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ABSTRACT

Rademacher Averages and the Vapnik-Chervonenkis dimen-
ston are fundamental concepts from statistical learning the-
ory. They allow to study simultaneous deviation bounds
of empirical averages from their expectations for classes of
functions, by considering properties of the functions, of their
domain (the dataset), and of the sampling process. In this
tutorial, we survey the use of Rademacher Averages and the
VC-dimension in sampling-based algorithms for graph anal-
ysis and pattern mining. We start from their theoretical
foundations at the core of machine learning, then show a
generic recipe for formulating data mining problems in a way
that allows to use these concepts in efficient randomized al-
gorithms for those problems. Finally, we show examples of
the application of the recipe to graph problems (connectiv-
ity, shortest paths, betweenness centrality) and pattern min-
ing. Our goal is to expose the usefulness of these techniques
for the data mining researcher, and to encourage research in
the area.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data mining; G.3 [Probability and Statistics]: [Proba-
bilistic algorithms (including Monte Carlo)]
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1. INTRODUCTION

Random sampling is a natural technique to speed up the
execution of algorithms on very large datasets [6]. The re-
sults obtained by analyzing only a random sample of the
dataset are an approximation of the exact solution. When
only a single value must be computed, the trade-off between
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the size of the sample and the accuracy of the approximation
can be studied through probabilistic bounds for the devia-
tion of the quantity of interest in the sample from its exact
value in the dataset, e.g., the Chernoff-Hoeffding bounds [7].
In many data mining problems, the number of quantities
of interest can be extremely large (e.g., betweenness cen-
trality requires to compute one quantity for each node in
a graph [4 [13], and Frequent Pattern Mining requires the
computation of a potentially exponential number of quan-
tities). In these cases, uniform (i.e., simultaneous) bounds
to the deviations of all quantities are needed in order to
have good approximations of all the values of interest. Clas-
sical techniques like the Union bound [II] are insufficient
because excessively loose due to their worst-case assump-
tions that do not hold in many data mining problems, e.g.,
the assumption that the quantities of interest are indepen-
dent from each other. Rademacher Averages [3] and the
Vapnik-Chervonenkis dimension [18] have been developed
by the statistical learning theory community to study the
(rate of) convergence of the empirical risk of a learned func-
tion to its expectation. One of the goals of this tutorial is
to show that these techniques are very flexible and powerful
and their field of use is much broader. In particular, they
overcome the weakness of the Union bound: they obtain
much stricter uniform deviation bounds by taking into ac-
count the nature of the problem (i.e., of the quantities of
interest) and properties of the dataset and of the sampling
process. They have been used with success in the analysis of
sampling algorithms for data and graph analysis problems
on very large datasets [1} [5 9], T3HI6].

2. OUTLINE

The tutorial is structured as follows.

Introduction. We start with a short introduction about
the use of random sampling in data mining, discussing its
advantages and the challenges for the algorithm designer.
The goal is to lay forward the key questions that will be an-
swered in the rest of the tutorial. In particular, we start with
an example involving Frequent Itemset Mining through sam-
pling [14] 15], showing the limitations of the Union bound in
solving this problem. By generalizing our settings to general
data mining problem, we then introduce the key problem of
learning, known as the Glivenko-Cantelli problem for classes
of functions [18], which clarifies the strong connection with
the area of statistical learning theory.



First Part: Theoretical Foundations. The theoretical foun-

dations are presented in the first part, where we introduce
the Rademacher Averages [3},[10] and the VC-dimension [19],
showing how they allow to answer the questions posed in
the introduction, and how they are related to each other.
In particular, we show the key theorems that allow to com-
pute an upper bound to the sample size sufficient to obtain a
high-quality approximation of the quantities of interest, uni-
formly. The bounds depend linearly on the Rademacher av-
erages and on the VC-dimension. We then focus on comput-
ing, estimating, and bounding the Rademacher averages and
the VC-dimension, which is a key step in the process of us-
ing them to develop algorithms. We show a number of basic
examples of classes of functions with finite and infinite VC-
dimension and discuss different techniques for developing
analytical bounds and empirical estimations. The examples
will range from toy examples (e.g., axis-aligned rectangles,
half-spaces, and sinusoidal functions) to much more complex
instances that are presented in research papers (e.g., graph
neighborhood functions, neural networks [2], and shortest
paths [I]).

Second Part: Applications. The second part focuses on
showing how to use Rademacher averages and VC-dimension
to develop sampling-based algorithms for data and graph
mining problems. We start by presenting a generic recipe for
developing such algorithms, which eases the application of
the techniques and the analysis of the algorithms. We then
show a number of examples of application of this technique
for different graph and data analysis problems, including
network connectivity [9], shortest paths algorithms [I], be-
tweenness centrality computation [I3], and frequent pattern
mining [T4HI6], and set covering [5].

Third part: Advanced Material. In the third part, we
will focus on more advanced material, to encourage the au-
dience to further explore the field of statistical learning the-
ory, and to stimulate discussion and research on using the
results from this field to develop data mining algorithms.
Specifically, we will discuss: PAC-Bayesian bounds [3] [17],
which show a connection between the typical frequentist ap-
proach followed in statistical learning theory to the Bayesian
probabilistic approach and may be useful for data mining al-
gorithms on uncertain or probabilistic data, and a selection
of the extensions of VC-dimension to real-valued or non-
binary functions, including pseudodimension [12], Natarajan
dimension, and fat-shattering dimension [§].

3. WEBSITE

We set up a mini-website (http://bigdata.cs.brown.
edu/vctutorial) with links to the slides that we use for the

presentation, and a bibliography of theoretical and application-

oriented works about VC-dimension and Rademacher Aver-
ages.
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