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Efficient Discovery of Association Rules and Frequent Itemsets through
Sampling with Tight Performance Guarantees1

MATTEO RIONDATO and ELI UPFAL, Brown University

The tasks of extracting (top-K) Frequent Itemsets (FI’s) and Association Rules (AR’s) are fundamental

primitives in data mining and database applications. Exact algorithms for these problems exist and are

widely used, but their running time is hindered by the need of scanning the entire dataset, possibly mul-

tiple times. High quality approximations of FI’s and AR’s are sufficient for most practical uses. Sampling

techniques can be used for fast discovery of approximate solutions, but works exploring this technique did

not provide satisfactory performance guarantees on the quality of the approximation, due to the difficulty

of bounding the probability of under- or over-sampling any one of an unknown number of frequent itemsets.

We circumvent this issue by applying the statistical concept of Vapnik-Chervonenkis (VC) dimension to

develop a novel technique for providing tight bounds on the sample size that guarantees approximation of

the (top-K) FI’s and AR’s within user-specified parameters. The resulting sample size is linearly dependent

on the VC-dimension of a range space associated with the dataset. We analyze the VC-dimension of this

range space and show that it is upper bounded by an easy-to-compute characteristic quantity of the dataset,

the d-index, namely the maximum integer d such that the dataset contains at least d transactions of length

at least d such that no one of them is a superset of or equal to another. We show that this bound is tight for

a large class of datasets. The resulting sample size is a significant improvement over previous known results.

We present an extensive experimental evaluation of our technique on real and artificial datasets, demon-

strating the practicality of our methods, and showing that they achieve even higher quality approximations

than what is guaranteed by the analysis.
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1. INTRODUCTION

Discovery of frequent itemsets and association rules is a fundamental computational primitive with
application in data mining (market basket analysis), databases (histogram construction), networking
(heavy hitters) and more [Han et al. 2007, Sect. 5]. Depending on the particular application, one is
interested in finding all itemsets with frequency greater or equal to a user defined threshold (FIs),
identifying the K most frequent itemsets (top-K), or computing all association rules (ARs) with
user defined minimum support and confidence level (see Sect. 5.4 and 5.5 for additional criteria).

1A preliminary report of this work appeared in the proceedings of ECML PKDD 2012 as [Riondato and Upfal 2012].
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Exact solutions to these problems require scanning the entire dataset, possibly multiple times. For
large datasets that do not fit in main memory, this can be prohibitively expensive. Furthermore,
such extensive computation is often unnecessary, since high quality approximations are sufficient
for most practical applications. Indeed, a number of recent papers (see 2 for more details) explored
the application of sampling for approximate solutions to these problems. However, the efficiency
and practicality of the sampling approach depends on a tight relation between the size of the sample
and the quality of the resulting approximation. Previous works do not provide satisfactory solutions
to this problem.

The technical difficulty in analyzing any sampling technique for frequent itemset discovery prob-
lems is that a-priori any subset of items can be among the most frequent ones, and the number of
subsets is exponential in the number of distinct items appearing in the dataset. A standard analysis
begins with a bound on the probability that a given itemset is either over or under represented in
the sample. Such bound is easy to obtain using a large deviation bound such as the Chernoff bound
or the Central Limit theorem [Mitzenmacher and Upfal 2005]. The difficulty is in combining the
bounds for individual itemsets into a global bound that holds simultaneously for all the itemsets. A
simple application of the union bound vastly overestimates the error probability because of the large
number of possible itemsets, a large fraction of which may not be present in the dataset and therefore
should not be considered. More sophisticated techniques, developed in recent works [Chakaravarthy
et al. 2009; Pietracaprina et al. 2010; Chuang et al. 2005], give better bounds only in limited cases.
A loose bound on the required sample size for achieving the user defined performance guarantees,
decreases the gain obtained from the use of sampling.

In this work we circumvent this problem through a novel application of the Vapnik-Chervonenkis

(VC) dimension concept, a fundamental tool in statistical learning theory. Roughly speaking, the
VC-dimension of a collection of indicator functions (a range space) is a measure of its complexity or
expressiveness (see Sect. 3.2 for formal definitions). A major result [Vapnik and Chervonenkis 1971]
relates the VC-dimension of a range space to a sufficient size for a random sample to simultaneously
approximate all the indicator functions within predefined parameters. The main obstacle in applying
the VC-dimension theory to particular computation problems is computing the VC-dimension of the
range spaces associated with these problems.

We apply the VC-dimension theory to frequent itemsets problems by viewing the presence of an
itemset in a transaction as the outcome of an indicator function associated with the itemset. The
major theoretical contributions of our work are a complete characterization of the VC-dimension
of the range space associated with a dataset, and a tight bound to this quantity. We prove that the
VC-dimension is upper bounded by a characteristic quantity of the dataset which we call d-index.
The d-index is the maximum integer d such that the dataset contains at least d different transactions
of length at least d such that no one of them is a subset of or equal to another in the considered
set of transactions (see Def. 4.4). We show that this bound is tight by demonstrating a large class
of datasets with a VC-dimension that matches the bound. Computing the d-index can be done in
polynomial time but it requires multiple scans of the dataset. We show how to compute an upper
bound to the d-index with a single linear scan of the dataset in an online greedy fashion.

The VC-dimension approach provides a unified tool for analyzing the various frequent itemsets
and association rules problems (i.e., the market basket analysis tasks). We use it to prove tight
bounds on the required sample size for extracting FI’s with a minimum frequency threshold, for
mining the top-K FI’s, and for computing the collection of AR’s with minimum frequency and
“interestingness” thresholds, where the interestingness can be expressed in terms of confidence,
leverage, lift, or other measure. Furthermore, we compute bounds for both absolute and relative
approximations (see Sect. 3.1 for definitions) and our results extend to a variety of other measures
proposed in the literature (see Sect. 5.4). We show that high quality approximations can be obtained
by mining a very small random sample of the dataset. Table I compares our technique to the best
previously known results for the various problems (see Sect. 3.1 for definitions). Our bounds, which
are linear in the VC-dimension associated with the dataset, are consistently smaller than previous
results and less dependent on other parameters of the problem such as the minimum frequency
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threshold and the dataset size. An extensive experimental evaluation demonstrates the advantage of
our technique in practice.

This work is the first to provide a characterization and an explicit bound for the VC-dimension of
the range space associated with a dataset and to apply the result to the extraction of FI’s and AR’s
from random sample of the dataset. We believe that this connection with statistical learning theory
can be furtherly exploited in other data mining problems.

Table I: Required sample sizes (as number of transactions) for various approximations to
FI’s and AR’s as functions of the VC-dimension v, the maximum transaction length ∆, the
number of items |I|, the accuracy ε , the failure probability δ , the minimum frequency θ ,
and the minimum confidence γ . Note that v ≤ ∆ ≤ |I| (but v < |I|). The constant c and c

� are
absolute, with c ≤ 0.5. See Sect. 5.4 for the sample sizes for approximations of the collection
of association rules according to interestingness measures other than confidence.

Task/Approx. This work Best previous work

FI’s/abs. 4c

ε2

�
v+ log 1

δ
�

O

�
1
ε2

�
|I|+ log 1

δ
��†

FI’s/rel. 4(2+ε)c
ε2(2−ε)θ

�
v log 2+ε

θ(2−ε) + log 1
δ

�
24

ε2(1−ε)θ

�
∆+5+ log 4

(1−ε)θδ

�
‡

top-K FI’s/abs. 16c

ε2

�
v+ log 1

δ
�

O

�
1
ε2

�
|I|+ log 1

δ
��§

top-K FI’s/rel. 4(2+ε)c�
ε2(2−ε)θ

�
v log 2+ε

θ(2−ε) + log 1
δ

�
not available

AR’s/abs. O

�
(1+ε)

ε2(1−ε)θ

�
v log 1+ε

θ(1−ε) + log 1
δ

��
not available

AR’s/rel. 16c
�(4+ε)

ε2(4−ε)θ

�
v log 4+ε

θ(4−ε) + log 1
δ

�
48

ε2(1−ε)θ

�
∆+5+ log 4

(1−ε)θδ

�
¶

† [Toivonen 1996; Jia and Lu 2005; Li and Gopalan 2005; Zhang et al. 2003]
‡ [Chakaravarthy et al. 2009]
§ [Scheffer and Wrobel 2002; Pietracaprina et al. 2010]
¶ [Chakaravarthy et al. 2009]

Outline. We review relevant previous work in Sect. 2. In Sect. 3 we formally define the problem
and our goals, and introduce definitions and lemmas used in the analysis. The main part of the
analysis with derivation of a strict bound to the VC-dimension of association rules is presented in
Sect. 4, while our algorithms and sample sizes for mining FI’s, top-K FI’s, and association rules
through sampling are in Sect. 5. Section 6 contains an extensive experimental evaluation of our
techniques. A discussion of our results and the conclusions can be found in Sect. 7.

2. RELATED WORK

Agrawal et al. [1993] introduced the problem of mining association rules in the basket data model,
formalizing a fundamental task of information extraction in large datasets. Almost any known al-
gorithm for the problem starts by solving a FI’s problem and then generate the association rules
implied by these frequent itemsets. Agrawal and Srikant [1994] presented Apriori, the most well-
known algorithm for mining FI’s, and FastGenRules for computing association rules from a set of
itemsets. Various ideas for improving the efficiency of FI’s and AR’s algorithms have been studied,
and we refer the reader to the survey by Ceglar and Roddick [2006] for a good presentation of recent
contributions. However, the running times of all known algorithms heavily depend on the size of the
dataset.

Mannila et al. [1994] were the first to propose the use of sampling to efficiently identify the col-
lection of FI’s, presenting some empirical results to validate the intuition. Toivonen [1996] presents
an algorithm that, by mining a random sample of the dataset, builds a candidate set of frequent
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itemsets which contains all the frequent itemsets with a probability that depends on the sample size.
There are no guarantees that all itemsets in the candidate set are frequent, but the set of candidates
can be used to efficiently identify the set of frequent itemsets with at most two passes over the entire
dataset. This work also suggests a bound on the sample size sufficient to ensure that the frequencies
of itemsets in the sample are close to their real one. The analysis uses Chernoff bounds and the
union bound. The major drawback of this sample size is that it depends linearly on the number of
individual items appearing in the dataset.

Zaki et al. [1997] show that static sampling is an efficient way to mine a dataset, but choosing the
sample size using Chernoff bounds is too conservative, in the sense that it is possible to obtain the
same accuracy and confidence in the approximate results at smaller sizes than what the theoretical
analysis proves.

Other works tried to improve the bound to the sample size by using different techniques from
statistics and probability theory like the central limit theorem [Zhang et al. 2003; Li and Gopalan
2005; Jia and Lu 2005] or hybrid Chernoff bounds [Zhao et al. 2006].

Since theoretically-derived bounds to the sample size were too loose to be useful, a corpus of
works applied progressive sampling to extract FI’s [John and Langley 1996; Chen et al. 2002;
Parthasarathy 2002; Brönnimann et al. 2003; Chuang et al. 2005; Jia and Gao 2005; Wang et al.
2005a; Hwang and Kim 2006; Hu and Yu 2006; Mahafzah et al. 2009; Chen et al. 2011; Chandra
and Bhaskar 2011]. Progressive sampling algorithms work by selecting a random sample and then
trimming or enriching it by removing or adding new sampled transactions according to a heuristic
or a self-similarity measure that is fast to evaluate, until a suitable stopping condition is satisfied.
The major downside of this approach is that it offers no guarantees on the quality of the obtained
results.

Another approach to estimating the required sample size is presented by Chuang et al. [2008]. The
authors give an algorithm that studies the distribution of frequencies of the itemsets and uses this
information to fix a sample size for mining frequent itemsets, but without offering any theoretical
guarantee.

A recent work by Chakaravarthy et al. [2009] gives the first analytical bound on a sample size that
is linear in the length of the longest transaction, rather than in the number of items in the dataset.
This work is also the first to present an algorithm that uses a random sample of the dataset to mine
approximated solutions to the AR’s problem with quality guarantees. No experimental evaluation
of their methods is presented, and they do not address the top-K FI’s problem. Our approach gives
better bounds for the problems studied in [Chakaravarthy et al. 2009] and applies to related problems
such as the discovery of top-K FI’s and absolute approximations.

Extracting the collection of top-K frequent itemsets is a more difficult task since the correspond-
ing minimum frequency threshold is not known in advance [Cheung and Fu 2004; Fu et al. 2000].
Some works solved the problem by looking at closed top-K frequent itemsets, a concise representa-
tion of the collection [Wang et al. 2005b; Pietracaprina and Vandin 2007], but they suffers from the
same scalability problems as the algorithms for exactly mining FI’s with a fixed minimum frequency
threshold.

Previous works that used sampling to approximation the collection of top-K FI’s [Scheffer and
Wrobel 2002; Pietracaprina et al. 2010] used progressive sampling. Both works provide (similar)
theoretical guarantees on the quality of the approximation. What is more interesting to us, both
works present a theoretical upper bound to the sample size needed to compute such an approxima-
tion. The size depended linearly on the number of items. In contrast, our results give a sample size
that only in the worst case is linear in the number of items but can be (and is, in practical cases) much
less than that, depending on the dataset, a flexibility not provided by previous contributions. Sam-
pling is used by Vasudevan and Vojonović [2009] to extract an approximation of the top-K frequent
individual items from a sequence of items, which contains no item whose actual frequency is less
than fK − ε for a fixed 0 < ε < 1, where fK is the actual frequency of the K-th most frequent item.
They derive a sample size sufficient to achieve this result, but they assume the knowledge of fK ,
which is rarely the case. An empirical sequential method can be used to estimate the right sample
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size. Moreover, the results cannot be directly extended to the mining of top-K frequent item(set)s
from datasets of transactions with length greater than one.

The Vapnik-Chervonenkis dimension was first introduced in a seminal article [Vapnik and Cher-
vonenkis 1971] on the convergence of probability distributions, but it was only with the work
of Haussler and Welzl [1986] and Blumer et al. [1989] that it was applied to the field of learning.
Boucheron et al. [2005] present a good survey of the field with many recent advances. Since then,
VC-dimension has encountered enormous success and application in the fields of computational ge-
ometry [Chazelle 2000; Matoušek 2002] and machine learning [Anthony and Bartlett 1999; Devroye
et al. 1996]. Other applications include database management and graph algorithms. In the former,
it was used in the context of constraint databases to compute good approximations of aggregate
operators [Benedikt and Libkin 2002]. VC-dimension-related results were also recently applied in
the field of database privacy by Blum et al. [2008] to show a bound on the number of queries needed
for an attacker to learn a private concept in a database. Gross-Amblard [2011] showed that content
with unbounded VC-dimension can not be watermarked for privacy purposes. Riondato et al. [2011]
computed an upper bound to the VC-dimension of classes of SQL queries and used it to develop
a sampling-based algorithm for estimating the size of the output (selectivity) of queries run on a
dataset. The results therein, although very different from what presented here due to the different
settings, the different goals, and the different techniques used, inspired our present work. In the
graph algorithms literature, VC-Dimension has been used to develop algorithms to efficiently detect
network failures [Kleinberg 2003; Kleinberg et al. 2008], balanced separators [Feige and Mahdian
2006], events in a sensor networks [Gandhi et al. 2010], and compute the shortest path [Abraham
et al. 2011]. To our knowledge, this work is the first application of VC-dimension to knowledge
discovery.

In this present article we extend our previous published work [Riondato and Upfal 2012] in a
number of ways. The first prominent change is the development and analysis of a tighter bound to
the VC-dimension of the range space associated to the dataset, together with a new polynomial time
algorithm to compute such bound and a very fast linear time algorithm to compute an upper bound .
We present two novel methods to furtherly speed up the computation of this quantity in Sect. 4.2. A
new discussion about the relationship between these quantities can be found in Sect. 5.6. The second
important change is the extension of our methods for approximating the collection of association
rules to measures of interestingness other than confidence (Sect. 5.4). We also discuss how effective
are our methods in the case one is interested in closed frequent itemsets in Sect. 5.5. An interesting
connection with the problem of monotone monomials is new and presented in Sect. 4.3. The proofs
to most of our results were not published in the conference version but are presented here. We also
added numerous examples to improve the understanding of the definitions and of the theoretical
results, and explained the connection of our results with other known results in statistical learning
theory. As far as the experimental evaluation is concerned, we added comments on the precision and
recall of our methods and on their scalability, which is also evident from their use inside a paral-
lel/distributed algorithm for FI’s and AR’s mining [Riondato et al. 2012] for the MapReduce [Dean
and Ghemawat 2004] platform that we describe in the conclusions.

3. PRELIMINARIES

This section introduces basic definitions and properties that will be used in later sections.

3.1. Datasets, Itemsets, and Association Rules

A dataset D is a collection of transactions, where each transaction τ is a subset of a ground set I2

There can be multiple identical transactions in D. Elements of I are called items and subsets of I
are called itemsets. Let |τ| denote the number of items in transaction τ , which we call the length of
τ . Given an itemset A ⊆ I, the support set of A, denoted as TD(A), is the set of transactions in D

2We assume I = ∪τ∈Dτ , i.e., all the elements of I appear in at least one transaction from D.
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that contain A. The support of A, sD(A) = |TD(A)|, is the number of transaction in D that contains
A, and the frequency of A, fD(A) = |TD(A)|/|D|, is the fraction of transactions in D that contain A.

Definition 3.1. Given a minimum frequency threshold θ , 0 < θ ≤ 1, the FI’s mining task with

respect to θ is finding all itemsets with frequency ≥ θ , i.e., the set

FI(D,I,θ) = {(A, fD(A)) : A ⊆ I and fD(A)≥ θ} .

To define the collection of top-K FI’s, we assume a fixed canonical ordering of the itemsets in
2I by decreasing frequency in D, with ties broken arbitrarily, and label the itemsets A1,A2, . . . ,Am

according to this ordering. For a given 1 ≤ K ≤ m, we denote by f
(K)
D the frequency fD(AK) of the

K-th most frequent itemset AK , and define the set of top-K FI’s (with their respective frequencies)
as

TOPK(D,I,K) = FI

�
D,I, f

(K)
D

�
.

One of the main uses of frequent itemsets is in the discovery of association rules. An association

rule W is an expression “A⇒B” where A and B are itemsets such that A∩B= /0. The support sD(W )
(resp. frequency fD(W )) of the association rule W is the support (resp. frequency) of the itemset
A∪B. The confidence cD(W ) of W is the ratio fD(A∪B)/ fD(A). Intuitively, an association rule
“A ⇒ B” expresses, through its support and confidence, how likely it is for the itemset B to appear
in the same transactions as itemset A. The confidence of the association rule can be interpreted the
conditional probability of B being present in a transaction that contains A. Many other measures can
be used to quantify the interestingness of an association rule [Tan et al. 2004] (see also Sect. 5.4).

Definition 3.2. Given a dataset D with transactions built on a ground set I, and given a mini-
mum frequency threshold θ and a minimum confidence threshold γ , the AR’s task with respect to θ
and γ is to identify the set

AR(D,I,θ ,γ) = {(W, fD(W ),cD(W )) | association rule W, fD(W )≥ θ ,cD(W )≥ γ} .

We say that an itemset A (resp. an association rule W ) is in FI(D,I,θ) or in TOPK(D,I,K)
(resp. in AR(D,I,θ ,γ)) when there A (resp. W ) is part of a pair in FI(D,I,θ) or TOPK(D,I,K),
(resp. a triplet AR(D,I,θ ,γ)).

In this work we are interested in extracting absolute and relative approximations of the sets
FI(D,I,θ), TOPK(D,I,K) and AR(D,I,θ ,γ).

Definition 3.3. Given a parameter εabs (resp. εrel), an absolute εabs-close approximation (resp. a
relative εrel-close approximation) of FI(D,I,θ) is a set C = {(A, fA) : A ⊆ I, fA ∈ [0,1]} of pairs
(A, fA) where fA approximates fD(A). C is such that:

(1) C contains all itemsets appearing in FI(D,I,θ);
(2) C contains no itemset A with frequency fD(A)< θ − εabs (resp. fD(A)< (1− εrel)θ );
(3) For every pair (A, fA) ∈ C, it holds | fD(A)− fA|≤ εabs (resp. | fD(A)− fA|≤ εrel fD(A)).

As an example, consider a dataset D where transactions have all length one and are built on the
ground set I = {a,b,c,d}. Suppose that fD(a) = 0.4, fD(b) = 0.3, fD(c) = 0.2, and fD(d) =
0.1 (clearly there are no other itemsets). If we set θ = 0.22 and ε = 0.05, an absolute ε-close
approximation C of FI(D,I,θ) must contain two pairs (a, fa) and (b, fb) as a,b ∈ FI(Ds,I,θ). At
the same time, C might contain a pair (c, fc), because fD(c)> θ − ε . On the other hand C must not

contain a pair (d, fd) because fD(d)< θ −ε . The values fa, fb, and eventually fc must be not more
than ε far from fD(a), fD(b), and fD(c), respectively.

The above definition extends easily to the case of top-K frequent itemsets mining using the equiv-
alence

TOPK(D,I,K) = FI

�
D,I, f

(K)
D

�
:

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



Efficient Discovery of Association Rules and Frequent Itemsets through Sampling A:7

an absolute (resp. relative) ε-close approximation to FI

�
D,I, f

(K)
D

�
is an absolute (resp. relative)

ε-close approximation to TOPK(D,I,K).
For the case of association rules, we have the following definition.

Definition 3.4. Given a parameter εabs (resp. εrel), an absolute εabs-close approximation (resp. a
relative εrel-close approximation) of AR(D,I,θ ,γ) is a set

C = {(W, fW ,cW ) : association rule W, fW ∈ [0,1],cW ∈ [0,1]}

of triplets (W, fW ,cW ) where fW and cW approximate fD(W ) and cD(W ) respectively. C is such
that:

(1) C contains all association rules appearing in AR(D,I,θ ,γ);
(2) C contains no association rule W with frequency fD(W )< θ −εabs (resp. fD(W )< (1−εrel)θ );
(3) For every triplet (W, fW ,cW ) ∈ C, it holds | fD(W )− fW |≤ εabs (resp. | fD(W )− fW |≤ εrelθ ).
(4) C contains no association rule W with confidence cD(W )< γ −εabs (resp. cD(W )< (1−εrel)γ);
(5) For every triplet (W, fW ,cW ) ∈ C, it holds |cD(W ) − cW | ≤ εabs (resp. |cD(W ) − cW | ≤

εrelcD(W )).

Note that the definition of relative ε-close approximation to FI(D,I,θ) (resp. to AR(D,I,θ ,γ))
is more stringent than the definition of ε-close solution to frequent itemset mining (resp. association
rule mining) in [Chakaravarthy et al. 2009, Sect. 3]. Specifically, we require an approximation of
the frequencies (and confidences) in addition to the approximation of the collection of itemsets or
association rules (Property 3 in Def. 3.3 and properties 3 and 5 in Def. 3.4).

3.2. VC-Dimension

The Vapnik-Chernovenkis (VC) Dimension of a space of points is a measure of the complexity or
expressiveness of a family of indicator functions (or equivalently a family of subsets) defined on that
space [Vapnik and Chervonenkis 1971]. A finite bound on the VC-dimension of a structure implies
a bound on the number of random samples required for approximately learning that structure. We
outline here some basic definitions and results and refer the reader to the works of Alon and Spencer
[2008, Sect. 14.4], Devroye et al. [1996] and Vapnik [1999] for more details on VC-dimension. See
Sect. 2 for applications of VC-dimension in computer science.

We define a range space as a pair (X ,R) where X is a (finite or infinite) set and R is a (finite or
infinite) family of subsets of X . The members of X are called points and those of R are called ranges.
Given A ⊂ X , The projection of R on A is defined as PR(A) = {r∩A : r ∈ R}. If PR(A) = 2A, then A

is said to be shattered by R. The VC-dimension of a range space is the cardinality of the largest set
shattered by the space:

Definition 3.5. Let S = (X ,R) be a range space. The Vapnik-Chervonenkis dimension (or VC-

dimension) of S, denoted as VC(S) is the maximum cardinality of a shattered subset of X . If there
are arbitrary large shattered subsets, then VC(S) = ∞.

Note that a range space (X ,R) with an arbitrary large set of points X and an arbitrary large family
of ranges R can have a bounded VC-dimension. A simple example is the family of intervals in [0,1]
(i.e. X is all the points in [0,1] and R all the intervals [a,b], such that 0 ≤ a ≤ b ≤ 1). Let A = {x,y,z}
be the set of three points 0 < x < y < z < 1. No interval in R can define the subset {x,z} so the VC-
dimension of this range space is less than 3 [Matoušek 2002, Lemma 10.3.1]. Another example is
shown in Fig. 1.

The main application of VC-dimension in statistics and learning theory is its relation to the size
of the sample needed to approximate learning the ranges, in the following sense.
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Fig. 1: Example of range space and VC-dimension. The space of points is the plane R2 and the
set of ranges is the set of all axis-aligned rectangles. The figure on the left shows graphically that
it is possible to shatter a set of four points using 16 rectangles. On the right instead, one can see
that it is impossible to shatter five points, as, for any choice of the five points, there will always
be one (the red point in the figure) that is internal to the convex hull of the other four, so it would
be impossible to find an axis-aligned rectangle containing the four points but not the internal one.
Hence VC((X ,R)) = 4.

Definition 3.6. Let (X ,R) be a range space and let A be a finite subset of X . For 0 < ε < 1, a
subset B ⊂ A is an ε-approximation for A if for all r ∈ R, we have

����
|A∩ r|
|A| − |B∩ r|

|B|

����≤ ε. (1)

A similar definition offers relative guarantees.

Definition 3.7. Let (X ,R) be a range space and let A be a finite subset of X . For 0 < p,ε < 1, a
subset B ⊂ A is a relative (p,ε)-approximation for A if for any range r ∈ R such that |A∩ r|/|A|≥ p

we have
����
|A∩ r|
|A| − |B∩ r|

|B|

����≤ ε |A∩ r|
|A|

and for any range r ∈ R such that |A∩ r|/|A|< p we have |B∩ r|/|B|≤ (1+ ε)p.

An ε-approximation (resp. a relative (p,ε)-approximation) can be constructed by random sam-
pling points of the point space [Har-Peled and Sharir 2011, Thm. 2.12 (resp. 2.11), see also [Li et al.
2001]].

THEOREM 3.8. There is an absolute positive constant c (resp. c
�
) such that if (X ,R) is a range-

space of VC-dimension at most v, A ⊂ X is a finite subset and 0 < ε,δ < 1 (resp. and 0 < p < 1),

then a random subset B ⊂ A of cardinality m, where

m ≥ min
�
|A|, c

ε2

�
v+ log

1
δ

��
, (2)

(resp. m ≥ min
�
|A|,c�ε−2

p
−1 (v log1/p− log1/δ )

�
) is an ε-approximation (resp. a relative (p,ε)-

approximation) for A with probability at least 1−δ .

Note that throughout the work we assume the sample to be drawn with replacement if m < |A|
(otherwise the sample is exactly the set A). The constants c and c

� are absolute and do not depend on
the range space or on any other parameter. Löffler and Phillips [2009] estimated experimentally that
the absolute constant c is at most 0.5. No upper bound is currently known for c

�. Up to a constant,
the bounds presented in Thm. 3.8 are tight [Li et al. 2001, Thm. 5].
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It is also interesting to note that an ε-approximation of size O(vε−2(logv− logε)) can be built
deterministically in time O(v3v(ε−2(logv− logε))v|X |) [Chazelle 2000].

4. THE DATASET’S RANGE SPACE AND ITS VC-DIMENSION

Our next step is to define a range space of the dataset and the itemsets. We will use this space
together with Theorem 3.8 to compute the bounds to sample sizes sufficient to compute approximate
solutions for the various tasks of market basket analysis.

Definition 4.1. Let D be a dataset of transactions that are subsets of a ground set I. We define
S = (X ,R) to be a range space associated with D such that:

(1) X =D is the set of transactions in the dataset.
(2) R = {TD(A) | A ⊆ I,A �= /0} is a family of sets of transactions such that for each non-empty

itemset A ⊆ I, the set TD(A) = {τ ∈ D | A ⊆ τ} of all transactions containing A is an element
of R.

It is easy to see that in practice the collection R of ranges contains all and only the sets TD(A)
where A is a closed itemset, i.e., a set such that for each non-empty B ⊆ A we have TD(B) = TD(A)
and for any C ⊃A, TD(C)� TD(A). Closed itemsets are used to summarize the collection of frequent
itemsets [Calders et al. 2006].

The VC-Dimension of this range space is the maximum size of a set of transactions that can
be shattered by the support sets of the itemsets, as expressed by the following theorem and the
following corollary.

THEOREM 4.2. Let D be a dataset and let S = (X ,R) be the associated range space. Let v ∈N.

Then VC(S) ≥ v if and only if there exists a set A ⊆ D of v transactions from D such that for each

subset B ⊆ A, there exists an itemset IB such that the support set of IB in A is exactly B, that is

TA(IB) = B.

PROOF. “⇐”. From the definition of IB, we have that TD(IB)∩A = B. By definition of PR(A)
this means that B ∈ PR(A), for any subset B of A. Then PR(A) = 2A, which implies VC(S)≥ v.

“⇒”. Let VC(S)≥ v. Then by the definition of VC-Dimension there is a set A⊆D of v transac-
tions from D such that PR(A) = 2A. By definition of PR(A), this means that for each subset B ⊆A
there exists an itemset IB such that TD(IB)∩A= B. We want to show that no transaction ρ ∈A\B
contains IB. Assume now by contradiction that there is a transaction ρ∗ ∈A\B containing IB. Then
ρ∗ ∈ TD(IB) and, given that ρ∗ ∈A, we have ρ∗ ∈ TD(IB)∩A. But by construction, we have that
TD(IB)∩A = B and ρ∗ /∈ B because ρ∗ ∈A\B. Then we have a contradiction, and there can not
be such a transaction ρ∗.

COROLLARY 4.3. Let D be a dataset and S = (D,R) be the corresponding range space. Then

the VC-Dimension VC(S) of S is the maximum integer v such that there is a set A⊆D of v transac-

tions from D such that for each subset B ⊆A of A, there exists an itemset IB such that the support

of IB in A is exactly B, that is TA(IB) = B.

For example, consider the dataset D = {{a,b,c,d},{a,b},{a,c},{d}} of four transactions built
on the set of items I = {a,b,c,d}. It is easy to see that the set of transactions A= {{a,b},{a,c}}
can be shattered: A = A∩ TD({a}), {{a,b}} = A∩ TD({a,b}), {{a,c}} = A∩ TD({a,c}), /0 =
A∩TD({d}). It should be clear that there is no set of three transactions in D that can be shattered,
so the VC-dimension of the range space associated to D is exactly two.

Computing the exact VC-dimension of the range space associated to a dataset is extremely ex-
pensive from a computational point of view. This does not come as a surprise, as it is known that
computing the VC-dimension of a range space (X ,R) can take time O(|R||X |log |R|) [Linial et al.
1991, Thm. 4.1]. It is instead possible to give an upper bound to the VC-dimension, and a procedure
to efficiently compute the bound.
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We now define a characteristic quantity of the dataset, called the d-index and show that it is a tight
bound to the VC-dimension of the range space associated to the dataset, then present an algorithm
to efficiently compute an upper bound to the d-index with a single linear scan of the dataset.

Definition 4.4. Let D be a dataset. The d-index of D is the maximum integer d such that D
contains at least d different transactions of length at least d such that no one of them is a subset of
another, that is, the transactions form an anti-chain.

Consider now the dataset D = {{a,b,c,d},{a,b,d},{a,c},{d}} of four transactions built
on the set of items I = {a,b,c,d}. The d-index of D is 2, as the transactions {a,b,d} and
{a,c} form an anti-chain. Note that the anti-chain determining the d-index is not necessar-
ily the largest anti-chain that can be built on the transactions of D. For example, if D =
{{a,b,c,d},{a,b},{a,c},{a},{b},{c},{d}}, the largest anti-chain would be {{a},{b},{c},{d}},
but the anti-chain determining the d-index of the dataset would be {{a,b},{a,c},{d}}.

Intuitively, the reason for considering an anti-chain of transactions is that, if τ is a transaction that
is a subset of another transaction τ �, ranges containing τ � necessarily also contain τ (the opposite is
not necessarily true), so it would be impossible to shatter a set containing both transactions.

It is easy to see that the d-index of a dataset built on a set of items I is at most equal to the length
of the longest transaction in the dataset and in any case no greater than |I|−1.

The d-index is an upper bound to the VC-dimension of a dataset.

THEOREM 4.5. Let D be a dataset with d-index d. Then the range space S = (X ,R) corre-

sponding to D has VC-dimension at most d.

PROOF. Let � > d and assume that S has VC-dimension �. From Def. 3.5 there is a set K of �
transactions of D that is shattered by R. Clearly, K cannot contain any transaction equal to I, because
such transaction would appear in all ranges of R and so it would not be possible to shatter K. At the
same time, for any two transactions τ,τ � in K we must have neither τ ⊆ τ � nor τ � ⊆ τ , otherwise
the shorter transaction of the two would appear in all ranges where the longer one appears, and so it
would not be possible to shatter K. Then K must be an anti-chain. From this and from the definitions
of d and �, K must contain a transaction τ such that |τ|≤ d. The transaction τ is a member of 2�−1

subsets of K. We denote these subsets of K containing τ as Ai, 1 ≤ i ≤ 2�−1, labeling them in an
arbitrary order. Since K is shattered (i.e., PR(K) = 2K), we have

Ai ∈ PR(K),1 ≤ i ≤ 2�−1.

From the above and the definition of PR(K), it follows that for each set of transactions Ai there must
be a non-empty itemset Bi such that

TD (Bi)∩K =Ai ∈ PR(K). (3)

Since the Ai are all different from each other, this means that the TD(Bi) are all different from each
other, which in turn requires that the Bi be all different from each other, for 1 ≤ i ≤ 2�−1.

Since τ ∈Ai and τ ∈K by construction, it follows from (3) that

τ ∈ TD (Bi) ,1 ≤ i ≤ 2�−1.

From the above and the definition of TD(Bi), we get that all the itemsets Bi,1 ≤ i ≤ 2�−1 appear in
the transaction τ . But |τ| ≤ d < �, therefore τ can only contain at most 2d − 1 < 2�−1 non-empty
itemsets, while there are 2�−1 different itemsets Bi.

This is a contradiction, therefore our assumption is false and K cannot be shattered by R, which
implies that VC(S)≤ d.

This bound is strict, i.e., there are indeed datasets with VC-dimension exactly d, as formalized by
the following Theorem.
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THEOREM 4.6. There exists a dataset D with d-index d and such the corresponding range

space has VC-dimension exactly d.

PROOF. For d = 1, D can be any dataset with at least two different transactions τ = {a} and τ � =
{b} of length 1. The set {τ}⊆D is shattered because TD({a})∩{τ}= {τ} and TD({b})∩{τ}= /0.

Without loss of generality, let the ground set I be N. For a fixed d > 1, let τi = {0,1,2, . . . , i−
1, i+1, . . . ,d} 1≤ i≤ d, and consider the set of d transactions K= {τi,1≤ i≤ d}. Note that |τi|= d

and |K|= d and for no pair of transactions τi,τ j with i �= j we have either τi ⊆ τ j nor τ j ⊆ τi.
D is a dataset containing K and any number of arbitrary transactions from 2I of length at most

d. Let S = (X ,R) be the range space corresponding to D. We now show that K ⊆ X is shattered by
ranges from R, which implies VC(S)≥ d.

For each A ∈ 2K \{K, /0}, let YA be the itemset

YA = {1, . . . ,d}\{i : τi ∈A}.
Let YK = {0} and let Y/0 = {d +1}. By construction we have

TK(YA) =A,∀A⊆K
i.e., the itemset YA appears in all transactions in A ⊆ K but not in any transaction from K\A, for
all A ∈ 2K. This means that

TD(YA)∩K = TK(YA) =A,∀A⊆K.

Since for all A⊆K,TD(YA) ∈ R by construction, the above implies that

A ∈ PR(K),∀A⊆K
This means that K is shattered by R, hence VC(S) ≥ d. From this and Thm. 4.5, we can conclude
that VC(S) = d.

Consider again the dataset D = {{a,b,c,d},{a,b},{a,c},{d}} of four transactions built on the
set of items I = {a,b,c,d}. We argued before that the VC-dimension of the range space associated
to this dataset is exactly two, and it is easy to see that the d-index of D is also two.

4.1. Computing the d-index of a dataset

The d-index of a dataset D exactly can be obtained in polynomial time by computing, for each
length �, the size w� of the largest anti-chain that can be built using the transactions of length at least
� from D. If w ≥ �, then the d-index is at least �. The maximum � for which w� ≥ � is the d-index of
D. The size of the largest anti-chain that can be built on the elements of a set can be computed by
solving a maximum matching problem on a bipartite graph that has two nodes for each element of
the set [Ford and Fulkerson 1962]. Computing the maximum matching can be done in polynomial
time [Hopcroft and Karp 1973].

In practice, this approach can be quite slow as it requires, for each value taken by �, a scan of
the dataset to create the set of transactions of length at least �, and to solve a maximum matching
problem. Hence, we now present an algorithm to efficiently compute an upper bound q to the d-index
with a single linear scan of the dataset and with O(q) memory.

It is easy to see that the d-index of a dataset D is upper bounded by the maximum integer q such
that D contains at least q different (that is not containing the same items) transactions of length at
least q and less than |I|. This upper bound, which we call d-bound, ignores the constraint that the
transactions that concur to the computation of the d-index must form an anti-chain. We can compute
the d-bound in a greedy fashion by scanning the dataset once and keeping in memory the maximum
integer q such that we saw at least q transactions of length q until this point of the scanning. We also
keep in memory the q longest different transactions, to avoid counting transactions that are equal
to ones we have already seen because, as we already argued, a set containing identical transactions
can not be shattered and copies of a transaction should not be included in the computation of the
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ALGORITHM 1: Compute the d-bound, an upper bound to the d-index of a dataset
Input : a dataset D
Output: the d-bound q, an upper bound to the d-index of D

1 τ ← getNextTransaction(D)
2 T ← {τ}
3 q ← 1
4 while scanIsNotComplete() do
5 τ ← getNextTransaction(D)
6 if |τ|> q and τ �= I and ¬∃a ∈ T such that τ = a then
7 R← T ∪{τ}
8 q ← max integer such that R contains at least q transactions of length at least q

9 T ← set of the q longest transactions from R (ties broken arbitrarily)
10 end
11 end
12 return q

d-index, so it is not useful to include them in the computation of the d-bound. The pseudocode
for computing the d-bound in the way we just described is presented in Algorithm 1. The function
getNextTransaction returns one transaction at a time from the dataset. Note though that this
does not imply that, in a disk-based system, the algorithm needs a random read for each transaction.
If the dataset is stored in a block-based fashion, one can read one block at a time and scan all
transactions in that block, given that the order in which the transactions are scanned is not relevant
for the correctness of the algorithm. This means that in the worst-case the algorithm performs a
random read per block. The following lemma deals with the correctness of the algorithm.

LEMMA 4.7. The algorithm presented in Algorithm 1 computes the maximum integer q such

that D contains at least q different transactions of length at least q and less than |I|.
PROOF. The algorithm maintains the following invariant after each update of T : the set T con-

tains the � longest (ties broken arbitrarily) different transactions of length at least �, where � is the
maximum integer r for which, up until to this point of the scan, the algorithm saw at least r different
transactions of length at least r. It should be clear that if the invariant holds after the scanning is
completed, the thesis follows because the return value q is exactly the size |T | = � after the last
transaction has been read and processed.

It is easy to see that this invariant is true after the first transaction has been scanned. Suppose
now that the invariant is true at the beginning of the n+1-th iteration of the while loop, for any n,
0 ≤ n ≤ |D|− 1. We want to show that it will still be true at the end of the n+ 1-th iteration. Let
τ be the transaction examined at the n+ 1-th iteration of the loop. If τ = |I|, the invariant is still
true at the end of the n+ 1-th iteration, as � does not change and neither does T because the test
of the condition on line 6 of Algorithm 1 fails. The same holds if |τ| < �. Consider now the case
|τ| > �. If T contained, at the beginning of the n+ 1-th iteration, one transaction equal to τ , then
clearly � would not change and neither does T , so the invariant is still true at the end of the n+1-th
iteration. Suppose now that |τ|> � and that T did not contain any transaction equal to τ . Let �i be,
for i = 1, . . . , |D|−1, the value of � at the end of the i-th iteration, and let �0 = 1. If T contained, at
the beginning of the n+ 1-th iteration, zero transactions of length �n, then necessarily it contained
�n transactions of length greater than �n, by our assumption that the invariant was true at the end of
the n-th iteration. Since |τ|> �n, it follows that R= T ∪{τ} contains �n +1 transactions of size at
least �n + 1, hence the algorithm at the end of the n+ 1-th iteration has seen �n + 1 transactions of
length at least �n +1, so � = �n+1 = �n +1. This implies that at the end of iteration n+1 the set T
must have size �n+1 = �n + 1, i.e., must contain one transaction more than at the beginning of the
n+1-th iteration. This is indeed the case as the value q computed on line 8 of Algorithm 1 is exactly
|R|= �n +1 because of what we just argued about R, and therefore T is exactly R at the end of the
n+1-th iteration and contains the �= �n+1 longest different transactions of length at least �, which
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is exactly what is expressed by the invariant. If instead T contained, at the beginning of the n+1-th
iteration, one or more transactions of length �n, then T contains at most �n−1 transactions of length
greater than �n, and R contains at most �n transactions of length at least �n +1, hence q = �n. This
also means that the algorithm has seen, before the beginning of the n+1-th iteration, at most �n −1
different transactions strictly longer than �n. Hence, after seeing τ , the algorithm has seen at most �n

transactions of length at least �n+1, so at the end of the n+1-th iteration we will have �= �n+1 = �n.
This means that the size of T at the end of the n+1-th iteration is the same as it was at the beginning
of the same iteration. This is indeed the case because of what we argued about q. At the end of the
n+1-th iteration, T contains 1) all transactions of length greater than �n that it already contained at
the end of the n-th iteration, and 2) the transaction τ , and 3) all but one the transactions of length �n

that it contained at the end of the n-th iteration. Hence the invariant is true at the end of the n+1-th
iteration because � did not change and we replaced in T a transaction of length �n with a longer
transaction, that is, τ . Consider now the case of |τ| = �. Clearly if there is a transaction in T that
is equal to τ , the invariant is still true at the end of the n+ 1-th iteration, as � does not change and
T stays the same. If T did not contain, at the beginning of the n+ 1-th iteration, any transaction
equal to τ , then also in this case � would not change, that is � = �n+1 = �n, because by definition
of � the algorithm already saw at least � different transactions of length at least �. This implies that
T must have, at the end of the n+ 1-th iteration, the same size that it had at the beginning of the
n+1-th iteration. This is indeed the case because the set R contains �+1 different transactions of
size at least �, but there is no value b > � for which R contains b transactions of length at least b,
because of what we argued about �, hence |T | = q = �. At the end of the n+ 1-th iteration the set
T contains 1) all the transactions of length greater than � that it contained at the beginning of the
n+ 1-th iteration, and 2) enough transactions of length � to make |T | = �. This means that T can
contain, at the end of the n+ 1-th iteration, exactly the same set of transactions that it contained
at the beginning n+1-th iteration and since, as we argued, � does not change, then the invariant is
still true at the end of the n+1-th iteration. This completes our proof that the invariant still holds at
the end of the n+1 iteration for any n, and therefore holds at the end of the algorithm, proving the
thesis.

The fact that the computation of the d-bound can be easily performed with a single linear scan of
the dataset in an online greedy fashion makes it extremely practical also for updating the bound as
new transactions are added to the dataset.

4.2. Speeding up the VC-dimension approximation task

We showed that the computation of the d-index or of the d-bound can be efficiently performed, and
especially the latter only requires a single linear scan of the dataset, in a block-by-block fashion
if the dataset is stored on disk. In some settings this may still be an expensive operation. We now
present two ways to reduce the cost of this operation.

Empirical VC-dimension. The empirical VC-dimension of a range space S = (X ,R) on a subset
Y ⊆ X of the set of points is the VC-dimension of the range space (Y,R�), where R

� = {Y ∩ f : f ∈
R} [Boucheron et al. 2005, Sect. 3]. If Y is a random sample from X of size �, and the empirical
VC-dimension of S on Y is bounded above by v

�, then with probability at least 1− δ , Y is an ε-
approximation for X for

ε = 2

�
2v� log(�+1)

�
+

�
2log 2

δ
�

. (4)

This means that it is possible to create a random sample S of the dataset D of the desired size |S|,
compute the d-index or the d-bound on the sample, which is less expensive than computing it on the
whole dataset and, for the d-bound, can be done while creating S , and finally, after fixing δ , use (4)
to compute the ε for which S is an ε-approximation. Thus, we have a faster method for estimating
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the VC-dimension that, as we will show in the Sect. 5, can be used to extract an absolute ε-close
approximation to the collection of (top-K) FI’s and AR’s.

Estimating the d-index from the transaction length distribution. When a Bayesian approach is
justified, one views the dataset D as a sample of n transactions generated by a random process with
some known (or assumed) priors. A number of mixture models have been proposed in the liter-
ature for modeling dataset generation, the most commonly used is the Dirichlet Process Mixture
model [He and Shapiro 2012]. In general, we assume that the generating process πᾱ belongs to a
known parametrized family of distributions Π(α) where α represents the parameters of the distri-
bution. Deriving the parameter ᾱ corresponding to the distribution of transaction lengths according
to which the dataset D was generated can be done by sampling transactions from D and using tech-
niques for parameter estimation for a distribution from Π(α) [Lehmann and Casella 1998; Hastie
et al. 2009]. Once the parameter ᾱ is (probabilistically) known, an upper bound b to the d-index
d can be easily derived (probabilistically). Estimating the parameter ᾱ through sampling may take
less time than performing a scan of the entire dataset to compute the d-bound, especially when the
dataset is very large, a fast sequential sampling algorithm like Vitter’s Method D [Vitter 1987] is
used, and the estimation procedure is fast.

4.3. Connection with monotone monomials

There is an interesting connection between itemsets built on a ground set I and the class of monotone

monomials on |I| literals. A monotone monomial is a conjunction of literals with no negations. The
class MONOTONE-MONOMIALS|I| is the class of all monotone monomials on |I| Boolean variables,
including the constant functions 0 and 1. The VC-Dimension of the range space

({0,1}|I|,MONOTONE-MONOMIALS|I|)

is exactly |I| [Natschläger and Schmitt 1996, Coroll. 3]. It is easy to see that it is always possible to
build a bijective map between the itemsets in 2I and the elements of MONOTONE-MONOMIALS|I|
and that transactions built on the items in I correspond to points of {0,1}|I|. This implies that a
dataset D can be seen as a sample from {0,1}|I|.

Solving the problems we are interested in by using the VC-Dimension |I| of monotone-
monomials as an upper bound to the VC-dimension of the itemsets would have resulted in a much
larger sample size than what is sufficient, given that |I| can be much larger than the d-index of a
dataset. Instead, the VC-dimension of the range space (D,R) associated to a dataset D is equivalent
to the VC-dimension of the range space (D,MONOTONE-MONOMIALS|I|), which is the empirical

VC-Dimension of the range space ({0,1}|I|,MONOTONE-MONOMIALS|I|) measured on D. Our re-
sults, therefore, also show a tight bound to the empirical VC-Dimension of the class of monotone
monomials on |I| variables.

5. MINING (TOP-K) FREQUENT ITEMSETS AND ASSOCIATION RULES

We apply the VC-dimension results to constructing efficient sampling algorithms with performance
guarantees for approximating the collections of FI’s, top-K FI’s and AR’s.

5.1. Mining Frequent Itemsets

We construct bounds for the sample size needed to obtain relative/absolute ε-close approximations
to the collection of FI’s. The algorithms to compute the approximations use a standard exact FI’s
mining algorithm on the sample, with an appropriately adjusted minimum frequency threshold, as
formalized in the following lemma.

LEMMA 5.1. Let D be a dataset with transactions built on a ground set I, and let v be the

VC-dimension of the range space associated to D. Let 0 < ε,δ < 1. Let S be a random sample of
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D with size

|S|= min
�
|D|, 4c

ε2

�
v+ log

1
δ

��
,

for some absolute constant c. Then FI(S,I,θ − ε/2) is an absolute ε-close approximation to

FI(D,I,θ) with probability at least 1−δ .

PROOF. Suppose that S is a ε/2-approximation of the range space (X ,R) corresponding to D.
From Thm. 3.8 we know that this happens with probability at least 1 − δ . This means that for
all X ⊆ I, fS(X) ∈ [ fD(X)− ε/2, fD(X)+ ε/2]. This holds in particular for the itemsets in C =
FI(S,I,θ − ε/2), which therefore satisfies Property 3 from Def. 3.3. It also means that for all
X ∈ FI(D,I,θ), fS(X)≥ θ −ε/2, so C also guarantees Property 1 from Def. 3.3. Let now Y ⊆ I be
such that fD(Y )< θ − ε . Then, for the properties of S , fS(Y )< θ − ε/2, i.e., Y /∈ C, which allows
us to conclude that C also has Property 2 from Def. 3.3.

We stress again that here and in the following theorems, the constant c is absolute and does not
depend on D or on d, ε , or δ .

One very interesting consequence of this result is that we do not need to know in advance the
minimum frequency threshold θ in order to build the sample: the properties of the ε-approximation
allow to use the same sample for any threshold and for different thresholds, i.e., the sample does not
need to be rebuilt if we want to mine it with a threshold θ first and with another threshold θ � later.

It is important to note that the VC-dimension associated to a dataset, and therefore the sample
size from (2) needed to probabilistically obtain an ε-approximation, is independent from the size
(number of transactions) in D and also of the size of FI(S,I,θ). It is also always smaller or at most
as large as the d-index d, which is always less or equal to the length of the longest transaction in the
dataset, which in turn is less or equal to the number of different items |I|.

To obtain a relative ε-close approximation, we need to add a dependency on θ as shown in the
following Lemma.

LEMMA 5.2. Let D, v, ε , and δ as in Lemma 5.1. Let S be a random sample of D with size

|S|= min
�
|D|, 4(2+ ε)c

ε2θ(2− ε)

�
v log

2+ ε
θ(2− ε)

+ log
1
δ

��
,

for some absolute absolute constant c. Then FI(S,I,(1−ε/2)θ) is a relative ε-close approximation

to FI(D,I,θ) with probability at least 1−δ .

PROOF. Let p = θ(2 − ε)/(2 + ε). From Thm. 3.8, the sample S is a relative (p,ε/2)-
approximation of the range space associated to D with probability at least 1− δ . For any item-
set X in FI(D,I,θ), we have fD(X) ≥ θ > p, so fS(X) ≥ (1− ε/2) fD(X) ≥ (1− ε/2)θ , which
implies X ∈ FI(S,I,(1 − ε/2)θ)), so Property 1 from Def. 3.3 holds. Let now X be an item-
sets with fD(X) < (1− ε)θ . From our choice of p, we always have p > (1− ε)θ , so fS(X) ≤
p(1+ ε/2) < θ(1− ε/2). This means X /∈ FI(S,I,(1− ε/2)θ)), as requested by Property 2 from
Def. 3.3. Since (1− ε/2)θ = p(1+ ε/2), it follows that only itemsets X with fD(X) ≥ p can be
in FI(S,I,(1− ε/2)θ)). For these itemsets it holds | fS(X)− fD(X)|≤ fD(X)ε/2, as requested by
Property 3 from Def.3.3.

5.2. Mining Top-K Frequent Itemsets

Given the equivalence TOPK(D,I,K) = FI(D,I, f
(K)
D ), we could use the above FI’s sampling al-

gorithms if we had a good approximation of f
(K)
D , the threshold frequency of the top-K FI’s.

For the absolute ε-close approximation we first execute a standard top-K FI’s mining algorithm
on the sample to estimate f

(K)
D and then run a standard FI’s mining algorithm on the same sample

using a minimum frequency threshold depending on our estimate of f
(K)
S . Lemma 5.3 formalizes

this intuition.
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LEMMA 5.3. Let D, v, ε , and δ be as in Lemma 5.1. Let K be a positive integer. Let S be a

random sample of D with size

|S|= min
�
|D|, 16c

ε2

�
v+ log

1
δ

��

, for some absolute constant c, then FI(S,I, f
(K)
S − ε/2) is an absolute ε-close approximation to

TOPK(D,I,K) with probability at least 1−δ .

PROOF. Suppose that S is a ε/4-approximation of the range space (X ,R) corresponding to D.
From Thm. 3.8 we know that this happens with probability at least 1− δ . This means that for all
Y ⊆ I, fS(Y ) ∈ [ fD(Y )− ε/4, fD(Y )+ ε/4]. Consider now f

(K)
S , the frequency of the K-th most

frequent itemset in the sample. Clearly, f
(K)
S ≥ f

(K)
D −ε/4, because there are at least K itemsets (for

example any subset of size K of TOPK(D,I,K)) with frequency in the sample at least f
(K)
D − ε/4.

On the other hand f
(K)
S ≤ f

(K)
D + ε/4, because there cannot be K itemsets with a frequency in the

sample greater than f
(K)
D +ε/4: only itemsets with frequency in the dataset strictly greater than f

(K)
D

can have a frequency in the sample greater than f
(K)
D +ε/4, and there are at most K−1 such itemsets.

Let now η = f
(K)
S −ε/2, and consider FI(S,I,η). We have η ≤ f

(K)
D −ε/4, so for the properties of

S , TOPK(D,I,K) = FI(D,I, f
(K)
D )⊆ FI(S,I,η), which then guarantees Property 1 from Def. 3.3.

On the other hand, let Y be an itemset such that fD(Y )< f
(K)
D −ε . Then fS(Y )< f

(K)
D −3ε/4 ≤ η ,

so Y /∈ FI(S,I,η), corresponding to Property 2 from Def. 3.3. Property 3 from Def. 3.3 follows
from the properties of S .

Note that as in the case of the sample size required for an absolute ε-close approximation to
FI(D,I,θ), we do not need to know K in advance to compute the sample size for obtaining an
absolute ε-close approximation to TOPK(D,I,K).

Two different samples are needed for computing a relative ε-close approximation to
TOPK(D,I,K), the first one to compute a lower bound to f

(K)
D , the second to extract the approxi-

mation. Details for this case are presented in Lemma 5.4.

LEMMA 5.4. Let D, v, ε , and δ be as in Lemma 5.1. Let K be a positive integer. Let δ1,δ2 be

two reals such that (1−δ1)(1−δ2)≥ (1−δ ). Let S1 be a random sample of D with some size

|S1|=
φc

ε2

�
v+ log

1
δ1

�

for some φ > 2
√

2/ε and some absolute constant c. If f
(K)
S1

≥ (2
√

2)/(εφ), then let p = (2 −
ε)θ/(2+ ε) and let S2 be a random sample of D of size

|S2|= min
�
|D|, 4c

ε2 p
(v log

1
p
+ log

1
δ
)

�

for some absolute constant c. Then FI(S2,I,(1−ε/2)( f
(K)
S1

−ε/
√

2φ)) is a relative ε-close approx-

imation to TOPK(D,I,K) with probability at least 1−δ .

PROOF. Assume that S1 is a ε/
√

2φ -approximation for D and S2 is a relative (p,ε/2)-
approximation for D. The probability of these two events happening at the same time is at least
1−δ , from Thm. 3.8.

Following the steps of the proof of Lemma 5.3 we can easily get that, from the properties of S1,

f
(K)
S1

− ε√
2φ

≤ f
(K)
D ≤ f

(K)
S1

+
ε√
2φ

. (5)
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Consider now an element X ∈ TOPK(D,I,K). We have by definition fD(X) ≥ f
(K)
D > f

(K)
S1

−
ε/

√
2φ ≥ p, and from the properties of S2, it follows that fS(X) ≥ (1 − ε/2) fD(X) ≥ (1 −

ε/2)( f
(K)
S1

− ε/
√

2φ), which implies X ∈ FI(S2,I,(1− ε/2)( f
(K)
S1

− ε/
√

2φ)) and therefore Prop-
erty 1 from Def. 3.3 holds for FI(S2,I,η).

Let now Y be an itemset such that fD(Y ) < (1− ε) f
(K)
D . From our choice of p we have that

fD(A) < p. Then fS2(A) < (1+ ε/2)p < (1− ε/2)( f
(K)
S1

− ε/
√

2φ). Therefore, Y /∈ FI(S2,I,η)
and Property 2 from Def. 3.3 is guaranteed.

Property 3 from Def. 3.3 follows from (5) and the properties of S2.

5.3. Mining Association Rules

Our final theoretical contribution concerns the discovery of relative/absolute approximations to
AR(D,I,θ ,η) from a sample. Lemma 5.5 builds on a result from [Chakaravarthy et al. 2009,
Sect. 5] and covers the relative case, while Lemma 5.6 deals with the absolute one.

LEMMA 5.5. Let 0 < δ ,ε,θ ,γ < 1, φ = max{2 + ε,2 − ε + 2
√

1− ε}, η = ε/φ , and p =
θ(1−η)/(1+η). Let D be a dataset and v be the VC-dimension of the range space associated to

D. Let S be a random sample of D of size

|S|= min
�
|D|, c

η2 p

�
v log

1
p
+ log

1
δ

��
(6)

for some absolute constant c. Then AR(S,I,(1−η)θ ,γ(1−η)/(1+η)) is a relative ε-close ap-

proximation to AR(D,I,θ ,γ) with probability at least 1−δ .

PROOF. Suppose S is a relative (p,η)-approximation for the range space corresponding to D.
From Thm. 3.8 we know this happens with probability at least 1−δ .

Let W ∈AR(D,I,θ ,γ) be the association rule “A⇒B”, where A and B are itemsets. By definition
fD(W ) = fD(A∪B)≥ θ > p. From this and the properties of S , we get

fS(W ) = fS(A∪B)≥ (1−η) fD(A∪B)≥ (1−η)θ .
Note that, from the fact that fD(W ) = fD(A∪B)≥ θ , it follows that fD(A), fD(B)≥ θ > p, for

the anti-monotonicity Property of the frequency of itemsets.
By definition, cD(W ) = fD(W )/ fD(A)≥ γ . Then,

cS(W ) =
fS(W )

fS(A)
≥ (1−η) fD(W )

(1+η) fD(A)
≥ 1−η

1+η
· fD(W )

fD(A)
≥ 1−η

1+η
γ.

It follows that W ∈ AR(S,I,(1−η)θ ,γ(1−η)/(1+η)), hence Property 1 from Def. 3.4 is satis-
fied.

Let now Z be the association rule “C ⇒ D”, such that fD(Z) = fD(C∪D)< (1− ε)θ . But from
our definitions of η and p, it follows that fD(Z)< p < θ , hence fS(Z)< (1+η)p < (1−η)θ , and
therefore Z /∈ AR(S,I,(1−η)θ ,γ(1−η)(1+η)), as requested by Property 2 from Def. 3.4.

Consider now an association rule Y = “E ⇒ F” such that cD(Y ) < (1− ε)γ . Clearly, we are
only concerned with Y such that fD(Y ) ≥ p, otherwise we just showed that Y can not be in
AR(S,I,(1−η)θ ,γ(1−η)/(1+η)). From this and the anti-monotonicity property, it follows that
fD(E), fD(F)≥ p. Then,

cS(Y ) =
fS(Y )

fS(E)
≤ (1+η) fD(Y )

(1−η) fD(E)
<

1+η
1−η

(1− ε)γ <
1−η
1+η

γ,

where the last inequality follows from the fact that (1−η)2 > (1+η)(1− ε) for our choice of
η . We can conclude that Y /∈ AR(S,I,(1− ε)θ ,γ(1−η)/(1+η)γ) and therefore Property 4 from
Def. 3.4 holds.
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Properties 3 and 5 from Def. 3.4 follow from the above steps (i.e., what association rules can be
in the approximations), from the definition of φ , and from the properties of S .

LEMMA 5.6. Let D, v, θ , γ , ε , and δ be as in Lemma 5.5 and let εrel = ε/max{θ ,γ}.

Fix φ = max{2+ ε,2− εrel + 2
√

1− εrel}, η = εrel/φ , and p = θ(1−η)/(1+η). Let S be a

random sample of D of size

|S|= min
�
|D|, c

η2 p

�
v log

1
p
+ log

1
δ

��
(7)

for some absolute constant c. Then AR(S,I,(1−η)θ ,γ(1−η)/(1+η)) is an absolute ε-close

approximation to AR(D,I,θ ,γ).
PROOF. The thesis follows from Lemma 5.5 by setting ε there to εrel.

Note that the sample size needed for absolute ε-close approximations to AR(D,I,θ ,γ) de-
pends on θ and γ , which was not the case for absolute ε-close approximations to FI(D,I,θ) and
TOPK(D,I,K).

5.4. Other interestingness measures

Confidence is not the only measure for the interestingness of an association rule. Other measures
include lift, IS (cosine), all-confidence, Jaccard index, leverage, conviction, and many more [Tan et
al. 2004]. In this section we apply our general technique to obtain good approximations with respect
to a number of these measures, while also showing the limitation of our technique with respect to
other criteria.

We use the term absolute (or relative) ε-close approximation as defined in Def. 3.4, appropriately
adapted to the relevant measure in place of the confidence. We also extend our notation and denote
the collection of AR’s with frequency at least θ and interestingness at least γ according to a measure
w by ARw(D,I,θ ,γ), that is, indicating the measure in the subscript of “AR”.

The first two measures we deal with are all-confidence and IS (also known as Cosine). They are
defined as follows:

all-confidence: acD(A ⇒ B) = fD(A∪B)
maxa∈A∪B fD(A)

IS (Cosine): isD(A ⇒ B) = fD(A∪B)√
fD(A) fD(B)

SInce the approximation errors in the enumerators and denominators of these measures are the same
as in computing the confidence, we can follow exactly the same steps as in the proof of Lemmas 5.5
and 5.6 and obtain the same procedures, parameters, and sample sizes (6) and (7) to extract relative
and absolute ε-close approximations to the collection of AR’s according to these measures.

Lift. The lift of an association rule “A ⇒ B” is defined as

�D(A ⇒ B) =
fD(A∪B)

fD(A) fD(B)
.

We have the following result about computing a relative ε-close approximation to the collection
of AR’s according to lift.

LEMMA 5.7. Let D, v, θ , γ , ε , and δ be as in Lemma 5.5. There exists a value η such that, if

we let p = θ(1−η)/(1+η), and let S be random sample of D of size

|S|= min
�
|D|, c

η2 p

�
v log

1
p
+ log

1
δ

��

for some absolute constant c, we have that AR�(S,I,(1 − η)θ ,γ(1 − η)/(1 + η)) is a relative

ε-close approximation to AR�(D,I,θ ,γ).
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PROOF. In order for AR�(S,I,(1−η)θ ,γ(1−η)/(1+η)) to satisfy the properties of a relative
ε-close approximation, η must be a solution to the following system of inequalities:






(1− ε)(1+η)3 < (1−η)3

1+η
(1−η)2 ≤ 1+ ε

1−η
(1+η)2 ≥ 1− ε

0 ≤ η < 1

The first inequality expresses the requirement of Property 4 from Def. 3.4. The second and the third
inequality deal with Properties 1, 3, and 5. The last inequality limits the domain of η . Property
2 from Def. 3.4 would be enforced by the choice of p. It can be verified that this system admits
solutions. Once the value of η has been determined, we can proceed as in the proof of Lemma 5.5
to prove that all properties from Def. 3.4 are satisfied.

We can get a result about absolute ε-close approximation to AR�(D,I,θ ,γ) by following the
same derivation of Lemma 5.6.

Piatetsky-Shapiro measure (leverage). Another measure of interestingness is the Piatetsky-

Shapiro measure (also known as leverage):

psD(A ⇒ B) = fD(A∪B)− f (A) f (B) .

We first prove that it is possible to obtain an absolute ε-close approximation to the collection of
AR’s according to this measure and then argue that our methods can not be used to obtain a relative

ε-close approximation to such collection.

LEMMA 5.8. Let D, v, θ , γ , ε , and δ be as in Lemma 5.5. Let S be a random sample of D of

size

|S|= min
�
|D|, 64c

ε2

�
v+ log

1
δ

��

for some absolute constant c. Then ARps(S,I,θ − ε/8,γ − ε/2) is an absolute ε-close approxima-

tion to ARps(D,I,θ ,γ) with probability at least 1−δ .

PROOF. Assume that S is a ε/8-approximation for D. From Thm. 3.8 we know this happens with
probability at least 1−δ . This implies that for any itemeset A ⊆ I, we have | fD(A)− fS(A)|≤ ε/8,
which holds in particular for the association rules in ARps(S,I,θ − ε/8,γ − ε/2), so Property 3
from Def. 3.4 is satisfied.

Consider now an association rule W = “A ⇒ B”. We have

psS(W ) = fS(A∪B)− fS(A) fS(B)≥ fD(A∪B)− ε
8
−
�

fD(A)+
ε
8

��
fD(B)+

ε
8

�

≥ fD(A∪B)− fD(A) fD(B)− ε
8

�
1+ fD(A)+ fD(B)+

ε
8

�

≤ psD(W )− ε
2

.

(8)

We also have:

psS(W ) = fS(A∪B)− fS(A) fS(B)≤ fD(A∪B)+
ε
8
−
�

fD(A)− ε
8

��
fD(B)− ε

8

�

≤ fD(A∪B)− fD(A) fD(B)+
ε
8

�
1+ fD(A)+ fD(B)− ε

8

�

≤ psD(W )+
ε
2

(9)
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From (8) and (9) we get that for any association rule W , we have |psD(W )− psS(W )| < ε , hence
Property 5 from Def. 3.4 holds.

If W ∈ ARps(S,I,θ ,γ), (8) implies that W ∈ ARps(S,I,θ − ε/2,γ − ε/2), therefore Property 1
from Def. 3.4 is satisfied.

Let now Z be an association rule with frequency fD(Z)< θ −ε . From the property of S , we have
that fS(Z) ≤ fD(Z)+ ε/8 < θ − ε + ε/8 < θ − ε/8, so Z �∈ ARps(S,I,θ − ε/8,γ − ε/2), which
proves Property 2 from Def. 3.4.

Consider now an association rule Y = “C ⇒ D” with frequency fD(Y ) > θ but leverage
psD(Y ) < γ − ε (Y �∈ ARps(D,I,θ ,γ)). From (9) we get that psS(Y ) < γ − ε/2 which implies
that Y �∈ ARps(S,I,θ − ε/8,γ − ε/2), hence proving Property 4 from Def. 3.4. This concludes our
proof.

We now argue that it is not possible, in general, to extend our methods to obtain a relative ε-close
approximation to ARps(D,I,θ ,γ). Suppose that there is a parameter λ for which, for any itemset
A, we can find a value f̃ (A) such that (1− λ ) fD(A) ≤ f̃ (A) ≤ (1+ λ ) fD(A). Let �ps(A ⇒ B) =
f̃ (A∪B)− f̃ (A) f̃ (B). We would like to show that the values �ps cannot be used to obtain a relative
ε-close approximation to ARps(D,I,θ ,γ) in general. 0 < ε,θ ,γ < 1. Among the requirement for a
relative ε-close approximation we have that for an association rule “A → B” in the approximation,
it must hold �ps(A ⇒ B) ≥ (1− ε)psD(A ⇒ B). We now show that this is not true in general. We
have the following:

�ps(A ⇒ B)≥ (1−λ ) fD(A∪B)− (1+λ )2
fD(A) fD(B)

≥ (1− ε) fD(A∪B)− (1− ε) fD(A) fD(B) ⇐⇒
(ε −λ ) fD(A∪B)− (ε +2λ +λ 2) fD(A) fD(B)≥ 0

Clearly, the inequality on the last line may not be true in general. This means that we can not, in gen-
eral, obtain a relative ε-close approximation to ARps(D,I,θ ,γ) by approximating the frequencies
of all itemsets, no matter how good these would be.

Other measures. For other measures it may not be possible or straightforward to analytically
derive procedures and sample sizes sufficient to extract good approximations of the collection of
AR’s according to these measures. Nevertheless most of them express the interestingness of an
association rule as a function of the frequencies of the itemsets involved in the rule. Because of
this, in practice, high quality approximation of the frequencies of all itemsets should be sufficient to
obtain good approximation of the interestedness of a rule, and therefore, good approximation of the
collection of AR’s.

5.5. Closed Frequent Itemsets

A Closed Frequent Itemset (CFI) is a FI A whose subsets have all the same frequency f _Ds(A) of
A. The collection of CFI’s is a lossless compressed representation of the FI’s [Calders et al. 2006].
The collection of CFI’s is quite sensitive to sampling, as shown by the following example. Consider
the dataset

D = {{a,b,c},{a},{b},{c}}.
Suppose that θ = 0.5. Then FI(D,I,θ) = {{a},{b},{c}}, and this is also the collection of CFI’s.
Consider the sample S = {{a,b,c},{b}} of D. We have that

FI(S,I,θ �) = {{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}
for any θ � ≤ θ . But the collection of CFI’s is {{b},{a,b,c}}, and it is not a superset of the original
collection. Thus, in a sample, a superset of an original CFI may become closed instead of the original
one. Therefore, given an absolute ε-close approximation F to FI(D,I,θ) (analogously for a relative
approximation), one could obtain a superset of the original collection of CFI’s by considering, for
each CFI B ∈ F , the set of subsets of B whose frequency in F is less than 2ε far from that of B. As
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was the case for FI’s, a single scan of the dataset is then sufficient to filter out spurious candidates
that are not CFI’s from the so-obtained collection.

5.6. Discussion

In the previous sections we presented the bounds to the sample sizes as function of the VC-
Dimension v of the range space associated to the dataset. As we argued in Sect. 4, computing the
VC-dimension exactly is not a viable option. We therefore introduced the d-index d and the d-bound
q as upper bounds to the VC-dimension that are efficient to compute, as described in Sect. 4.1. In
practice one would use d or q, rather than v, to obtain the needed sample sizes.

Chakaravarthy et al. [2009] presented bounds to the sample sizes that depend on the length ∆
of the longest transaction. It should be clear that v ≤ d ≤ q ≤ ∆, with the first inequality being
strict in the worst case (Thm. 4.6). In real datasets, we have that v ≤ d ≤ q � ∆: a single very
long transaction has minimal impact on the VC-dimension or its upper bounds. One can envision
cases where an anomalous transaction contains most items from I, while all other transactions have
constant length. This would drive up the sample size from [Chakaravarthy et al. 2009], while the
bounds presented in this work would not be impacted by this anomality.

Moreover, in practice one could expect v to be much smaller than the d-index d. This is due to
the fact that the d-index is really a worst case bound which should only occur in artificial datasets,
as it should be evident from the proof of Thm. 4.6. It would be very interesting to investigate better
methods to estimate the actual VC-dimension of the range space associated to a dataset, rather
than upper-bound it with d or q, as this could lead to much smaller sample sizes. The problem
of estimating the VC-dimension of learning machines is a fundamental problem in learning, given
that analytical computation of the exact value is usually impossible, as it is in our case. Vapnik
et al. [1994] and Shao et al. [2000] presented and refined an experimental procedure to estimate
the VC-dimension of a learning machines, and McDonald et al. [2011] gave concentration results
for such an estimate. This procedure, although applicable to our case under mild conditions, is not
very practical. It is very highly time consuming, as it requires the creation and analysis of multiple
artificial datasets starting from the original one. Developing efficient ways to estimate the VC-
dimension of a range space is an interesting research problem, but outside the scope of this work.

We conclude this discussion noting that all the bounds we presented have a dependency on 1/ε2.
This is due to the use of tail bounds dependent on this quantity in the proof of the bound (2) to the
sample size needed to obtain an ε-approximation. Given that the bound (2) is in general tight up to a
constant [Li et al. 2001], there seems to be little room for improvement of the bounds we presented
as function of ε .

6. EXPERIMENTAL EVALUATION

In this section we present an extensive experimental evaluation of our methods to extract approxi-
mations of FI(D,I,θ), TOPK(D,I,K), and AR(D,I,θ ,γ).

Our first goal is to evaluate the quality of the approximations obtained using our methods, by
comparing the experimental results to the analytical bounds. We also evaluate how strict the bounds
are by testing whether the same quality of results can be achieved at sample sizes smaller than those
computed by the theoretical analysis. We then show that our methods can significantly speed-up the
mining process, fulfilling the motivating promises of the use of sampling in the market basket anal-
ysis tasks. Lastly, we compare the sample sizes from our results to the best previous work [Chakar-
avarthy et al. 2009].

We tested our methods on both real and artificial datasets. The real datasets come from the
FIMI’04 repository (http://fimi.ua.ac.be/data/). Since most of them have a moderately small size,
we replicated their transactions a number of times, with the only effect of increasing the size
of the dataset but no change in the distribution of the frequencies of the itemsets. The artifi-
cial datasets were built such that their corresponding range spaces have VC-dimension equal to
the maximum transaction length, which is the maximum possible as shown in Thm. 4.5. To cre-
ate these datasets, we followed the proof of Thm. 4.6 and used the generator included in AR-
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tool (http://www.cs.umb.edu/~laur/ARtool/), which is similar to the one presented in [Agrawal and
Srikant 1994]. The artificial datasets had ten million transactions. We used the FP-Growth and Apri-
ori implementations in ARtool to extract frequent itemsets and association rules. To compute the
d-bound q, which is an upper bound to the d-index d, we used Algorithm 1. In all our experiments
we fixed δ = 0.1. In the experiments involving absolute (resp. relative) ε-close approximations we
set ε = 0.01 (resp. ε = 0.05). The absolute constant c was fixed to 0.5 as estimated by [Löffler and
Phillips 2009]. This is reasonable because, again, c does not depend in any way from D, ε , δ , the
VC-dimension v of the range space, the d-index d or the d-bound q, or any characteristic of the
collection of FI’s or AR’s. No upper bound is currently known for c

� when computing the sizes for
relative ε-approximations. We used the same value 0.5 for c

� and found that it worked well in prac-
tice. For each dataset we selected a range of minimum frequency thresholds and a set of values for
K when extracting the top-K frequent itemsets. For association rules discovery we set the minimum
confidence threshold γ ∈ {0.5,0.75,0.9}. For each dataset and each combination of parameters we
created random samples with size as computed by our theorems and with smaller sizes to evaluate
the strictness of the bounds. We measured, for each set of parameters, the absolute frequency error

and the absolute confidence error, defined as the error | fD(X)− fS(X)| (resp. |cD(Y )−cS(Y )|) for
an itemset X (resp. an association rule Y ) in the approximate collection extracted from sample S .
When dealing with the problem of extracting relative ε-close approximations, we defined the rela-

tive frequency error to be the absolute frequency error divided by the real frequency of the itemset
and analogously for the relative confidence error (dividing by the real confidence). In the figures we
plot the maximum and the average for these quantities, taken over all itemsets or association rules
in the output collection. In order to limit the influence of a single sample, we computed and plot
in the figures the maximum (resp. the average) of these quantities in three runs of our methods on
three different samples for each size.

The first important result of our experiments is that, for all problems (FI’s, top-K FI’s, AR’s),
for every combination of parameters, and for every run, the collection of itemsets or of association
rules obtained using our methods always satisfied the requirements to be an absolute or relative
ε-close approximation to the real collection. Thus in practice our methods indeed achieve or exceed
the theoretical guarantees for approximations of the collections FI(D,I,θ), TOPK(D,I,θ), and
AR(D,I,θ ,γ). Given that the collections returned by our algorithms where always a superset of the
collections of interest or, in other words, that the recall of the collections we returned was always
1.0, we measured the precision of the returned collection. In all but one case this statistic was at
least 0.9 (out of a maximum of 1.0), suggesting relatively few false positives in the collections
output. In the remaining case (extracting FI’s from the dataset BMS-POS), the precision ranged
between 0.59 to 0.8 (respectively for θ = 0.02 and θ = 0.04). The probability of including a FI or
an AR which has frequency (or confidence, for AR’s) less than θ (or γ) but does not violate the
properties of a ε-close approximation, and is therefore an “acceptable” false positive, depends on
the distribution of the real frequencies of the itemsets or AR’s in the dataset around the frequency
threshold θ (more precisely, below it, within ε or εθ ): if many patterns have a real frequency in
this interval, then it is highly probable that some of them will be included in the collections given
in output, driving precision down. Clearly this probability depends on the number of patterns that
have a real frequency close to θ . Given that usually the lower the frequency the higher the number
of patterns with that frequency, this implies that our methods may include more “acceptable” false
positives in the output at very low frequency thresholds. Once again, this depends on the distribution
of the frequencies and does not violate the guarantees offered by our methods. It is possible to use
the output of our algorithms as a set of candidate patterns which can be reduced to the real exact
output (i.e., with no false positives) with a single scan of the dataset.

Evaluating the strictness of the bounds to the sample size was the second goal of our experiments.
In Fig. 2a we show the behaviour of the maximum frequency error as function of the sample size in
the itemsets obtained from samples using the method presented in Lemma 5.1 (i.e., we are looking
for an absolute ε-close approximation to FI(D,I,θ)). The rightmost plotted point corresponds to
the sample size computed by the theoretical analysis. We are showing the results for the dataset
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(a) Absolute Itemset Frequency Error, BMS-POS dataset, d = 81, θ = 0.02, ε = 0.01, δ = 0.1

(b) Relative Itemset Frequency Error, artificial dataset, v = 33, θ = 0.01, ε = 0.05, δ = 0.1

Fig. 2: Absolute / Relative ε-close Approximation to FI(D,I,θ)

BMS-POS replicated 40 times (d-index d = 81), mined with θ = 0.02. It is clear from the picture
that the guaranteed error bounds are achieved even at sample sizes smaller than what computed by
the analysis and that the error at the sample size derived from the theory (rightmost plotted point for
each line) is one to two orders of magnitude smaller than the maximum tolerable error ε = 0.01. This
can be exmplained by the fact that the d-bound used to compute the sample size is in practice, as we
argued in Sect. 5.6 a quite loose upper bound to the real VC-dimension. In Fig. 2b we report similar
results for the problem of computing a relative ε-close approximation to FI(D,I,θ) for an artificial
dataset whose range space has VC-dimension v equal to the length of the longest transaction in the
dataset, in this case 33. The dataset contained 100 million transactions. The sample size, given by
Lemma 5.2, was computed using θ = 0.01, ε = 0.05, and δ = 0.1. The conclusions we can draw
from the results for the behaviour of the relative frequency error are similar to those we got for the
absolute case. For the case of absolute and relative ε-close approximation to TOPK(D,I,K), we
observed results very similar to those obtained for FI(D,I,θ), as it was expected, given the closed
connection between the two problems.

The results of the experiments to evaluate our method to extract a relative ε-close approximation
to AR(D,I,θ ,γ) are presented in Fig. 3a and 3b. The same observations as before hold for the
relative frequency error, while it is interesting to note that the relative confidence error is even
smaller than the frequency error, most possibly because the confidence of an association rule is the
ratio between the frequencies of two itemsets that appear in the same transactions and their sample
frequencies will therefore have similar errors that cancel out when the ratio is computed. Similar
conclusions can be made for the absolute ε-close approximation case.

From Fig. 2a, 2b, 3a, and 3b it is also possible to appreciate that, as the sample gets smaller,
the maximum and the average errors in the frequency and confidence estimations increase. This
suggests that using a fixed sampling rate or a fixed sample size can not guarantee good results for
any ε: not only the estimation of the frequency and/or of the confidence would be quite off from
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(a) Relative Association Rule Frequency Error

(b) Relative Association Rule Confidence Error

Fig. 3: Relative ε-close approximation to AR(D,I,θ ,γ), artificial dataset, v= 33, θ = 0.01, γ = 0.5,
ε = 0.05, δ = 0.1.

the real value, but because of this, many itemsets that are frequent in the original dataset may be
missing from the output collection and many spurious (very infrequent) itemsets may be included
in it.

The major motivating intuition for the use of sampling in market basket analysis tasks is that
mining a sample of the dataset is faster than mining the entire dataset. Nevertheless, the mining time
does not only depend on the number of transactions, but also on the number of frequent itemsets.
Given that our methods suggest to mine the sample at a lowered minimum frequency threshold,
this may cause an increase in running time that would make our method not useful in practice,
because there may be many more frequent itemsets than at the original frequency threshold. We
performed a number of experiments to evaluate whether this was the case and present the results
in Fig. 4. We mined the artificial dataset introduced before for different values of θ , and created
samples of size sufficient to obtain a relative ε-close approximation to FI(D,I,θ), for ε = 0.05 and
δ = 0.1. Figure 4 shows the time needed to mine the large dataset and the time needed to create and
mine the samples. It is possible to appreciate that, even considering the sampling time, the speed
up achieved by our method is around the order of magnitude (i.e. 10x speed improvement), proving
the usefulness of sampling. Moreover, given that the sample size, and therefore the time needed to
mine the sample, does not grow with the size of the dataset as long as the d-bound remains constant,
that the d-index computation can be performed online, and that the time to create the sample can
be made dependent only on the sample size using Vitter’s Method D algorithm [Vitter 1987], our
method is very scalable as the dataset grows, and the speed up becomes even more relevant because
the mining time for the large dataset would instead grow with the size of the dataset.

Comparing our results to previous work we note that the bounds generated by our technique
are always linear in the VC-dimension v associated with the dataset. As reported in Table I, the
best previous work [Chakaravarthy et al. 2009] presented bounds that are linear in the maximum
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Fig. 4: Runtime Comparison. The sample line includes the sampling time. Relative approximation
to FI’s, artificial dataset, v = 33, ε = 0.05, δ = 0.1

transaction length ∆ for two of the six problems studied here. Figures 5a and 5b show a comparison
of the actual sample sizes for relative ε-close approximations to FI(D,I,θ) for as function of θ and
ε . To compute the points for these figures, we set ∆ = v = 50, corresponding to the worst possible
case for our method, i.e., when the VC-dimension of the range space associated to the dataset is
exactly equal to the maximum transaction length. We also fixed δ = 0.05 (the two methods behave
equally as δ changes). For Fig. 5a, we fixed ε = 0.05, while for Fig. 5b we fixed θ = 0.05. From
the Figures we can appreciate that both bounds have similar, but not equal, dependencies on θ and
ε . More precisely the bound presented in this work is less dependent on ε and only slightly more
dependent on θ . It also evident that the sample sizes given by the bound presented in this work
are always much smaller than those presented in [Chakaravarthy et al. 2009] (the vertical axis has
logarithmic scale). In this comparison we used ∆ = v, but almost all real datasets we encountered
have v � ∆ as shown in Table II which would result in a larger gap between the sample sizes
provided by the two methods. On the other hand, we should mention that the sample size given
by [Chakaravarthy et al. 2009] can be slightly optimized by using a stricter version of the Chernoff
bound, but this does not change the fact that it depends on the maximum transaction length rather
than on the VC-Dimension.

Table II: Values for maximum transaction length ∆ and d-bound q for real datasets

accidents BMS-POS BMS-Webview-1 kosarak pumsb* retail webdocs

∆ 51 164 267 2497 63 76 71472
q 46 81 57 443 59 58 2452

7. CONCLUSIONS

In this paper we presented a novel technique to derive random sample sizes sufficient to easily
extract high-quality approximations of the (top-K) frequent itemsets and of the collection of as-
sociation rules. The sample size are linearly dependent on the VC-Dimension of the range space
associated to the dataset, which is upper bounded by the maximum integer d such that there at least
d transactions of length at least d in the dataset. This bound is tight for a large family of datasets.

We used theoretical tools from statistical learning theory to develop a very practical solution to
an important problem in computer science. The practicality of our method is demonstrated in the
extensive experimental evaluation which confirming our theoretical analysis and suggests that in
practice it is possible to achieve even better results than what the theory guarantees. Moreover, we
used this method as the basic building block of an algorithm for the MapReduce [Dean and Ghe-
mawat 2004] distributed/parallel framework of computation. PARMA [Riondato et al. 2012], our
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(a) Sample size as function of θ , ε = 0.05

(b) Sample size as function of ε , θ = 0.05

Fig. 5: Comparison of sample sizes for relative ε-close approximations to FI(D,I,θ). ∆ = v = 50,
δ = 0.05.

MapReduce algorithm, computes an absolute ε-approximation of the collection of FI’s or AR’s by
mining a number of small random samples of the dataset in parallel and then aggregating and filter-
ing the collections of patterns that are frequent in the samples. It allows to achieve very high-quality
approximations of the collection of interest with very high confidence while exploiting and adapting
to the available computational resources and achieving a high level of parallelism, highlighted by
the quasi-linear speedup we measured while testing PARMA.

Samples of size as computed by our methods can be used to mine approximations of other col-
lection of itemsets, provided that one correctly define the approximation taking into account the
guarantees on the estimation of the frequency provided by the ε-approximation theorem. For exam-
ple, one can can use techniques like those presented in [Mampaey et al. 2011] on a sample to obtain
a small collection of patterns that describe the dataset as best as possible.

We believe that methods and tools developed in the context of computational learning theory
can be applied to many problems in data mining, and that results traditionally considered of only
theoretical interest can be used to obtain very practical methods to solve important problems in
knowledge discovery.

It may be possible to develop procedures that give a stricter upper bound to the VC-dimension
for a given dataset, or that other measures of sample complexity like the triangular rank [Newman
and Rabinovich 2012], shatter coefficients, or Rademacher inequalities [Boucheron et al. 2005], can
suggest smaller samples sizes.
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