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Abstract
Knowledge Discovery from Data (KDD) has mostly focused
on understanding the available data. Statistically-sound
KDD shifts the goal to understanding the partially unknown,
random Data Generating Process (DGP) process that gen-
erates the data. This shift is necessary to ensure that the
results from data analysis constitute new knowledge about
the DGP, as required by the practice of scientific research
and by many industrial applications, to avoid costly false
discoveries.

In statistically-sound KDD, results obtained from the
data are considered as hypotheses, and they must undergo
statistical testing, before being deemed significant, i.e., in-
formative about the DGP.

The challenges include (1) how to subject the hypothe-
ses to severe testing to make it hard for them to be deemed
significant; (2) considering the simultaneous testing ofmulti-
ple hypotheses as the default setting, not as an afterthought;
(3) offering flexible statistical guarantees at different stages
of the discovery process; and (4) achieving scalability along
multiple axes, from the size of the data to the number and
complexity of hypotheses to be tested.

Success for Statistically-sound KDD as a field will be
achieved with (1) the introduction of a rich collection of
null models that are representative of the KDD tasks, and
of the existing knowledge of the GDP by field experts; (2)
the development of scalable algorithms for testing results
for many KDD tasks on different data types; and (3) the
availability of benchmark dataset generators that allow to
thoroughly evaluate these algorithms.

1 Introduction

The Data Mining and Knowledge Discovery from Data
(KDD) research community has created ingenious algo-
rithms for many tasks (e.g., pattern mining, anomaly
detection, graph analysis), on all kinds of data (from
transactional to sequence datasets, to graphs, to time
series), both static and time-evolving. These methods
are used by practitioners and companies for all kinds of
data analysis, from logistics, to cybersecurity, to cus-
tomer analysis. KDD algorithms also found their way
to research labs in all sciences, such as microbiology
and genomics, to study combinations of gene mutations,
or protein interactions [10, 21–23]. Nevertheless, most
KDD methods lack the ability to give strong statistical
guarantees on their results. A rigorous statistical as-
sessment of the results, performed through statistical
hypothesis testing [15] is a necessary step in the mod-
ern process of scientific discovery. This need goes be-
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yond scientific labs: KDD practitioners in industry need
their results to be trustworthy and actionable, in order
for decision-making based on them to be effective. For
example, when using subgraph-based methods for de-
tecting cyberattacks in computer networks, it is neces-
sary not only that as many as possible true attacks are
detected, but also that as few false flags as possible are
raised. False discoveries may arise because the avail-
able data gives only a partial, noisy, representation of
the random Data Generation Process (DGP).

Our blue sky idea, which we call statistically-sound
KDD, transforms the field of data mining by shifting the
focus of the KDD process from extracting information
about the dataset, to obtaining new understanding (i.e.,
knowledge) of the DGP. The need for this shift has
long been recognized by the KDD community [27], but
progress has so far been limited.

Figure 1: The discovery funnel, with the stages of
hypothesis testing and the different measures for false
discovery control at each stage.

2 Challenges

Algorithms for statistically-sound KDD consider
the results (e.g., patterns, anomalies, clusters,
graph/edge/vertex properties) as hypotheses, and
perform statistical tests on them, marking as (statis-
tically) significant those for which there is sufficient
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evidence that they give new knowledge about the DGP,
and discarding the others as due to the randomness
of the process itself or not offering new information.
To make statistically-sound KDD possible, we must
address the following challenges.

1. Severe testing Statistical assessment of hy-
potheses must be severe [17], i.e., it must be hard for
results to be deemed significant. Severe testing requires
representative null models. A null model is a collec-
tion of possible datasets that the unknown process may
generate, and a probability distribution over this col-
lection. The null model captures, in some sense, what
is assumed or already known about the data generating
process, and the results are assessed against it to under-
stand in what way they cannot be explained by the ex-
isting knowledge or assumptions. The choice of the null
model by the user must be deliberate and informed, as
the meaning of “statistically significant” depends on the
null model. For example, the results deemed significant
under one null model cannot in general be compared to
those deemed significant under a different null model.
Nevertheless “all models are wrong, but some are use-
ful” (George E. P. Box), and some null models may be
more appropriate for testing the significance of the re-
sults of a KDD task than others, because they more
closely represent the settings of the task. Defining such
models is therefore imperative. A second requirement
of severe testing is that the quantities used to perform
the tests (e.g., test statistics, empirical p-values) are
conservative, to avoid wrongly marking results as sig-
nificant. Statistically-sound KDD methods must satisfy
these requisites and perform severe testing, to ensure a
trustworthy assessment of the results.

2. Testing multiple hypotheses The results of
most KDD tasks are composed by a large number of
quantities (e.g., the collection of interesting patterns,
or a score for each vertex in a graph). More impor-
tantly, the practice of science today requires testing
multiple hypotheses: a scientist does not formulate a
single promising hypothesis, and then tests it with a
well-crafted experiment on “perfect” data. Rather, sci-
entists consider a family H of hypotheses, a member of
which may explain the phenomenon under study. For
example, no molecular biologist would ever test the sin-
gle hypothesis that one specific combination of gene mu-
tations is much more often present in individuals with
some disease than in healthy individuals. They would
instead ask whether any combination of gene muta-
tions is significantly more frequent among individuals
with the disease than healthy individuals, thus test-
ing one hypothesis per combination of mutations. The
process of scientific research is then akin to a multi-
stage distillation process, or to a funnel with interme-

diate filters (Fig. 1): the entire family H of hypotheses
is “poured” into the funnel, and the intermediate fil-
ters, which represent different stages of hypothesis test-
ing (discussed below), prevent unpromising hypotheses,
i.e., those deemed to be non-significant on the avail-
able data, from proceeding further. Any hypothesis that
“drips” out of the funnel is considered a discovery. The
hypotheses arriving at each filtering stage are tested si-
multaneously on the same data, highlighting the need
for a multiple-hypothesis first approach to testing.

3. Offering flexible statistical guarantees
Multiple stages of hypothesis testing are necessary :
passing a single (severe) test is not sufficient to declare a
discovery: it just gives partial evidence that the hypoth-
esis is worth further investigation. There are two com-
peting goals in designing the hypothesis testing stages:
(1) minimizing false discoveries, i.e., false hypotheses
that appear to be significant on the available data due
to the randomness in the data generating process and
possibly in the testing procedures; and (2) maximizing
statistical power, i.e., the probability that a true hy-
pothesis is deemed significant. A procedure can avoid
any false discovery (resp. guarantee all true hypotheses
are deemed significant, thus achieving maximum sta-
tistical power) by simply not marking any hypothesis
as significant (resp. marking all hypotheses as signifi-
cant), but this procedure would incur in zero statistical
power (resp. would maximize the number of false discov-
eries). Thus, it is necessary to balance these two goals.
The trade-off point may differ depending on “how deep
into the funnel” the testing is performed: at the early
stages, it is convenient to tilt towards statistical power,
while at the last stage, minimizing the probability of
false discoveries becomes imperative, as it is the last
chance. The statistical literature offers different met-
rics to quantify the guarantees for false discovery con-
trol, e.g., the Family-Wise Error Rate (FWER) [6], the
False Discovery Rate (FDR) [5], and the marginalized
FDR (mFDR) [11]. Statistically-sound KDD methods
must offer flexible guarantees by controlling these mea-
sures, in order to be applicable at every stage of the
discovery process.

4. Scaling along multiple axes Data mining
methods should be scalable in terms of the dataset size,
but algorithms for statistically-sound KDD must also
scale well along the axes of the number and complex-
ity of the hypotheses to be tested. As an example,
the Human Protein Reference Database [20] protein-
protein interaction network has ≈ 19000 proteins and
≈ 37000 interactions between them, and scientists are
interested in understanding the significance of relatively
small connected subgraphs in this network, representing
pathways in cancer cells. There are more than 1013 sub-
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graphs of size 8, each corresponding to an hypothesis.
It is imperative that statistically-sound KDD methods
can extract such a large number of patterns and test
the corresponding hypotheses as fast as possible. But
“scalability” must be considered not only in the compu-
tational sense, but also w.r.t. the statistical properties
of false discovery control and power. With reference to
Fig. 1, hypotheses that arrive at each filtering stage are
tested simultaneously on the same data. But most pro-
cedures for multiple hypothesis testing are not designed
according to this paradigm, rather they assume that
each test is performed in isolation. This assumption cre-
ates computational and statistical drawbacks: computa-
tions are unnecessarily replicated, limiting the scalabil-
ity and throughput of the filtering stage, while consid-
ering each test as an separate task prevents from lever-
aging the structure (broadly defined) of the set of hy-
potheses being tested, resulting in lower statistical power,
i.e., fewer discoveries. Algorithms for statistically-sound
KDD must exploit this structure and scale well along
both computational and statistical axes.

5. Offering practical methods on different
tasks on rich data Long gone is the era when KDD
methods only had to deal with binary tabular data,
static graphs, and similar “simple” data. Today, practi-
tioners want to extract complex information from rich,
evolving datasets. Statistically-sound KDD methods
must be able to assess results obtained on such datasets
(e.g., utility transactional datasets, attributed graphs,
multi-valued time series), while taking into account
their dynamic nature, as in temporal networks. Ad-
ditionally, many of the aforementioned challenges are,
although “theoretically” solved given the many meth-
ods available (e.g., to control the FWER or the FDR),
not solved in practice. To find application among prac-
titioners, methods for statistically-sound KDD must be
designed around the practitioners’ needs, and their im-
plementations must be thoroughly evaluated to ensure
that their performance is satisfactory.

3 Achieving Success

Some initial work towards statistically-sound KDD has
been done [12, 19], but it mostly failed to address the
challenges: it tested hypotheses w.r.t. simple null mod-
els, while using approximate test statistics with no cor-
rection; when controlling for multiple hypotheses, it
mostly focused on the FWER, thus not offering the de-
sired flexible guarantees; it was rarely scalable, as it,
in the best cases, relied on Markov-Chain Monte-Carlo
(MCMC) methods with slow mixing time; and it was
limited to simple data and tasks, such as binary trans-
actional datasets for itemset mining, or static graphs.
To achieve Statistically-sound KDD, we propose to we

tackle the challenges as follows.

• Define realistic null models for different KDD tasks
(1st challenge), informed by the needs of practi-
tioners, from industry to scientific research lab.
To start, we suggest starting from well-established
tasks such as various forms of pattern mining [1–
3, 24], evaluation of vertex/edge properties such
as centrality measures [18] and graph structural
properties such as clustering coefficients and core
decomposition. Another promising task is the
statistically-sound identification of anomalies, e.g.,
in network traffic which may correspond to security
breaches or attacks.

• Derive simultaneous confidence intervals for p-
values, to be used in the testing procedures to en-
sure that control of false discoveries is at the user-
specified level at all times, as required by severe
testing (1st challenge), not just asymptotically. As
a starting point, uniform convergence results based
on variance-aware Rademacher Averages [4, 7, 14]
can likely be used to derive tight confidence inter-
vals with little impact on statistical power.

• Design methods to directly test multiple hypothe-
ses (2nd challenge), by embracing the resampling-
based approach to hypothesis testing [25], which,
by approximating the distribution of the p-values,
enables the flexible guarantees that we seek (3rd

challenge), by controlling, as needed, the FWER
and/or the (m)FDR [8, 9, 26]. Resampling-based
methods leverage the structure of the hypothesis
family, resulting in the desired high statistical
power, and scaling well with the family’s size and
complexity (4th challenge).

• Develop efficient sampling procedures to quickly
generate datasets from the null model, as required
by the resampling-based approach. Such algo-
rithms should include both fast-mixing MCMC
methods [16] and exact-sampling approaches [13],
that scale well along multiple axes (4th challenge).

• Subject the methods to a thorough empirical eval-
uation (5th challenge) by assessing their scala-
bility along both computational and statistical
axes (4th challenge). To help thorough evalua-
tion of statistically-sound KDD methods beyond
this project, we suggest the development of artifi-
cial dataset generators which allow the KDD re-
searchers to plant true hypotheses in the generated
data, so as to evaluate the tightness in the control
of false discoveries and in the statistical power.
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4 Conclusion

Shifting from KDD to statistically-sound KDD is abso-
lutely needed as the abundance of data, which is now
a fact in many scientific areas and in many KDD use
cases, is accompanied by an abundance of questions
that are asked on these data, and when the answers to
these questions are used for decisions that may impact
a large portion of the population, e.g., to create policies
or develop drugs. False discoveries in such settings are
just not acceptable. Like others before us [27], we call
the research community to action: there are fascinat-
ing computational and statistical challenges to solve,
and the opportunity to have a large impact, from en-
abling a faster and higher-throughput scientific discov-
ery pipeline, to ensuring better use of data by private
companies and governments.
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[12] W. Hämäläinen and G. I. Webb. A tutorial on
statistically sound pattern discovery. Data Mining
Knowl. Disc., 33(2):325–377, 2019.

[13] S. Jenkins, S. Walzer-Goldfeld, and M. Riondato.
SPEck: mining statistically-significant sequential
patterns efficiently with exact sampling. Data Min-
ing Knowl. Disc., 36(4):1575—1599, 2022.

[14] V. Koltchinskii. Rademacher penalties and struc-
tural risk minimization. IEEE Trans. Inf. Th., 47
(5):1902–1914, July 2001.

[15] E. L. Lehmann and J. P. Romano. Testing Statis-
tical Hypotheses. Springer, 4 edition, 2022.

[16] D. A. Levin and Y. Peres. Markov chains and
mixing times. Am. Math. Soc., 2nd edition, 2017.

[17] D. G. Mayo. Statistical inference as severe testing.
Cambridge Univ. Press, 2018.

[18] M. E. J. Newman. Networks – An Introduction.
Oxford Univ. Press, 2010.

[19] L. Pellegrina, M. Riondato, and F. Vandin. Hy-
pothesis testing and statistically-sound pattern
mining. In KDD ’19, pages 3215–3216. 2019.

[20] S. Peri et al.. Development of human protein refer-
ence database as an initial platform for approach-
ing systems biology in humans. Genome Res., 13
(10):2363–2371, Oct 2003.

[21] R. T. Relator, A. Terada, and J. Sese. Identifying
statistically significant combinatorial markers for
survival analysis. BMC Med. Genom., 11(2):31,
2018.

[22] J. Sese, A. Terada, Y. Saito, and K. Tsuda. Statis-
tically significant subgraphs for genome-wide asso-
ciation study. In Stat. Sound Data Mining, pages
29–36, 2014.

[23] A. Terada, K. Tsuda, and J. Sese. Fast Westfall-
Young permutation procedure for combinatorial
regulation discovery. In BIBM’13, pages 153–158.
2013.

[24] T. Truong-Chi and P. Fournier-Viger. A survey
of high utility sequential pattern mining. In High-
Utility Pattern Mining, pages 97–129. 2019.

[25] P. H. Westfall and S. S. Young. Resampling-based
multiple testing: Examples and methods for p-value
adjustment. John Wiley & Sons, 1993.

[26] D. Yekutieli and Y. Benjamini. Resampling-based
false discovery rate controlling multiple test proce-
dures for correlated test statistics. J. Stat. Plan.
Infer., 82(1-2):171–196, 1999.

[27] A. Zimmermann. The data problem in data mining.
SIGKDD Explor., 16(2):38–45, 2014.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited


	Introduction
	Challenges
	Achieving Success
	Conclusion

