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Introduction

Data mining and (inferential) statistics have traditionally two
different point of views

§ data mining: the data is the complete representation of the
world and of the phenomena we are studying

§ statistics: the data is obtained from an underlying generative
process, that is what we really care about

Similar questions but different flavours!
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Example

Data: information from two online communities C1 and C2,
regarding whether each post is in a given topic T .

§ Data mining: “what fraction of posts in C1 are related to T?
What fraction of posts in C2 are related to T?”

§ Statistics: “What is the probability that a post from C1 is
related to T? What is the probability that a post from C2 is
related to T?”

Note: the two are clearly related, but different!
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Statistically-Sound Pattern Mining

How do we efficiently identify patterns in data with guarantees
on the underlying generative process?

We use the statistical hypothesis testing framework
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Statistical Hypothesis Testing

We are given:

§ a dataset D
§ a question we want to answer

ñ a pattern S

EXAMPLE

§ D = for 1000 diseased individuals (cases), whether drug S had
an effect (YES/NO); for 1000 healthy individuals (controls),
whether drug S had an effect (YES/NO).

§ does S have the same effect on diseased individuals (cases) and
on healthy individuals (controls)?
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Example: market basket analysis

Dataset D: transactions = set of items, label (student/professor)
Pattern S: subset of items (orange, tomato, broccoli)

Question: is S associated with one of the two labels?
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Statistical Hypothesis Testing: Formalization

Frame the question in terms of a null hypothesis, describing the
default theory, which corresponds to “nothing interesting” for
pattern S.

The goal is to use the data to either reject H0 (“S is interesting!”)
or not (“S is not interesting).

This is decided based on a test statistic, that is, a value
xS “ fSpDq that describes S in D

10/135



Statistical Hypothesis Testing: Formalization

Frame the question in terms of a null hypothesis, describing the
default theory, which corresponds to “nothing interesting” for
pattern S.

The goal is to use the data to either reject H0 (“S is interesting!”)
or not (“S is not interesting).

This is decided based on a test statistic, that is, a value
xS “ fSpDq that describes S in D

10/135



Statistical Hypothesis Testing: Formalization

Frame the question in terms of a null hypothesis, describing the
default theory, which corresponds to “nothing interesting” for
pattern S.

The goal is to use the data to either reject H0 (“S is interesting!”)
or not (“S is not interesting).

This is decided based on a test statistic, that is, a value
xS “ fSpDq that describes S in D

10/135



Statistical Hypothesis Testing: p-value

Let xS “ fpDq the value of the test statistic for our dataset D.

Let XS be the random variable describing the value of the test
statistic under the null hypothesis H0 (i.e., when H0 is true)

p-value: p “ PrrXS more extreme than xS : H0 is trues

“XS more extreme than xS”: depends on the test, may be
XS ě xS or XS ď xS or something else. . .

Rejection rule:
Given a statistical level α P p0, 1q: reject H0 iff p ď αñ S is
significant!
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Statistical Hypothesis Testing: Errors

There are two types of errors we can make:

§ type I error: reject H0 when H0 is true ñ flag S as significant
when it is not (false discovery)

§ type II error: do not reject H0 when H0 is false ñ do not flag
S as significant when it is

	
Correct!	

	
Type	I	error	

	
Type	II	error	

	
Correct!	

REALITY	

DE
CI
SI
O
N
	

H0	false	 H0	true	

reject	H0	

accept	H0	
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Statistical Hypothesis Testing: Error Guarantees

There are two types of errors we can make:

§ type I error: reject H0 when H0 is true ñ flag S as significant
when it is not (false discovery)

§ type II error: do not reject H0 when H0 is false ñ do not flag
S as significant when it is

Theorem

Using the rejection rule, the probability of a type I error is ď α
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Statistical Hypothesis Testing: Power

Avoiding type I errors is not everything!

If it was, it would be enough to never flag a pattern as significant. . .

Power:
A test has power β if PrrH0 is rejected : H0 is falses “ β

Note: for a test with power β, we have Prrtype II errors “ 1´ β

(Power is not everything: if it was, it would be enough to always
flag all patterns as significant. . . )
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Example: Testing for Independence

Given:
§ transactional dataset D “ tt1, . . . , tnu, each transaction ti has a

label `ptiq P tc0, c1u

§ a pattern S

Goal: understand if the appearance of S in transactions (S Ď ti)
and the transactions labels (`ptiq) are independent.

Null hypothesis H0: the events “S Ď ti” and ”`ptiq “ c1” are
independent.

Alternative hypothesis: there is a dependency between “S Ď ti”
and ”`ptiq “ c1”
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Example: market basket analysis

S “ torange, tomato, broccoliu

H0: presence of S is independent of (not associated with) label
“professor”
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Example: Testing for Independence (2)

Useful representation of the data: contingency table

S Ď ti S Ę ti Row m.

`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1

`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0

Col. m. σpSq n´ σpSq n

§ σ1pSq = number of transactions containing S (=support of S)
with label c1

§ σ0pSq = support of S with label c0

§ σpSq “ σ0pSq ` σ1pSq = support of S in D
§ ni “ number transactions with label ci
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Example: Testing for Independence (3)

Useful representation of the data: contingency table

S Ď ti S Ę ti Row m.

`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1

`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0

Col. m. σpSq n´ σpSq n

Test statistic = σ1pSq
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Example: market basket analysis

S Ď ti S Ę ti Row m.

`ptiq “ c1 3 1 4

`ptiq “ c0 1 3 4

Col. m. 4 4 8

Value of test statistic = σ1pSq = 3
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Fisher’s exact test

S Ď ti S Ę ti Row m.

`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1

`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0

Col. m. σpSq n´ σpSq n

Assumption: the column marginals (σpSq, n´ σpSq and the row
marginals (n0, n1) are fixed.
ñ under the null hypothesis (independence), the support of S in
class c1 follows an hypergeometric distribution of parameters n, n1,
and σS
ñ the p-value is easily computable!
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Fisher’s exact test(2)

Let XS be the r.v. describing the support of S in class c1 when the
null hypothesis holds

S Ď ti S Ę ti Row m.

`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1

`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0

Col. m. σpSq n´ σpSq n

PrpXS “ kq “

`

n1
k

˘`

n0
σpSq´k

˘

`

n
σpSq

˘

p-value for S: pS “
ÿ

kěσ1pSq

PrpXS “ kq
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Example: market basket analysis

S Ď ti S Ę ti Row m.
`ptiq “ c1 3 1 4
`ptiq “ c0 1 3 4
Col. m. 4 4 8

XS „ hypergeometric of parameters 8, 4, 3
ñ Probability of table = PrpXS “ 3q “ 0.228

p-value = PrpXS ě 3q “ 0.243

If α “ 0.05 ñ S is not associated with label “professor”
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χ2 test
S Ď ti S Ę ti Row m.

`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1
`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0
Col. m. σpSq n´ σpSq n

In the old days: “Fisher’s exact test is computationally
expensive...”

Random variables (r.v.) describing outcome under H0 (H0 is true)
§ XS,0 = r.v. describing the support of S in class c0

§ XS,1 = r.v. describing the support S in class c1

§ XS̄,0 = r.v. describing num. transactions without S in class c0

§ XS̄,1 = r.v. describing num. transactions without S in class c1

Test statistic: X “
ř

iPtS,S̄u,jPt0,1upXi,j ´ ErXi,jsq
2{ErXi,js

Note: ErXi,js are easily computable
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χ2 test

Theorem

When nÑ `8, X Ñ χ2 distribution with 1 degree of freedom

Why is this important? There are tables to compute probabilities
for the χ2 distribution

Note: the χ2 test is the asymptotic version of Fisher’s exact test.
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Example: market basket analysis

S Ď ti S Ę ti Row m.
`ptiq “ c1 3 1 4
`ptiq “ c0 1 3 4
Col. m. 4 4 8

XS „ χ2 with 1 degree of freedom

Test statistic: 2

p-value = PrpXS ě 2q “ 0.16

If α “ 0.05 ñ S is not associated with label “professor”
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Barnard’s exact test

S Ď ti S Ę ti Row m.
`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1
`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0
Col. m. σpSq n´ σpSq n

Assumption: the row marginals (n0, n1) are fixed

but the column
marginals (σpSq, n´ σpSq) are not!

PrrS Ď ti : `ptiq “ c0s “ π0

PrrS Ď ti : `ptiq “ c1s “ π1

Null hypothesis H0: π0 “ π1 “ π

π is nuisance parameter, in the sense that we are not interested in
its value, but its value defines the distribution of our observations
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Bernard’s exact test(2)

S Ď ti S Ę ti Row m.
`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1
`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0
Col. m. σpSq n´ σpSq n

PrrS Ď ti : `ptiq “ c0s “ π0

PrrS Ď ti : `ptiq “ c1s “ π1

Null hypothesis H0: π0 “ π1 “ π

How do we compute the p-value?
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Bernard’s exact test(3)
S Ď ti S Ę ti Row m.

`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1
`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0
Col. m. σpSq n´ σpSq n

Assuming π is known, the probability depends only on
§ X = r.v. describing the support of S
§ Y = r.v. describing the support S in class c1

Let x the observed value of X and y the observed value of Y

P px, y|πq “

ˆ

n0

x´ y

˙ˆ

n1

y

˙

pπqx p1´ πqn´xq

Test statistic: probability of the contingency table.
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Bernard’s exact test(4)

S Ď ti S Ę ti Row m.
`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1
`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0
Col. m. σpSq n´ σpSq n

Let x the observed value of X and y the observed value of Y

Prpx, y|πq “

ˆ

n0

x´ y

˙ˆ

n1

y

˙

pπqx p1´ πqn´xq

Let T px, yq= set of more extreme tables for a given π

T px, y, πq “ tpx1, y1q : Prpx1, y1 | πq ď Prpx, y|πqu

Then p-value: p “ max
πPp0,1q

ÿ

px,yqPT pσpSq,σ1pSq,πq

Prpx, y|πq
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Barnard’s exact test(5)

p-value: p “ max
πPp0,1q

ÿ

px,yqPT pσpSq,σ1pSq,πq

Prpx, y|πq

0.090 0.095 0.100 0.105 0.110
π

5.274e-02

6.866e-02

8.458e-02

1.005e-01

1.164e-01

p
-v

al
ue

Computing the p-value is computationally expensive!

§ consider a grid of value for π

§ enumerate all tables in T pσpSq, σ1pSq, πq
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Example: market basket analysis

S Ď ti S Ę ti Row m.
`ptiq “ c1 3 1 4
`ptiq “ c0 1 3 4
Col. m. 4 4 8

Prp4, 3|πq “
`

4
1

˘`

4
3

˘

pπq4 p1´ πq4

T px, y, πq “ tpx1, y1q : Prpx1, y1 | πq ď Prp4, 3|πqu

p-value: max
πPp0,1q

ÿ

px,yqPT pσpSq,σ1pSq,πq

Prpx, y|πq “ 0.50 (for π “ 0.4)
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Fisher’s exact text vs Barnard’s exact test

Fisher’s test: assumes the frequency σpSq of the pattern is fixed
Barnard’s test: does not assume the frequency σpSq of the pattern
is fixed

Note: Barnard’s exact test depends on (unknown) nuisance
parameter π = probability that pattern S appears in a transaction.

What about Fisher’s exact test?

Fixing the frequency σpSq of S « fixing the probability that S
appears in a transaction
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Fisher’s exact text vs Barnard’s exact test (2)

Fisher’s test: assumes the frequency σpSq of the pattern is fixed
Barnard’s test: does not assume the frequency σpSq of the pattern
is fixed

Which one is more appropriate?

Depends on how the data is collected!

In practice: everybody uses Fisher’s text (computational reasons?)

35/135



Fisher’s exact text vs Barnard’s exact test (2)

Fisher’s test: assumes the frequency σpSq of the pattern is fixed
Barnard’s test: does not assume the frequency σpSq of the pattern
is fixed

Which one is more appropriate?

Depends on how the data is collected!

In practice: everybody uses Fisher’s text (computational reasons?)

35/135



Fisher’s exact text vs Barnard’s exact test (2)

Fisher’s test: assumes the frequency σpSq of the pattern is fixed
Barnard’s test: does not assume the frequency σpSq of the pattern
is fixed

Which one is more appropriate?

Depends on how the data is collected!

In practice: everybody uses Fisher’s text (computational reasons?)

35/135



Fisher’s exact text vs Barnard’s exact test (2)

Fisher’s test: assumes the frequency σpSq of the pattern is fixed
Barnard’s test: does not assume the frequency σpSq of the pattern
is fixed

Which one is more appropriate?

Depends on how the data is collected!

In practice: everybody uses Fisher’s text (computational reasons?)

35/135



Pattern mining and statistical hypothesis testing

Previous part: we had one pattern S we are interested in

Let pS be the p-value for S.

Rejection rule:
Given a statistical level α P p0, 1q: reject H0 iff p ď αñ S is
significant!
ñ probability false discovery ď α

KDD scenario: we consider multiple hypotheses given by our
dataset D

What happens if we use the rejection rule above?
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Outline

1. Introduction and Theoretical Foundations
1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing
1.3 Fundamental Tests
1.4 Multiple Hypothesis Testing
1.5 Selecting Hypothesis
1.6 Hypotheses Testability

2. Mining Statistically-Sound Patterns

3. Recent developments and advanced topics
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Multiple hypothesis testing

Let H be the set of hypotheses we want to test, and m “ |H|.

Proposition

Ernum. false discoveriess “ mˆ α.

Typical values of α: 0.01, 0.05.

Value of m? If you are looking at itemsets from a universe I of
items: m “ 2I ´ 1

ñ mˆ α is extremely high!

Need to consider the fact that we are testing multiple
hypotheses!
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Multiple Hypothesis testing procedures

We want guarantees on the (expected) number of false
discoveries.

V = number of false discoveries.

Family-Wise Error Rate (FWER): PrrV ě 1s.

Two procedures with guarantees on the FWER

§ Bonferroni correction

§ Bonferroni-Holm procedure
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Bonferroni correction

Let H be the set of hypotheses (patterns) we want to test, and
m “ |H|.

Given a pattern S P H, let HS,0 be the corresponding null
hypothesis.

Rejection rule: Given a statistical level α P p0, 1q: reject HS,0 iff
p ď α

m ñ S is significant!

Intuition
§ for each S, PrrS is a false discovery s ď α

m

§ union bound on m events: Prrą 0 false discoveries s
ď
ř

SPH PrrS is false discovery s ď |H| αm ď α
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Bonferroni-Holm procedure

Let H the set of hypotheses (patterns) to be tested, and m “ |H|.

Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let
p1 ď p2 ď ¨ ¨ ¨ ď pm be the sorted p-values

2. let k be the minimum value such that pk ą
α

m`1´k

3. rejection rule: reject the hypotheses (patterns) associated
with p1, p2, . . . , pk´1

More powerful than Bonferroni correction: pi compared with
α

m`1´i vs α
m .

However: both require very small p-values to flag patterns as
significant when m is large.
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False Discovery Rate

Let V be the number of false discoveries.

The requirement on FWER can be too strict!

Family-Wise Error Rate (FWER): PrrV ě 1s.

Let R the number of discoveries (i.e., rejected hypotheses).

Relaxed requirement: control the False Discovery Rate

False Discovery Rate (FDR): ErV {Rs (assuming V {R “ 0 when
R “ 0).
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Benjamini-Hochberg procedure

Let H the set of hypotheses (patterns) to be tested, and m “ |H|.

Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let
p1 ď p2 ď ¨ ¨ ¨ ď pm be the sorted p-values

2. let k be the maximum value such that pk ď
αk
m

3. rejection rule: reject the hypotheses (patterns) associated
with p1, p2, . . . , pk

Note: more powerful than Bonferroni and Bonferroni-Holm

Assumption: hypotheses are independent.
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Benjamini-Yekutieli procedure

Let H the set of hypotheses (patterns) to be tested, and m “ |H|.

Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let
p1 ď p2 ď ¨ ¨ ¨ ď pm be the sorted p-values

2. let k be the maximum value such that pk ď
αk

m
řm

i“1p1{iq

3. rejection rule: reject the hypotheses (patterns) associated
with p1, p2, . . . , pk

Note: does not require independence of hypotheses.
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Choosing hypotheses before testing?

Dataset D:
§ 10 transactions with label c1, 10 transactions with label c0

§ items I with |I| “ 13

We are interested only in patterns of size 6.

Number of hypotheses m “
`

15
6

˘

“ 6435
§ “m is large, will never find significant results”!
§ “let me select some hypotheses first, and then do the testing...”
§ find pattern S with highest value σ1pSq ´ σ0pSq:
σ1pSq “ 10, σ0pSq “ 0

§ “I am going to test only S!”
§ Fisher’s exact test p-value = 0.0001
§ “S is very significant!!!”
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“S is very significant!!!”

BUT IT IS NOT!
Assume that D is generate as follows: for each pattern S

§ consider one of its 10 occurrences

§ place it in a transaction with label c0 with probability 1{2, and
in a transaction with label c1 with probability 1{2 otherwise

§ S is not associated with class labels!

For a given S, the probability σ1pSq “ 10 and σ0pSq “ 0 is
p1{2q10 “ 1{1024

In expectation, there will be 6 patterns with
σ1pSq “ 10 and σ0pSq “ 0 and they are all false discoveries!
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Where is the problem?

We selected hypotheses based on σ1pSq “ 10´ σ0pSq,

and σ1pSq “ 10´ σ0pSq is clearly related to the p-value

So we have essentially looked at p-values of all hypotheses and
pretended we did not!

When in doubt: assume you have looked at all hypotheses!
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1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing
1.3 Fundamental Tests
1.4 Multiple Hypothesis Testing
1.5 Selecting Hypothesis
1.6 Hypotheses Testability

2. Mining Statistically-Sound Patterns

3. Recent developments and advanced topics
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Selecting hypotheses

All approaches seen so far for controlling the FWER and the FDR
depend on the set H of hypotheses, e.g., on its size.

A smaller H may lead to a higher corrected significance threshold,
thus to higher power.

Question: can we shrink H a posteriori?

I.e., Can we use D to select H1 Ĺ H
such that HzH1 only contains non-significant hypotheses?

Answer: No. . . and yes!
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How not to select hypotheses

The one thing you must remember from this tutorial!

Do not do this:

1) Perform each individual test for each hypothesis using D.

2) Use the test results to select which hypotheses to include in H1.

3) Use your favorite MHC to bound the FWER/FDR on H1.

Selecting H1 must be done without performing the tests on D.
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The holdout approach

1. Partition D into D1 and D2: D1 YD2 “ D and D1 XD2 “ H.

2. Apply some selection procedure to D1 to select H1

(it may include performing the tests on D1).

3) Perform the individual test for each hypothesis in H1 on D2,
using any MHC method.

Splitting D is similar to splitting a labeled set into training and test
sets.
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An example: holdout for significant itemsets

G. Webb, Discovering Significant Patterns, Mach. Learn. 2007
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When holdout works and why

Holdout can be used only when D can be partitioned into D1 and
D2 s.t. D1 and D2 are samples from the null distribution.

Such partitioning may not exist or be known. E.g., for graphs:

Split the set of nodes in two and claim that each of the resulting
induced subgraphs is a sample from the original distribution:

what do you do with edges crossing the two sets?

Formally: holdout works when the elements of D are identically
distributed exchangeable random variables.
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How selective shall we be?

Zα Ď H: set of α-significant hypotheses.

When selecting H1, we may get rid of some α-significant ones:

Zα X pHzH1q ‰ H.

Does the power still increases just because the corrected
significance threshold increases?

Unclear!

One can build examples where power Ò, Ó, or “.
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Take-away message

Being more or less selective in choosing H1 has a complicated effect
on power that cannot be clearly evaluated a priori.

This downside of holdout is due to the fact that

holdout may remove α-significant hypotheses from H.

OTOH, holdout is a simple natural procedure, and

it generally leads to higher power because

most discarded hypotheses are not α-significant.

Coming up: how to discard only non-α-significant hypotheses.
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A breakthrough [Tarone 1990]

Fisher’s exact test statistic is discrete

ñ there is a minimum attainable p-value for a pattern S.

Example Consider a dataset with n0 “ 5, n1 “ 10, σpSq “ 5
(ñ n “ 15, n´ σpSq “ 10).

Smallest p-value for S? When σ1pSq “ 5

S Ď ti S Ę ti Row m.
`ptiq “ c1 5 0 5
`ptiq “ c0 0 10 10
Col. m. 5 10 15

minimum attainable p-value = 3ˆ 10´4

57/135



A breakthrough [Tarone 1990]

Fisher’s exact test statistic is discrete
ñ there is a minimum attainable p-value for a pattern S.

Example Consider a dataset with n0 “ 5, n1 “ 10, σpSq “ 5
(ñ n “ 15, n´ σpSq “ 10).

Smallest p-value for S? When σ1pSq “ 5

S Ď ti S Ę ti Row m.
`ptiq “ c1 5 0 5
`ptiq “ c0 0 10 10
Col. m. 5 10 15

minimum attainable p-value = 3ˆ 10´4

57/135



A breakthrough [Tarone 1990]

Fisher’s exact test statistic is discrete
ñ there is a minimum attainable p-value for a pattern S.

Example Consider a dataset with n0 “ 5, n1 “ 10, σpSq “ 5
(ñ n “ 15, n´ σpSq “ 10).

Smallest p-value for S? When σ1pSq “ 5

S Ď ti S Ę ti Row m.
`ptiq “ c1 5 0 5
`ptiq “ c0 0 10 10
Col. m. 5 10 15

minimum attainable p-value = 3ˆ 10´4

57/135



A breakthrough [Tarone 1990]

Fisher’s exact test statistic is discrete
ñ there is a minimum attainable p-value for a pattern S.

Example Consider a dataset with n0 “ 5, n1 “ 10, σpSq “ 5
(ñ n “ 15, n´ σpSq “ 10).

Smallest p-value for S?

When σ1pSq “ 5

S Ď ti S Ę ti Row m.
`ptiq “ c1 5 0 5
`ptiq “ c0 0 10 10
Col. m. 5 10 15

minimum attainable p-value = 3ˆ 10´4

57/135



A breakthrough [Tarone 1990]

Fisher’s exact test statistic is discrete
ñ there is a minimum attainable p-value for a pattern S.

Example Consider a dataset with n0 “ 5, n1 “ 10, σpSq “ 5
(ñ n “ 15, n´ σpSq “ 10).

Smallest p-value for S? When σ1pSq “ 5

S Ď ti S Ę ti Row m.
`ptiq “ c1 5 0 5
`ptiq “ c0 0 10 10
Col. m. 5 10 15

minimum attainable p-value = 3ˆ 10´4

57/135



A breakthrough [Tarone 1990]

Fisher’s exact test statistic is discrete
ñ there is a minimum attainable p-value for a pattern S.

Example Consider a dataset with n0 “ 5, n1 “ 10, σpSq “ 5
(ñ n “ 15, n´ σpSq “ 10).

Smallest p-value for S? When σ1pSq “ 5

S Ď ti S Ę ti Row m.
`ptiq “ c1 5 0 5
`ptiq “ c0 0 10 10
Col. m. 5 10 15

minimum attainable p-value = 3ˆ 10´4

57/135



A breakthrough [Tarone 1990]

Fisher’s exact test statistic is discrete
ñ there is a minimum attainable p-value for a pattern S.

Example Consider a dataset with n0 “ 5, n1 “ 10, σpSq “ 5
(ñ n “ 15, n´ σpSq “ 10).

Smallest p-value for S? When σ1pSq “ 5

S Ď ti S Ę ti Row m.
`ptiq “ c1 5 0 5
`ptiq “ c0 0 10 10
Col. m. 5 10 15

minimum attainable p-value = 3ˆ 10´4

57/135



A breakthrough [Tarone 1990] (2)

Fisher’s exact test statistic is discrete
ñ there is a minimum attainable p-value for a pattern S.

S Ď ti S Ę ti Row m.
`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1
`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0
Col. m. σpSq n´ σpSq n

Let pF pσpSq, xq be Fisher’s exact test for pattern S with support
σpSq and σ1pSq “ x.

Note that maxt0, n1 ´ pn´ σpSqqu ď x ď mintσ1pSq, n1u ñ the
range of pF pσpSq, xq depends only on σpSq (since n1 is fixed)
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A breakthrough [Tarone 1990] (3)

Then the minimum achievable p-value for S is:

ψpσpSqq “ min
maxt0,n1´pn´σpSqquďxďmintσ1pSq,n1u

tpF pσpSq, xqu

Tarone’s result: if your are testing hypotheses with significance level
δ, then hypotheses that cannot be significant do not count
as hypotheses for Bonferroni’s correction!
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A breakthrough [Tarone 1990] (4)

S cannot be significant with significance level δ if
ψpσpSqq ą α1

ñ S is untestable.

Set of testable hypotheses (for significance level δ):

T pδq “ tS | ψpσpSqq ď δu
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Example: market basket analysis

S “ torange, tomato, broccoliu

minimum achievable p-value
ψpσpSqq “ min

0ďxďmintσ1pSq,n1u
tpF pσpSq, xqu

obtained for x “ 4: ψp4q “ 0.014.

ñ if significance level is δ “ 0.01, you do not need to count S
among the hypotheses!
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Tarone’s Improved Bonferroni correction

Set of testable hypotheses:

T pδq “ tS | ψpσpSqq ď δu

Rejection rule:
Given a statistical level α P p0, 1q, let δ ď α{|T pδq|: reject H0 iff
p ď δ ñ S is significant!

Theorem

The FWER is ď α.

Idea: find δ˚ “ maxtδ : δ ď α{|T pδq|u!

62/135



Tarone’s Improved Bonferroni correction

Set of testable hypotheses:

T pδq “ tS | ψpσpSqq ď δu

Rejection rule:
Given a statistical level α P p0, 1q, let δ ď α{|T pδq|: reject H0 iff
p ď δ ñ S is significant!

Theorem

The FWER is ď α.

Idea: find δ˚ “ maxtδ : δ ď α{|T pδq|u!

62/135



Tarone’s Improved Bonferroni correction

Set of testable hypotheses:

T pδq “ tS | ψpσpSqq ď δu

Rejection rule:
Given a statistical level α P p0, 1q, let δ ď α{|T pδq|: reject H0 iff
p ď δ ñ S is significant!

Theorem

The FWER is ď α.

Idea: find δ˚ “ maxtδ : δ ď α{|T pδq|u!

62/135



Tarone’s Improved Bonferroni correction

Set of testable hypotheses:

T pδq “ tS | ψpσpSqq ď δu

Rejection rule:
Given a statistical level α P p0, 1q, let δ ď α{|T pδq|: reject H0 iff
p ď δ ñ S is significant!

Theorem

The FWER is ď α.

Idea: find δ˚ “ maxtδ : δ ď α{|T pδq|u!

62/135



Still with us? :)
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2. Mining Statistically-Sound Patterns

2.1 LAMP: Tarone’s method for Significant Pattern Mining
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Introduction to LAMP

Intuitively: patterns with low (and very high) support σpSq in the
data provide less “evidence” of being significant Ñ higher ψpσpSqq!

lo
g

1
0
p ψ
pσ
pS
qq
q

σpSq n

n “ 60, n1 “ 30.

(from F. Llinares-López, D. Roqueiro,

Significant Pattern Mining for

Biomarker Discovery, ISMB18 Tutorial.)
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Introduction to LAMP

Monotonicity of patterns’ support:

Theorem

Let S be an itemset. Then it holds σpS 1q ď σpSq for all S 1 Ě S.

Example:

S 1 “ ttomato, broccoliu, S “ ttomatou
σpS 1q “ 4 ď σpSq “ 5.
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Introduction to LAMP

Monotonicity of patterns’ min. achievable p-value:
LAMP1: define the function ψ̂p¨q as

ψ̂pxq “

#

ψpxq , if x ď n1

ψpn1q , othw.

Theorem

For Fisher’s test it holds ψ̂pxq ď ψ̂pyq for all x ě y.

(in simpler terms: ψ̂pxq is monotone)

1Aika Terada, Mariko Okada-Hatakeyama, Koji Tsuda, and Jun Sese. Statistical significance of
combinatorial regulations. Proceedings of the National Academy of Sciences (2013).
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Introduction to LAMP

Intuition: connection between monotonicity of patterns’
min. achievable p-value and patterns’ support:

Theorem

Let S be an itemset. Then ψ̂pσpSqq ď ψ̂pσpS 1qq for all S 1 Ě S.

Example:

S 1 “ twine , coffeeu, S “ twineu
σpS 1q “ 3 ď σpSq “ 5
ψ̂pσpS 1qq“ ψ̂p3q“0.14 ě ψ̂pσpSqq“ ψ̂p5q“0.03
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Introduction to LAMP

This holds for itemsets and many other type of patterns with
monotonicity of support (i.e., subgraphs, sequential patterns,
subgroups, ...)

Intuition: let’s benefit from extensive research
in Frequent Pattern Mining algorithms!
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Frequent Pattern Mining

Frequent Pattern Mining: given D, compute the set of frequent
patterns FP pD,H, θq Ď H w.r.t. support θ, that is

FP pD,H, θq :“ tS P H : σpSq ě θu .

One solution: Explore the search tree of H, pruning
low-support subtrees:

Supporting Fig. S2.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.

23

θ

(imgs. from LAMP)

70/135
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mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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LAMP

LAMP2: first method to compute δ˚ “ maxtδ : δ|T pδq| ď αu
enumerating Frequent Itemsets.

Itemsets:

testable itemsets untestable itemsets

Minimum achievable (imgs. from LAMP)

2Aika Terada, Mariko Okada-Hatakeyama, Koji Tsuda, and Jun Sese. Statistical significance of
combinatorial regulations. Proceedings of the National Academy of Sciences (2013).
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LAMP algorithm

LAMP: compute δ˚ “ maxtδ : δ|T pδq| ď αu enumerating Frequent
Itemsets.

Supporting Fig. S2.
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mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
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LAMP algorithm

Let FP pD,H, θq :“ tS P H : σpSq ě θu.

Algorithm 1: LAMP

Input: dataset D, upper bound to FWER α.
Output: δ˚ “ maxtδ : δ ď α{|T pδq|u.

1 θ Ð n;

2 while α{|FP pD,H, θq| ě ψ̂pθq do θ Ð θ ´ 1;
3 return α{|FP pD,H, θ ` 1q|;

Problem: the same patterns are explored many times!
i.e.: all S P FP pD,H, θq are explored again when FP pD,H, θ ´ 1q
is explored
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LAMP

Supporting Fig. S2.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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θ1 θ2

For θ “ θ2 we count again all patterns
already counted for θ “ θ1 ě θ2!

Can we count patterns only once?
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LAMP

Supporting Fig. S2.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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SupportIncrease

SupportIncrease3: LAMP with only one Depth-First (DF)
exploration of H.

Supporting Fig. S2.
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value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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θ1

θ2

count testable patterns with DF exploration,

starting with θ “ 1; increase θ while exploring

if the curr. num. of frequent patterns ě α{ψ̂pθq

(imgs. from LAMP)

3Minato, S. I., Uno, T., Tsuda, K., Terada, A., Sese, J. A fast method of statistical assessment for
combinatorial hypotheses based on frequent itemset enumeration. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (2014) 75/135



LAMP: Experimental Results

Max itemsets cardinality Max itemsets cardinality

Estimated FWER of LAMP vs Bonferroni correction.

(imgs. from LAMP)
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Mining Significant Subgraphs5

Goal: find induced subgraphs

that are significantly enriched

in a class of labelled graphs

(imgs. from 4)

4F. Llinares-López, D. Roqueiro, Significant Pattern Mining for Biomarker Discovery, ISMB18 Tutorial.
5M. Sugiyama, F. Llinares-López, N. Kasenburg, K.M. Borgwardt. Significant subgraph mining with

multiple testing correction. In Proceedings of the International Conference on Data Mining, (2015). 77/135



LAMP for subgraphs (2)

From M. Sugiyama,F. Llinares-López, N. Kasenburg, K. M. Borgwardt. Significant subgraph mining

with multiple testing correction. In Proc. of ICDM (2015). 78/135
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Relaxing conditional assumptions
S Ď ti S Ę ti Row m.

`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1

`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0

Col. m. σpSq n´ σpSq n

Recap: Assumptions of Fisher’s test: all marginals of all the
tested contingency tables are fixed by design of the experiment.
Validity of this assumption depends on how the data is
collected!

In many cases, only n0, n1, and n are fixed, while σpSq depends on
the data Ñ Unconditional Test!

Not used in practice, mainly for computational reasons. . .
Until today
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Recap: Barnard’s Exact Test
S Ď ti S Ę ti Row m.

`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1

`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0

Col. m. σpSq n´ σpSq n

Nuisance variables: πS,j “ P p“S Ď ti” | “`ptiq “ cj”q ,

NH: πS,0 “ πS,1 “ πS “ P p“S Ď ti”q.

Let a “ σpSq, b “ σ1pSq:

P pa, b | πq “

ˆ

n1

b

˙ˆ

n´ n1

a´ b

˙

pπqa p1´ πqn´a

T pa, b, πq “ tpx, yq : P px, y | πq ď P pa, b | πqu

φpa, b, πq “
ÿ

px,yqPT pa,b,πq

P px, y | πq

p-value: ppa, bq “ max
π
tφpa, b, πqu
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T pa, b, πq “ tpx, yq : P px, y | πq ď P pa, b | πqu

φpa, b, πq “
ÿ

px,yqPT pa,b,πq

P px, y | πq

p-value: ppa, bq “ max
π
tφpa, b, πqu Ñ hard to compute!

81/135



Relaxing conditional assumptions: SPuManTE

Efficient Unconditional Testing: SPuManTE! 6

(Poster #146 on Tuesday!)

6L. Pellegrina, M. Riondato, and F. Vandin. “SPuManTE: Significant Pattern Mining with
Unconditional Testing”. KDD 2019.
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SPuManTE (1)

1) Computes confidence intervals CjpSq for
πS,j “ P p“S Ď ti” | “`ptiq “ cj”q;

How? Compute an upper bound, for all j P t0, 1u, on

sup
SPH

ˇ

ˇ

ˇ

ˇ

πS,j ´
σjpSq
nj

ˇ

ˇ

ˇ

ˇ

(note: σjpSq{nj is observed from D, πS,j is unknown)
with probability ě 1´ δ (δ ď α for FWER control), by upper
bounding the Rademacher Complexity of H. No assumptions
on the input distribution: only information from D!
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How? Compute an upper bound, for all j P t0, 1u, on

sup
SPH

ˇ

ˇ

ˇ

ˇ

πS,j ´
σjpSq
nj

ˇ

ˇ

ˇ

ˇ

(note: σjpSq{nj is observed from D, πS,j is unknown)
with probability ě 1´ δ (δ ď α for FWER control), by upper
bounding7 the Rademacher Complexity of H. No assumptions
on the input distribution: only information from D!

7M. Riondato and E. Upfal. Mining frequent itemsets through progressive sampling with
Rademacher averages. KDD 2015.
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SPuManTE (2)

2) Defines UT, an Unconditional Test that conditions ( ) on the
event ES “ “C0pSq X C1pSq “ CpSq “ H”.

p-value pS according to UT:

pS “

#

0 , if CpSq “ H
maxtφpσpSq, σ1pSq, πq, π P CpSqu , othw.

Ñ A pattern is flagged as significant if

CpSq “ H.

The confidence of the validity of CpSq provides FWER control.
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SPuManTE (3)

p-value pS according to UT:

pS “

#

0 , if CpSq “ H
maxtφpσpSq, σ1pSq, πq, π P CpSqu , othw.

Case CpSq ‰ H: still hard to compute!

3) Upper and Lower bounds to pS, and efficient algorithms to
compute them Ñ requirements to combine UT with LAMP.
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SPuManTE (4)

Let
πS “

σpSq
n

.

Lower bound qpS to p-value pS :

qpS “

#

0 , if CpSq “ H
φpσpSq, σ1pSq, πSq , othw.

Compute φpσpSq, σ1pSq, πSq efficiently? Yes!
(For more details: paper or come to talk to #146 poster! )
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SPuManTE (7)

Upper bound ppS to p-value pS :

ppS “ P pσpSq, σ1pSq | πqpn0 ` 1qpn1 ` 1q.

Theorem

pS ď ppS .

87/135



SPuManTE: Experimental Results

Comparison of p-values of Fisher’s

and Barnard’s tests w.r.t. the exact

p-value (under the unconditional null

hypothesis) for all contingency

tables with n “ 104, n1 “ 0.25 ¨ n,

σpSq “ 0.1 ¨ n.
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SPuManTE: Experimental Results

Comparison of number of significant

patterns using Fisher’s test (F),

UT (upper bound ppS to p-values),

UT˚ (lower bound qpS to p-values).

Additional results: may

not be well supported by the data!
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SPuManTE: Experimental Results

Running times of LAMP with Fisher’s

test (F), SPuManTE using UT and UT˚.

SPuManTE: very efficient!
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Outline
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2.1 LAMP: Tarone’s method for Significant Pattern Mining
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3. Recent developments and advanced topics

4. Final Remarks
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Permutation Testing

Main idea: estimate the null distribution by randomly perturbing
the observed data.

Pro: takes advantage of the dependence structure of the hypothesis

Cons: computationally expensive and formally imprecise

92/135



Settings

D0: observed dataset as a binary matrix.

E.g., a transactional dataset
(rows: transactions: columns: items)

1 0 1 1
0 1 1 0
1 0 1 0
1 0 0 1

T0 “ ApD0q P R: output of analysis algorithm A on D0.

E.g., the number of frequent itemsets w.r.t. min. freq. thresh. θ.

P: a set of properties of D0 considered important, characteristics.

E.g., the rows and columns totals

Question: Is T0 a “consequence” of P?

93/135



Settings

D0: observed dataset as a binary matrix.

E.g., a transactional dataset
(rows: transactions: columns: items)

3 1 3 2

1 0 1 1 3
0 1 1 0 2
1 0 1 0 2
1 0 0 1 2

T0 “ ApD0q P R: output of analysis algorithm A on D0.

E.g., the number of frequent itemsets w.r.t. min. freq. thresh. θ.

P: a set of properties of D0 considered important, characteristics.

E.g., the rows and columns totals

Question: Is T0 a “consequence” of P?

93/135



Settings

D0: observed dataset as a binary matrix.

E.g., a transactional dataset
(rows: transactions: columns: items)

3 1 3 2

1 0 1 1 3
0 1 1 0 2
1 0 1 0 2
1 0 0 1 2

T0 “ ApD0q P R: output of analysis algorithm A on D0.

E.g., the number of frequent itemsets w.r.t. min. freq. thresh. θ.

P: a set of properties of D0 considered important, characteristics.

E.g., the rows and columns totals

Question: Is T0 a “consequence” of P?

93/135



Null hypothesis

Null hypothesis H0: T0 is fully explained by P.

I.e., a value of T0 is “typical” for datasets satisfying P.

I.e., it is very likely to observe a value ApDq close to T0 in
a dataset D satisfying P.

I.e., let DP: set of datasets satisfying P, then

QpT0q “ min
!

Pr
U
pApDq ě T0q ,Pr

U
pApDq ă T0q

)

" 0,

U : uniform distribution over DP.
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Null distribution

To test H0, we need a quantitative approach:

For α P p0, 1q, if QpT0q ă α then reject H0.

Null distribution Θ “ ΘpA,Pq over values of T “ ApDq, D P DP.

Θ has c.d.f.

θpvq “ Pr
U
pT “ ApDq ě vq “

|tD P DP : T “ ApDq ě vu|

|DP|

We can use θpT0q to test H0:
if mintθpT0q, 1´ θpTqu ă α, reject H0.

Issue: deriving θ is infeasible for most pA,Pq.
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Empiricism to the rescue

Issue: deriving θ is infeasible for most pA,Pq.

Solution: approximate θ using an empirical c.d.f. θ̃.

1. Generate D “ tD1, . . . ,Dku Ď DP independent uniform samples.

2. Run A on each Di P D to obtain T “ tT1, . . . , Tku.

3. Compute an empirical p-value from the θ̃ arising from T:

p̃ “
1

k ` 1
pmint|ti P rks | Ti ă T0u|, |ti P rks | Ti ą T0u|u ` 1q P r0, 0.5s

4. If p̃ ă α, reject H0.
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Why does it work?

It is a consistent approach:

As the number k “ |D| of samples grows,

the empirical c.d.f. θ̃ converges to θ,

thus, p̃ converges to the exact p-values.

Warning: Convergence happens in the limit,

but there are finite-sample deviation bounds for θ̃ from θ.
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The crux of the matter

The steps again:

1. Generate D “ tD1, . . . ,Dku Ď DP independent uniform
samples.

How?

2. Run A on each Di P D to obtain T “ tT1, . . . , Tku.

Easy

3. Compute an empirical p-value from the θ̃ arising from T:

Easy

p̃ “
1

k ` 1
pmint|ti P rks | Ti ă T0u|, |ti P rks | Ti ą T0u|u ` 1q

4. If p̃ ă α, reject H0.

Easy
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Perturbing the data

Assumption: there exists a perturbation operation

φ : DP ˆ Y
loomoon

parameters

Ñ DP

s.t. for any D1, D2 P DP, D1 can be obtained by repeatedly
applying φ to D2.

I.e., there exists a finite sequence Y1, . . . , Y`, Yi P Y s.t.

D2 “ φpφpφp¨ ¨ ¨ pφpD2, Y1q, Y2q, ¨ ¨ ¨ q, Y`qq

If D2 “ φpD1, yq, then there exists y´1 P Y s.t. D1 “ φpD2, y´1q.
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Example: perturbation for rows and columns sums

1. Take two rows u and v and two columns A and B of D0

such that upAq “ vpBq “ 1 and upBq “ vpAq “ 0;

2. Change the rows so that
upBq “ vpAq “ 1 and upAq “ vpBq “ 0

From Gionis et al., Assessing Data Mining Results via Swap Randomization, ACM TKDD, 2007.

Y is the set of quadruples of two rows and two columns indices.
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Generating the samples

G “ pDP, Eq: directed graph s.t. pD,D1q P E if D1 can be obtained
from D with one perturbation:

pD,D1q P E ô Dy P Y s.t. D1 “ φpD, yq

Add self-loops and run Metropolis-Hastings on the resulting graph
G1 to obtain independent and uniform samples.
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Running Metropolis-Hastings

M-H performs a random walk on G1 with uniform stationary
distribution.

For each (visited) D, M-H needs its neighbors

NpDq “ tD1 P DP : Dy P Y s.t. D1 “ φpD, yqu

Computing NpDq requires to find all quadruplets pu, v, A,Bq P Y
leading to valid perturbations from D.

Gionis et al. show how to get NpDq in expected constant time when
no row/column has too many 1s.
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Mixing Time

The samples D1, . . . ,Dk must be independent and uniform

M-H must make at least M moves after taking each sample

M : mixing time of G1 with M-H transition probabilities.

Deriving M is usually infeasible

so M is fixed to be “large enough” after experimentation.
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Advantages and disadvantages of permutation testing

Conceptually very natural

Requires a perturbation operation φ for P

Computationally very expensive:

sample generation + running A on each sample

“Empirical everything”: p-value, independence, uniformity, . . .
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Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns

2.1 LAMP: Tarone’s method for Significant Pattern Mining
2.2 SPuManTE: relaxing conditional assumptions
2.3 Permutation Testing
2.4 WY Permutation Testing

3. Recent developments and advanced topics

4. Final Remarks
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Westfall-Young (WY8) Permutation Testing

Randomly shuffle the labels; compute patterns’ p-values w.r.t. the
random labels.

…

1 2 3 4 jp

Original Data Random Permutations

…

…

…

8P. H. Westfall and S. S. Young, Resampling-Based Multiple Testing: Examples and Methods for
p-Value Adjustment. Wiley-Interscience, 1993.
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Westfall-Young (WY9) Permutation Testing
Any association found on the random permutations is a false
positive: directly estimate the p-values from the null hypothesis
joint distribution Ñ account for dependencies of hypotheses

…

1 2 3 4 jp

Original Data Random Permutations

…

…

…

9P. H. Westfall and S. S. Young, Resampling-Based Multiple Testing: Examples and Methods for
p-Value Adjustment. Wiley-Interscience, 1993. 107/135



WY Permutation Testing: formally

`jptiq “ j-th permuted label of ti , σj1pSq “
n
ÿ

i“1

φSptiq1 r`jptiq “ c1s

Example:

…

1 2 3 4 jp

Original Data Random Permutations

…

…

…

S “ tbroccoliu
σ1

1pSq “ 1,
σ2

1pSq “ 3,
σ3

1pSq “ 2,
. . .
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WY Permutation Testing: formally

`jptiq “ j-th permuted label of ti , σj1pSq “
n
ÿ

i“1

φSptiq1 r`jptiq “ c1s

pjmin “ min
SPH

!

ppσpSq, σj1pSqq
)

, FWERpxq “
1

jp

jp
ÿ

i“1

1

”

pjmin ď x
ı

Compute δ˚ “ max
 

x : FWERpxq ď α
(

pjp „ 103-104 for α „ 0.05q
j

jptαjpu1

pjmin

δ˚

Output tS : pS ď δ˚u .

Problem: exhaustive enumeration of H to compute pjmin.
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Computing pjmin: FASTWY

How to compute pjmin efficiently?

Tarone saves us again

FASTWY: Intuition:

ψ̂pSq ě pjmin ñ p
´

σpSq, σj1pSq
¯

ě pjmin

Pattern S is untestable ñ cannot improve pjmin!
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Computing pjmin: FASTWY

How to compute pjmin efficiently?

Tarone saves us again

FASTWY10: Intuition:

ψ̂pSq ě pjmin ñ p
´

σpSq, σj1pSq
¯

ě pjmin

Pattern S is untestable ñ cannot improve pjmin!

10A. Terada, K. Tsuda, and J. Sese. Fast westfall-young permutation procedure for combinatorial
regulation discovery. In IEEE International Conference on Bioinformatics and Biomedicine, 2013.
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Computing pjmin: FASTWY
(improved version11 of) FASTWY: computes efficiently pjmin with a
branch-and-bound search over H, pruning subtrees with ψ̂p¨q:

Supporting Fig. S2.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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θ1

θ2

start with θ “ 1 and pjmin “ 1; explore

patterns with DF exploration, updating pjmin;

increase θ while exploring if pjmin ď ψ̂pθq

(imgs. from LAMP)

11T. Aika, H. Kim, and J. Sese. High-speed westfall-young permutation procedure for
genome-wide association studies, ACM-BCB 2015. 111/135



FASTWY

Issues of FASTWY:
1) repeat the procedure jp times (jp „ 103-104);
2) for some j P r1, jps:
pjmin may not be very small Ñ θj very small Ñ impractically
large number of hypotheses to explore.

j
jptαjpu1

pjmin

δ˚

j
jp1

θj
Huge work!
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WYlight

WYlight12: Intuition: to find δ˚ we only need to compute
exactly the lower α-quantile of tpjminu

jp
j“1.

j
jptαjpu1

pjmin

δ˚

j
jptαjpu1

θj

Less work!

12F. Llinares-López, M. Sugiyama, L. Papaxanthos, and K. Borgwardt. Fast and memory-efficient
significant pattern mining via permutation testing, KDD 2015.
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WYlight

WYlight algorithm: one DF exploration of H processing all jp
permutations at once.

Supporting Fig. S2.
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corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
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value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
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23

θ1

θ2

start with θ “ 1 and pjmin “ 1,@j; explore

patterns with DF exploration, updating

tpjminu
jp
j“1; increase θ while exploring

if α-quant. of tpjminu
jp
j“1 ď ψ̂pθq

(imgs. from LAMP)
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WYlight13 - Running time

13F. Llinares-López, M. Sugiyama, L. Papaxanthos, and K. Borgwardt. Fast and memory-efficient
significant pattern mining via permutation testing, KDD 2015. 115/135



WYlight14 - Memory

14F. Llinares-López, M. Sugiyama, L. Papaxanthos, and K. Borgwardt. Fast and memory-efficient
significant pattern mining via permutation testing, KDD 2015. 116/135



Too many results!

Motivation: for many
datasets, impractically large
set of results (SP p0.05q) are
found even when controlling
FWER ď 0.05:
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TopKWY

What if we want (more efficiently!) only the top-k significant
patterns, retaining the guarantees of WY procedure? Ñ TopKWY15!

pk “ k-th smallest element of tpS : S P Hu,
δ˚ “ max

 

x : FWERpxq ď α
(

,
δ “ min

 

pk, δ
(

.

Set of top-k significant patterns:

TOPKSP pD,H, α, kq :“
 

S : pS ď δ
(

.

15L. Pellegrina and F. Vandin. Efficient mining of the most significant patterns with permutation
testing. KDD 2018.
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TopKWY

Intuition: to compute TOPKSP pD,H, α, kq we only need to

compute exactly the values of the set
!

pjmin

)jp

j“1
that are ď δ.

j
jptαjpu1

pjmin

δ˚

δ
j

jp1

θj Even less work!
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TopKWY

Algorithm: Best First (BF) exploration of H to compute δ.
(Approach similar to TopKMiner for top-k frequent itemsets).

Supporting Fig. S2.
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Illustration of the algorithm of the LAMP. (a) Starting from the largest λ, the frequent itemset
mining algorithm listed up motif combinations that target λ or more genes. The number of
the combinations is mλ. (b) From mλ and f(λ), the FWER bound f(λ)mλ can be calculated.
Because the FWER bound is smaller than α in this figure, mλ is not sufficiently large to be a
corrected significance level. (c) By decreasing λ, mλ becomes large. The motif combinations
that target λ or more genes were listed up using a frequent itemset mining algorithm. mλ is
computed from the result. (d) If f(λ)mλ is still smaller than α, we change λ for a smaller
value and repeat the process. (e)(f) f(λ)mλ exceeds α, which indicates that f(λ) is too large
to control a FWER less than α. From the results, f(λ + 1) is the largest value, and mλ+1 is
the optimal Bonferroni factor.
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θ1

θ2

start with θ “ 1 and pjmin “ 1,@j; explore

patterns with BF exploration, updating

tpjminu
jp
j“1 and pk; increase θ while exploring

if min
!

α-quant. of tpjminu
jp
j“1 , p

k
)

ď ψ̂pθq

(imgs. from LAMP)

120/135



TopKWY: Guarantees

1) BF search: guarantees on the set of explored patterns:

Theorem

Let δ “ mintpk, δu, and θ˚ “ maxtx : ψ̂pxq ą δu.
TopKWY will process only the set FP pD,H, θ˚q “ T pδq.
Ñ the DF search always explores a super-set of T pδq.

2) Improved bounds to skip the processing of the permutations for
many patterns.

(More details on the paper )
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TopKWY: Running time
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What about controlling the FDR?

Let V the number of false discoveries (rejected null hypotheses).

Family-Wise Error Rate (FWER): PrrV ě 1s.

Let R the number of discoveries (i.e., rejected hypotheses).

False Discovery Rate (FDR): ErV {Rs (assuming V {R “ 0 when
R “ 0).

Significant pattern mining while controlling the FDR?
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What about controlling the FDR? (2)

Some methods for scenario where significance ‰ association with a
class label:

§ significance = deviation from expectation when items place
independently in transactions (with same frequency as in
dataset D) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal,
Vandin. Journal of the ACM 2012]

§ statistical emerging patterns: given a threshold a P p0, 1q,
probability class label is c1 when pattern S is present is ě a

[Komiyama, Ishihata, Arimura, Nishibayashi, Minato. KDD
2017.]

Not a solved problem!
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Using additional information

Sometimes there are additional measures (covariates) that provide
information on whether a pattern can be significant.

Example: the support σpSq of S has an impact on its minimum
achivable p-value for Fisher’s exact test

The covariate can be used to weight hypotheses/patterns or,
equivalently, use different correction thresholds for False Discovery
Rate (FDR) based on the covariate
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Independent Hypothesis Weighting (IHW)16

16Ignatiadis, Nikolaos, et al. Data-driven hypothesis weighting increases detection power in
genome-scale multiple testing. Nature methods 13.7 (2016): 577.
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No conditioning?

S Ď ti S Ę ti Row m.

`ptiq “ c1 σ1pSq n1 ´ σ1pSq n1

`ptiq “ c0 σ0pSq n0 ´ σ0pSq n0

Col. m. σpSq n´ σpSq n

Fisher’s test: conditioning on both row and column totals

Barnard’s test: conditioning only on row totals.

Removing the conditioning on the columns was really controversial.

It makes sense in a pattern mining setting (and others).

Q: Shall we stop conditioning on the row totals?

In general, removing assumptions is a blessed goal.
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Why no conditioning? (2)

Conditioning is bad, even when it approximately preserve the
likelihood.

It destroys the repeated-sampling (frequentist) interpretation of
p-value, because it reduces the sample space:

fewer datasets are considered possible,
often too few to be realistic.
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Why no conditioning? (1)

Single-experiment: removing row conditioning is almost unnatural.

No one does it Ñ no controversy!

KDD settings: D is built by actually sampling from a distribution
whose domain also include the group label:

the row totals are random variables and rightly so.

So let’s stop conditioning, and only keep the sample size n as fixed.

How?

132/135



Why no conditioning? (1)

Single-experiment: removing row conditioning is almost unnatural.

No one does it Ñ no controversy!

KDD settings: D is built by actually sampling from a distribution
whose domain also include the group label:

the row totals are random variables and rightly so.

So let’s stop conditioning, and only keep the sample size n as fixed.

How?

132/135



Why no conditioning? (1)

Single-experiment: removing row conditioning is almost unnatural.

No one does it Ñ no controversy!

KDD settings: D is built by actually sampling from a distribution
whose domain also include the group label:

the row totals are random variables and rightly so.

So let’s stop conditioning, and only keep the sample size n as fixed.

How?

132/135



Outline

1. Introduction and Theoretical Foundations

2. Mining Statistically-Sound Patterns

3. Recent developments and advanced topics

4. Final Remarks

133/135



Final Remarks

Knowl. Disc. should be based on hypothesis testing:

the data is never the whole universe.

Lots of room for research: we scratched the surface

Statistics: tests with higher power, fewer assumptions

CS: scalability (wrt many dimensions) is still an issue.

Balance theory and practice (that’s what we are good at)

Work with real scientists, with real data, with real problems.
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