio and video files and sensor signals), investigating

the use of pseudodimension to create sampling-based randomized algorithms for data analytics

problems on real data is an interesting research direction.
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• One issue that we only partially tackle in Ch. 5 is that of statistical validation of the results. We

already explained in Ch. 1 why only recently it started to receive attention in data analytics.

Although it is of primary importance to go beyond simple multi-hypothesis testing corrections

like the Union bound (a.k.a. the Bonferroni inequality) and we achieved it in Ch. 5 for the

problem of frequent itemsets, there are other options to control false positives. One example

is controlling the False Discovery Rate [16] instead of the probability of having a false positive

(which is what we do in Ch. 5 and is known as controlling the Family-Wide Error Rate). There

is huge room for improvement and the use of VC-dimension to develop statistical tests to avoid

the inclusion of false positives in the results is only one possible directions.

• In Ch. 4 we showed how it is possible to exploit the power and scalability of modern com-

putational platforms like MapReduce to create algorithms for data analytics that can handle

huge datasets that could not be processed by a single machine. Technology is one of the

driving forces behind the development of new algorithms. It is important to leverage on the

properties of the next-generation of computational platforms and of hardware when creating

algorithms, in order to achieve the best performances. One particularly interesting direction

is the use of parallel/distributed platforms for data streams. Algorithms for data streams

have existed for a long time, but they usually consider a single stream processed by a sin-

gle machine. Platforms like Spark [206] (see also http://spark.incubator.apache.org/),

where the stream is partitioned across multiple machines require new algorithms that exploit

their power. We implemented a streaming version of PARMA that was integrated in Yahoo

SAMOA [53]. Adapting other MapReduce algorithms to a distributed streaming setting or

creating new algorithms for such platforms is a challenging research direction.

Research in the field of data analytics seems to have paid only limited attention to recent devel-

opments in statistics and probability theory. We believe that there may be room for improvements

and significant contributions in exploring the literature of these and other fields and adapt results

and notions that may have been considered only of theoretical interest to develop efficient algorithm

for practical problems involving the analysis of the ever-growing and ever-changing amount of data

available today. At the same time, researchers should be aware of advancements in technology and

in the computational properties of modern platforms, in order to be able to extract the maximum

amount of information from the data as efficiently and fast as possible.

http://spark.incubator.apache.org/


Bibliography

[1] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and R. F. Werneck. VC-dimension and

shortest path algorithms. In Automata, Languages and Programming, volume 6755 of Lecture

Notes in Computer Science, pages 690–699. Springer Berlin Heidelberg, 2011. doi: 10.1007/

978-3-642-22006-7_58.

[2] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join synopses for approximate

query answering. SIGMOD Rec., 28:275–286, June 1999. ISSN 0163-5808. doi: 10.1145/

304181.304207.

[3] T. M. Adams and A. B. Nobel. Uniform convergence of Vapnik–Chervonenkis classes under

ergodic sampling. The Annals of Probability, 38(4):1345–1367, July 2010. doi: 10.1214/

09-AOP511.

[4] T. M. Adams and A. B. Nobel. A counterexample concerning the extension of uniform strong

laws to ergodic processes, volume 9 of Collections, pages 1–4. Institute of Mathematical Statis-

tics, Beachwood, Ohio, USA, 2013. doi: 10.1214/12-IMSCOLL901.

[5] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In

Proc. 20th Int. Conf. Very Large Data Bases, VLDB ’94, pages 487–499, San Francisco, CA,

USA, 1994. Morgan Kaufmann Publishers Inc. ISBN 1-55860-153-8.

[6] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of items in

large databases. SIGMOD Rec., 22:207–216, June 1993. ISSN 0163-5808. doi: 10.1145/170036.

170072.

[7] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and

154



155

shortest paths (without matrix multiplication). SIAM J. Comput., 28(4):1167–1181, 1999.

doi: 10.1137/S0097539796303421.

[8] N. Alon and J. H. Spencer. The Probabilistic Method. Interscience Series in Discrete Mathe-

matics and Optimization. John Wiley & Sons, Hoboken, NJ, USA, third edition, 2008.

[9] J. M. Anthonisse. The rush in a directed graph. Technical Report BN 9/71, Stichting Math-

ematisch Centrum, Amsterdam, Netherlands, 1971.

[10] M. Anthony and P. L. Bartlett. Neural Network Learning - Theoretical Foundations. Cam-

bridge University Press, New York, NY, USA, 1999. ISBN 978-0-521-57353-5.

[11] A. Arulselvan. A note on the set union knapsack problem. Discrete Applied Mathematics, 169

(0):214 – 218, 2014. ISSN 0166-218X. doi: 10.1016/j.dam.2013.12.015.

[12] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample selection for approximate query

processing. In Proc. 2003 ACM SIGMOD Int. Conf. Management of Data, SIGMOD ’03, pages

539–550, New York, NY, USA, 2003. ACM. ISBN 1-58113-634-X. doi: 10.1145/872757.872822.

[13] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating betweenness centrality.

In A. Bonato and F. Chung, editors, Algorithms and Models for the Web-Graph, volume 4863

of Lecture Notes in Computer Science, pages 124–137. Springer Berlin Heidelberg, 2007. ISBN

978-3-540-77003-9. doi: 10.1007/978-3-540-77004-6_10.

[14] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):

509–512, 1999.

[15] M. Benedikt and L. Libkin. Aggregate operators in constraint query languages. J. Comput.

Syst. Sci., 64(3):628–654, 2002. ISSN 0022-0000. doi: 10.1006/jcss.2001.1810.

[16] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful

approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodologi-

cal), 57(1):289–300, 1995. ISSN 00359246.

[17] A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database

privacy. In Proc. 40th Annu. ACM Symp. Theory of Computing, STOC ’08, pages 609–618,

New York, NY, USA, 2008. ACM. ISBN 978-1-60558-047-0. doi: 10.1145/1374376.1374464.



156

[18] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-

Chervonenkis dimension. J. ACM, 36:929–965, Oct. 1989. ISSN 0004-5411. doi: 10.1145/

76359.76371.
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