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Introduction

Data mining and (inferential) statistics have traditionally two
different point of views

» data mining: the data is the complete representation of the
world and of the phenomena we are studying

> statistics: the data is obtained from an underlying generative
process, that is what we really care about

Similar questions but different flavours!
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Example

Data: information from two online communities C; and Cs,
regarding whether each post is in a given topic T

» Data mining: “what fraction of posts in C are related to T'?
What fraction of posts in (5 are related to 77"

» Statistics: “What is the probability that a post from C is
related to T'? What is the probability that a post from Cj is
related to T'?"

Note: the two are clearly related, but different!
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Statistically-Sound Pattern Mining

How do we efficiently identify patterns in data with guarantees
on the underlying generative process?
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Statistically-Sound Pattern Mining

How do we efficiently identify patterns in data with guarantees
on the underlying generative process?

We use the statistical hypothesis testing framework
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Statistical Hypothesis Testing
We are given:
» a dataset D

» a question we want to answer
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Statistical Hypothesis Testing
We are given:
» a dataset D

» a question we want to answer = a pattern S

EXAMPLE

» D = for 1000 diseased individuals (cases), whether drug S had
an effect (YES/NO); for 1000 healthy individuals (controls),
whether drug S had an effect (YES/NO).

> does S have the same effect on diseased individuals (cases) and
on healthy individuals (controls)?
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Example: market basket analysis

Dataset D: transactions = set of items, label (student/professor)
Pattern S: subset of items (orange, tomato, broccoli)
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Example: market basket analysis

Dataset D: transactions = set of items, label (student/professor)
Pattern S: subset of items (orange, tomato, broccoli)
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Question: is S associated with one of the two labels? 9/135



Statistical Hypothesis Testing: Formalization

Frame the question in terms of a null hypothesis, describing the
default theory, which corresponds to “nothing interesting” for
pattern S.
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Statistical Hypothesis Testing: Formalization

Frame the question in terms of a null hypothesis, describing the
default theory, which corresponds to “nothing interesting” for
pattern S.

The goal is to use the data to either reject H, (S is interesting!”)
or not (“S is not interesting).

This is decided based on a test statistic, that is, a value
rs = fg(D) that describes S in D
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Statistical Hypothesis Testing: p-value
Let xg = f(D) the value of the test statistic for our dataset D.
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Statistical Hypothesis Testing: p-value
Let xg = f(D) the value of the test statistic for our dataset D.

Let Xg be the random variable describing the value of the test
statistic under the null hypothesis H (i.e., when Hj is true)

p-value: p = Pr[Xg more extreme than g : Hy is true]

“Xs more extreme than xg": depends on the test, may be
Xg = xg or Xg < xg or something else. .

Rejection rule:
Given a statistical level a« € (0,1): reject Hy iff p < a= S'is

significant!
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Statistical Hypothesis Testing: Errors
There are two types of errors we can make:
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Statistical Hypothesis Testing: Errors

There are two types of errors we can make:
» type | error: reject Hy when Hj is true = flag S as significant
when it is not (false discovery)
» type Il error: do not reject Hy when H is false = do not flag
S as significant when it is

Type I error Type II error
REALITY (false positive) (false negative)

H, false H, true g% You're not
£ __pregnant
s2 =

reject H, Correct!

You’re
|_pregnant |

DECISION

accept Hy| Type Il error Correct!
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Statistical Hypothesis Testing: Error Guarantees

There are two types of errors we can make:

» type | error: reject Hy when H is true = flag S as significant
when it is not (false discovery)

» type |l error: do not reject Hy when Hj is false = do not flag
S as significant when it is
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Statistical Hypothesis Testing: Error Guarantees

There are two types of errors we can make:

» type | error: reject Hy when H is true = flag S as significant
when it is not (false discovery)

» type |l error: do not reject Hy when Hj is false = do not flag
S as significant when it is

Theorem
Using the rejection rule, the probability of a type | error is < «
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Statistical Hypothesis Testing: Power

Avoiding type | errors is not everything!
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Statistical Hypothesis Testing: Power

Avoiding type | errors is not everything!
If it was, it would be enough to never flag a pattern as significant. ..

Power:
A test has power (3 if Pr[H, is rejected : Hy is false] =

Note: for a test with power 3, we have Pr[type Il error] =1 —

(Power is not everything: if it was, it would be enough to always
flag all patterns as significant. . .)
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Example: Testing for Independence
Given:

> transactional dataset D = {t1, ...
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Example: Testing for Independence

Given:
> transactional dataset D = {t1,...,t,}, each transaction ¢; has a
label £(t;) € {co, c1}
> a pattern S
Goal: understand if the appearance of S in transactions (S < t;)
and the transactions labels (¢(t;)) are independent.

Null hypothesis Hy: the events "S < t;" and "{(t;) = ¢1" are
independent.

Alternative hypothesis: there is a dependency between “S < ;"
and "l(t;) = 1"
15/135



Example: market basket analysis
S = {orange, tomato, broccoli}
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Example: market basket analysis
S = {orange, tomato, broccoli}
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Hy: presence of S is independent of (not associated with) label
“professor” 16/135



Example: Testing for Independence (2)

Useful representation of the data: contingency table
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Example: Testing for Independence (2)

Useful representation of the data: contingency table

Sct;| S $ t; Row m.
f(tl) = C1 0’1(8) ny — 0'1(8) n1
g(tz) = Cy 0'0(8) ng — 0'0(8) U0
Col. m. |a(S) [n—0a(S) |n

» 01(S) = number of transactions containing S (=support of S)

with label ¢;

> 00(S) = support of S with label ¢

» 0(S) = 0¢(S) + 01(S) = support of S in D
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Example: Testing for Independence (2)

Useful representation of the data: contingency table

v

v

v

Sct;| S $ t; Row m.
f(tl) = C1 0’1(8) ny — 0'1(8) n1
g(tz) = Cy 0'0(8) ng — 0'0(8) U0
Col. m. |a(S) [n—0a(S) |n

01(S) = number of transactions containing S (=support of S)
with label ¢;

00(S) = support of S with label ¢
o(S) = 0o(S) + 01(S) = support of S in D
n; = number transactions with label ¢;
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Example: Testing for Independence (3)

Useful representation of the data: contingency table

Sct; | S $ t; Row m.
f(tl) =C 0'1(8) ny — 0'1(8) ni
E(tl) = Cy 0'0(8) ng — 0'0(8) U0
Col. m. |a(S) [n—0a(S) |n

Test statistic = 01(5)
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Example: market basket analysis

a

Value of test statistic = 01(S)
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Example: market basket analysis

a
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b4 L Y= ¢
2) (=[] (@
2l [-Iv] WO
all |- 7|y
A * %%

8 |- slelv,

Sct;|SEt;| Rowm.
g(tl) = 3 1 4
E(tz) = Cy 1 3 4
Col. m. 4 4 8

Value of test statistic = 01(S) = 3

19/135



Example: Testing for Independence (3)
Useful representation of the data: contingency table
Sct;| SEt; Row m.

g(tz) = C 0'1(8) ny — 0'1(8) i
E(tz) = () 0'0(8) ng — 0'0(8) g
Col. m. |a(S) [n—0a(S) |n

Test statistic = 01(9)

20/135



Example: Testing for Independence (3)
Useful representation of the data: contingency table
Sct;| SEt; Row m.

g(tz) = C 0'1(8) ny — 0'1(8) i
E(tz) = () 0'0(8) ng — O'()(S) g
Col. m. |a(S) [n—0a(S) |n

Test statistic = 01(9)

p-value: how do we compute it?

20/135



Example: Testing for Independence (3)
Useful representation of the data: contingency table
Sct;| SEt; Row m.

g(tz) = C 0'1(8) ny — 0'1(8) i
E(tz) = () 0'0(8) ng — O'()(S) g
Col. m. |a(S) [n—0a(S) |n

Test statistic = 01(9)

p-value: how do we compute it?

Most common method: Fisher’s exact test
20/135



Outline

1. Introduction and Theoretical Foundations

1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing

1.3 Fundamental Tests

1.4 Multiple Hypothesis Testing

1.5 Selecting Hypothesis

1.6 Hypotheses Testability

2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics
4. Final Remarks

21/135



Fisher's exact test
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Fisher's exact test

ti S $ ti Row m.
Ut) =c1 | o1(S) | n1—a1(S) | m
E(tl) = C 0'0(8) ng — 00(8) U0
Col. m. |a(S) [n—0a(S) |n

Assumption: the column marginals (¢(S), n — o(S) and the row
marginals (ng, n1) are fixed.

= under the null hypothesis (independence), the support of S in
class ¢; follows an hypergeometric distribution of parameters n, nq,
and ogs

= the p-value is easily computable!
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Fisher's exact test(2)

Let Xs be the r.v. describing the support of S in class ¢; when the
null hypothesis holds
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Fisher's exact test(2)

Let Xs be the r.v. describing the support of S in class ¢; when the
null hypothesis holds
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Fisher's exact test(2)

Let Xs be the r.v. describing the support of S in class ¢; when the

null hypothesis holds

Sct;|S<Et; Row m.

E(tl) = 0'1(8) ny — 01(8) T
f(tl) = O'()(S) ng — 00(8) no
Col. m. |a(S) [n—0a(S) |n

ey (30

(U(S)
p-value for §: ps = 2 Pr(Xs = k)
k=01(S)
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Example: market basket analysis
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Example: market basket analysis
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Xs ~ hypergeometric of parameters 8, 4, 3
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Example: market basket analysis

Sct; | S $ t; Row m.
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Xs ~ hypergeometric of parameters 8, 4, 3

= Probability of table = Pr(Xs = 3) = 0.228
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Xs ~ hypergeometric of parameters 8, 4, 3

= Probability of table = Pr(Xs = 3) = 0.228

p-value = Pr(Xs > 3) = 0.243
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Example: market basket analysis
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Sct; | SEt; | Rowm.
E(tl) =C 3 1 4
g(tl) = Cp 1 3 4
Col. m. 4 4 8

Xs ~ hypergeometric of parameters 8, 4, 3

= Probability of table = Pr(Xs = 3) = 0.228

p-value = Pr(Xs > 3) = 0.243

If « = 0.05 = S is not associated with label “professor”
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y? test

In the old days: “Fisher's exact test is computationally

expensive..." G
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Y2 test

Sct; | SEt; Row m.
é(tl) = C1 0’1(8) ny — 0’1(8) nq
g(ti) = Cp 0'0(8) nog — 0'0(8) no
Col. m. o(S) | n—0a(S) n

In the old days: “Fisher's exact test is computationally

expensive..." G

Random variables (r.v.) describing outcome under Hy (Hj is true)
» Xso = r.v. describing the support of S in class ¢
» Xs1 = r.v. describing the support S in class ¢;
» X5 = r.v. describing num. transactions without & in class ¢
> Xg1 = r.v. describing num. transactions without § in class ¢

Test statistic: X = ;55 jeqo1) (Xij

— E[Xi;])*/E[Xi;]
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g(ti) = Cp 0'0(8) nog — 0'0(8) no
Col. m. o(S) | n—0a(S) n

In the old days: “Fisher's exact test is computationally

expensive..." G

Random variables (r.v.) describing outcome under Hy (Hj is true)
» Xso = r.v. describing the support of S in class ¢
» Xs1 = r.v. describing the support S in class ¢;
» X5 = r.v. describing num. transactions without & in class ¢
> Xg1 = r.v. describing num. transactions without § in class ¢

Test statistic: X = ;55 jeqo1) (Xij

Note: E[X, ;| are easily computable

— E[Xi;])*/E[Xi;]
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x? test

Theorem
When n — +o0, X — x? distribution with 1 degree of freedom
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Y2 test

Theorem

When n — +o0, X — x? distribution with 1 degree of freedom

Why is this important? There are tables to compute probabilities
for the 2 distribution

Note: the y? test is the asymptotic version of Fisher's exact test.
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Example: market basket analysis

R L@ )

A v TJlev

2 L Y1 ¢ Sct; | SEt; | Rowm.
a vyl (@ ) =c | 3 1 1
— 0t) =co | 1 3 4
E % fev CoI.m.O 4 4 8

a8 b A IR

A LY

8) -] | Fe®
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Example: market basket analysis

i

[2> BoEo 3a| [fo ba Ip 3]

Xs ~ x? with 1 degree of freedom

vy [

s Tew

L Y1 ¢ Sct; | SEt; | Rowm.

* % |© (ti)=c | 3 1 4
g(ti)=60 1 3 4

"% fev Col. m. 4 4 8

. ey

.‘L

? e,
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Example: market basket analysis

B Ve )

A v Flev

2 L Y1 ¢ Sct; | SEt; | Rowm.
ol vl (@ ) =c | 3 1 )

— ((t)=co | 1 3 4
g "% fev CoI.m.O 4 4 8

al - 7oy

A sy

a) -] | Fe™

Xs ~ x? with 1 degree of freedom
Test statistic: 2
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Example: market basket analysis

o

B VL@

A v Jlev

2 L Y1 ¢ Sct; | SEt; | Rowm.
2 %y @ ((ti)=c1 |3 1 4
— ((t)=co | 1 3 4
g % fev CoI.m.O 4 4 8

a - ey

A LY

8 |- Flelv

Xs ~ x? with 1 degree of freedom
Test statistic: 2

p-value = Pr(Xs > 2) = 0.16
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Example: market basket analysis

&) L@ )

A v TJlelv

b4 L Y1 ¢ Sct; | SEt; | Rowm.
g .“' (") E(ti)ch 3 1 4

— g(ti)=60 1 3 4

2 "% fev Col. m. 4 4 8

8 . v ey

A sy

8 |- Flelv

Xs ~ x? with 1 degree of freedom
Test statistic: 2

p-value = Pr(Xs > 2) = 0.16

If « = 0.05 = S is not associated with label “professor” 27/135



Barnard's exact test

97

ct; | SEt Row m.
é(tl) =C 0'1(8) ny — 0'1(8) ny
é(tl) = Cp 0’0(8) no — 0'0(8) no
Col. m. a(S) n—o(S) n

Assumption: the row marginals (ng, n1) are fixed
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Barnard's exact test

Sct; | S dt; Row m.
g(ti) =C 0'1(8) ny — 0'1(8) ni
Ut;) =co | 00(S) | mo—00(S) | no

0
Col. m. o(S) | n—a(S)

n

Assumption: the row marginals (ng, n1) are fixed but the column

marginals (o(S5), n — o(5)) are not!

PI‘[S c it f(tz) = C()] = T
PI‘[S c i f(tz) = Cl] = T

Null hypothesis Hy: mp =m ==

7 is nuisance parameter, in the sense that we are not interested in
its value, but its value defines the distribution of our observations
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Bernard's exact test(2)

Sct; | S<Et; Row m.
g(ti) =C 0'1(8) ny — 0'1(8) nq
g(tl) = Cy 0’0(8) nog — 0'0(8) no
Col. m. a(S) | n—o(S) n

PI"[S i f(tl) 0] 70

PI’[S ct: f(tl) = Cl] = T

Null hypothesis Hy: mp =m ==
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Bernard's exact test(2)

Sct; | S<Et; Row m.
g(ti) =C 0'1(8) ny — 0'1(8) nq
g(tl) = Cy 0’0(8) nog — 0'0(8) )

Col. m. a(S) n—o(S) n

}—U
—
05
N
=
=
=
3
o

< 1 ;) = Co| =
PI’[SQ t; : f(tl) = Cl] = T

Null hypothesis Hy: mp =m ==

How do we compute the p-value?
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Bernard's exact test(3)

V)

Sdt; Row m.
) ny — 0’1(8) nq
) o —0'0(8) no
) n—o(S) n

g(tl) = C1 1(_
£(ti) = co | 00(S
(S

Col. m.

Assuming 7 is known, the probability depends only on
» X = r.v. describing the support of S
» Y = r.v. describing the support S in class ¢;
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Bernard's exact test(3)

V)

Sdt; Row m.
) ny — 0’1(8) nq
) o —0'0(8) no
) n—o(S) n

g(tl) = C1 1(_
£(ti) = co | 00(S
(S

Col. m.

Assuming 7 is known, the probability depends only on
» X = r.v. describing the support of S
» Y = r.v. describing the support S in class ¢;

Let = the observed value of X and y the observed value of Y
no n1 x n—zx)
P(x,y|m) = ( ) ( ) ) (1 —m
(z,y|m) )\ (m)" (1 =)
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Bernard's exact test(3)

V)

Sdt; Row m.
ny — 0'1(8) nq
no —0'0(8) no
) | n—o(S) n

g(tz) = C1 1(_
£(ti) =co | 00(S
(S

Col. m.

\_/\_/C‘F

Assuming 7 is known, the probability depends only on
» X = r.v. describing the support of S
» Y = r.v. describing the support S in class ¢;

Let = the observed value of X and y the observed value of Y

Peaim) = (" ) (M) -

Test statistic: probability of the contingency table.
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Bernard's exact test(4)

Sct; | S<Et; Row m.
é(tl) =C 0'1(8) ny — 0'1(8) ny
é(tl) = Cy 0’0(8) no — 0'0(8) no
Col. m. a(S) n—o(S) n

Let = the observed value of X and y the observed value of Y

Pr(z, y|m) = (;?y) (Zl) ()" (1 —m)"")
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Bernard's exact test(4)

Sct; | S<Et; Row m.
é(tl) =C 0'1(8) ny — 0'1(8) ny
é(tl) = Cy 0’0(8) no — 0'0(8) no
Col. m. a(S) n—o(S) n

Let = the observed value of X and y the observed value of Y

Pr(z, y|m) = (;?y) (Zl) ()" (1 —m)"")

Let T'(z,y)= set of more extreme tables for a given 7

T(z,y,m) ={(2",y) : Pr(z’,y | 7) < Pr(z,y[m)}
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Bernard's exact test(4)

Sct; | S<Et; Row m.
é(tl) =C 0'1(8) ny — 0'1(8) ny
é(tl) = Cy 0’0(8) no — 0'0(8) no
Col. m. a(S) n—o(S) n

Let = the observed value of X and y the observed value of Y

Pr(z, y|m) = (;?y) (Zl) ()" (1 —m)"")

Let T'(z,y)= set of more extreme tables for a given 7
T(x,y,m) ={(2',y): Pr(z’, 9/ | 7) < Pr(x,y|m)}

Then p-value: p = max Z Pr(z, y|m)
T 1
Y 4 )er(0(S) o (8).m
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Barnard's exact test(5)

pvalue: p = ma}f Pr(z, y|r)
O (4 )T (o)1 (S)m)
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Barnard's exact test(5)

pvalue: p = mg}f Pr(z, y|r)
O (4 )T (o)1 (S)m)

1.164e-01

1.005e-01}

8.458e-02}

6.866e-02f

5.274e-02 ‘ .
0.090 0.095 0.100 0.105 0.110

™
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Barnard's exact test(5)

pvalue: p = mg}f Pr(z, y|r)
O (4 )T (o)1 (S)m)

1.164e-01

st

1.005e-01+
Y 8.458e-02|
©
3
= 6.866e-02f

5.274e-02 . s

0.090 0.095 0.100 0.105 0.110

™

Computing the p-value is computationally expensive!
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Barnard's exact test(5)

pvalue: p — mg}f Pr(z, y|r)
me(0, )(z’y)eT(g(8)701(8)7ﬂ-)

1.164e-01

1.005e-01f

¢ 8.458e-02}
@

3
= 6.866e-02f

5.274e-02 ‘ .
0.090 0.095 0.100 0.105 0.110

™

Computing the p-value is computationally expensive!
» consider a grid of value for 7
> enumerate all tables in T'(c(S), 01(S), )

32/135



Example: market basket analysis

2} W3 f@

A v T

b4 Y= ¢ Sct, [Sdt | Rowm.
2) [-[vL| @ )= |3 1 1
n ’ 0t;) =co | 1 3 4
§ .‘ ::: Col.m.0 4 4 8

A %L

.ﬂ, bd | .vJ

33/135



Example: market basket analysis

<

B Vi@
A v T
b4 L ¢ Sct; [SEt; | Rowm.
) [=[vL e ) = |3 i s
G |- 0t;) =co | 1 3 A
§ .‘ ::z Col.m.0 4 4 8
A "%
a |- Tlelv,

4 4
Pr(4,3|7) = (‘11) (g) (m)" (1 —m)
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Example: market basket analysis

<

R v [®
A v T
b4 S - A Sct; [ SEt; | Rowm.
2) [-IvY| e ) = |3 i 1
@) [ 0t;) =co | 1 3 A
§ s % : :z Col. m. ° 4 4 8
A * %L
a) |- vlelv

4 4
Pr(4,3|7) = (‘11) (g) (m)" (1 —m)
T(x,y,m) ={(2",y) : Pr(a’,y" | 7) < Pr(4,3|m)}
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Example: market basket analysis

R N
A v Jlely
2) [-IvY| e ) =c1 | 3 1 1
G |- 0t;) =co | 1 3 A
§ ® L ::i Col. m. ° 4 4 8
A */v L
a) |- slelv,
Pr(4,3|7) = (1) (3) (m)*' (1 —m)*
T(e.y.m) = {(& /) : Pr<x | ) < Pr(4, 3|m)}
-value: P
p-value Wrg(g% Z r(x,y|m)

(z.9)eT (0(S5),01(S),m)
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Example: market basket analysis

R VL@
A v Jlely
b4 Y= ¢ Sct, [Sdt | Rowm.
2) [-IvY| e ) =c1 | 3 1 1
G |- 0t;) =co | 1 3 A
§ ® L ::z Col. m. ° 4 4 8
A */v L
a) |- Eir k2
Pr(4,3|7) = (1) (3) (m)*' (1 —m)*
T(w,y,7) = {2,y Pr<x | 7)< Pr(4,3)m)}

-value: P = 0.50 (f =04
p-value Wrg(g% Z r(x,y|m) (for )

(z.9)eT (0(S5),01(S),m)
33/135



Fisher's exact text vs Barnard’s exact test

Fisher’s test: assumes the frequency o(.S) of the pattern is fixed
Barnard’s test: does not assume the frequency o(S) of the pattern
is fixed
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Fisher's exact text vs Barnard’s exact test

Fisher’s test: assumes the frequency o(.S) of the pattern is fixed
Barnard’s test: does not assume the frequency o(S) of the pattern
is fixed

Note: Barnard's exact test depends on (unknown) nuisance
parameter m = probability that pattern S appears in a transaction.

What about Fisher’'s exact test?

Fixing the frequency o(S) of S ~ fixing the probability that S
appears in a transaction
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Fisher's exact text vs Barnard's exact test (2)

Fisher’s test: assumes the frequency o(.S) of the pattern is fixed
Barnard’s test: does not assume the frequency o(S) of the pattern
is fixed
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Fisher's exact text vs Barnard's exact test (2)

Fisher’s test: assumes the frequency o(.S) of the pattern is fixed
Barnard’s test: does not assume the frequency o(S) of the pattern
is fixed

Which one is more appropriate?
Depends on how the data is collected!

In practice: everybody uses Fisher's text (computational reasons?)
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Pattern mining and statistical hypothesis testing
Previous part: we had one pattern S we are interested in

Let pg be the p-value for S.
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significant!
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Let pg be the p-value for S.

Rejection rule:

Given a statistical level a € (0,1): reject Hy iff p < o= S'is
significant!

= probability false discovery < «

KDD scenario: we consider multiple hypotheses given by our
dataset D
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Pattern mining and statistical hypothesis testing
Previous part: we had one pattern S we are interested in
Let pg be the p-value for S.

Rejection rule:

Given a statistical level a € (0,1): reject Hy iff p < o= S'is
significant!

= probability false discovery < «

KDD scenario: we consider multiple hypotheses given by our
dataset D

What happens if we use the rejection rule above?
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Outline

1. Introduction and Theoretical Foundations

1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing

1.3 Fundamental Tests

1.4 Multiple Hypothesis Testing

1.5 Selecting Hypothesis

1.6 Hypotheses Testability

2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics
4. Final Remarks
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Multiple hypothesis testing
Let H be the set of hypotheses we want to test, and m = [H]|.
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Proposition
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Typical values of a: 0.01, 0.05.
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Multiple hypothesis testing
Let H be the set of hypotheses we want to test, and m = |H].

Proposition

E[num. false discoveries| = m x a.

Typical values of a: 0.01, 0.05.

Value of m? If you are looking at itemsets from a universe Z of
items: m =27 — 1

= m x « is extremely high!

Need to consider the fact that we are testing multiple
hypotheses!
38/135



Multiple Hypothesis testing procedures

We want guarantees on the (expected) number of false
discoveries.
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Multiple Hypothesis testing procedures

We want guarantees on the (expected) number of false
discoveries.

V' = number of false discoveries.
Family-Wise Error Rate (FWER): Pr[V > 1].

Two procedures with guarantees on the FWER
» Bonferroni correction

» Bonferroni-Holm procedure
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Bonferroni correction

Let H be the set of hypotheses (patterns) we want to test, and
m = [H|.
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Given a pattern S € H, let Hg be the corresponding null
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p < .- = § is significant!
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Bonferroni correction
Let H be the set of hypotheses (patterns) we want to test, and
m = [H|.

Given a pattern S € H, let Hg be the corresponding null
hypothesis.

Rejection rule: Given a statistical level a € (0,1): reject Hg iff
p < .- = § is significant!
Intuition
> for each S, Pr[S is a false discovery | < &
> union bound on m events: Pr[> 0 false discoveries |
< Dlgey Pr[S is false discovery | < [H|2 < o
40/135



Bonferroni-Holm procedure
Let H the set of hypotheses (patterns) to be tested, and m = |H].

Sequential procedure:
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Bonferroni-Holm procedure
Let H the set of hypotheses (patterns) to be tested, and m = |H].

Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let
P < po < -+ < Py, be the sorted p-values

2. let k be the minimum value such that p; > —9—

3. rejection rule: reject the hypotheses (patterns) associated

with pb1,P2;- - Pk-1

More powerful than Bonferroni correction: p; compared with

«
m+1—1

vs &,
m

However: both require very small p-values to flag patterns as

significant when m is large.
41/135



False Discovery Rate

Let V' be the number of false discoveries.
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False Discovery Rate

Let V' be the number of false discoveries.

The requirement on FWER can be too strict!
Family-Wise Error Rate (FWER): Pr[V > 1].

Let R the number of discoveries (i.e., rejected hypotheses).
Relaxed requirement: control the False Discovery Rate

False Discovery Rate (FDR): E[V/R] (assuming V' /R = 0 when
R =0).
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Benjamini-Hochberg procedure

Let H the set of hypotheses (patterns) to be tested, and m = |H].
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Benjamini-Hochberg procedure

Let H the set of hypotheses (patterns) to be tested, and m = |H].

Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let

P < po < -+ < Py, be the sorted p-values
2. let k be the maximum value such that p; < %’f
3. rejection rule: reject the hypotheses (patterns) associated

with P1,pP2,-- -, Pk
Note: more powerful than Bonferroni and Bonferroni-Holm

Assumption: hypotheses are independent.
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Benjamini-Yekutieli procedure

Let H the set of hypotheses (patterns) to be tested, and m = |H].
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2. let k be the maximum value such that p; < #’“(w)
=1
3. rejection rule: reject the hypotheses (patterns) associated
with pb1,P2,---, Pk

44135



Benjamini-Yekutieli procedure

Let H the set of hypotheses (patterns) to be tested, and m = |H].

Sequential procedure:

1. order the hypotheses (patterns) by increasing p-values: let
p1 < p2 < -+ < py, be the sorted p-values

2. let k be the maximum value such that p; < #’“(w)
=1
3. rejection rule: reject the hypotheses (patterns) associated
with pb1,P2,---, Pk

Note: does not require independence of hypotheses.
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Dataset D:
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We are interested only in patterns of size 6.
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“S is very significant!!!” @

BUT IT IS NOT!

Assume that D is generate as follows: for each pattern &
> consider one of its 10 occurrences

> place it in a transaction with label ¢y with probability 1/2, and
in a transaction with label ¢; with probability 1/2 otherwise

» S is not associated with class labels!
For a given S, the probability 01(S) = 10 and 0y(S) =0 is
(1/2)10 = 1/1024
In expectation, there will be 6 patterns with
01(S) = 10 and 0((S) = 0 and they are all false discoveries!
46/135
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Where is the problem?

We selected hypotheses based on 01(S) = 10 — 0¢(S),
and 01(S) = 10 — 0¢(S) is clearly related to the p-value

So we have essentially looked at p-values of all hypotheses and
pretended we did not! GH

ONEDOESNOT'SIMPLY;

'

' ‘ _
FORGET'EMBARRASSING MOMENTS

When in doubt: assume you have looked at all hypotheses!;7/135
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Selecting hypotheses

All approaches seen so far for controlling the FWER and the FDR
depend on the set ‘H of hypotheses, e.g., on its size.

A smaller H may lead to a higher corrected significance threshold,
thus to higher power.
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Selecting hypotheses

All approaches seen so far for controlling the FWER and the FDR
depend on the set ‘H of hypotheses, e.g., on its size.

A smaller H may lead to a higher corrected significance threshold,
thus to higher power.

QUESTION: can we shrink H a posteriori?

l.e., Can we use D to select H' < H

such that H\'H' only contains non-significant hypotheses?

ANSWER: No...and yes! ©
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How not to select hypotheses

The one thing you must remember from this tutorial!

Do not do this:

50/135



How not to select hypotheses

The one thing you must remember from this tutorial!

Do not do this:

1) Perform each individual test for each hypothesis using D.
2) Use the test results to select which hypotheses to include in H'.

3) Use your favorite MHC to bound the FWER/FDR on #'.

50/135



How not to select hypotheses

The one thing you must remember from this tutorial!

Do not do this:

1) Perform each individual test for each hypothesis using D.

2) Use the test results to select which hypotheses to include in H'.
3) Use your favorite MHC to bound the FWER/FDR on #'.

Selecting ‘H' must be done without performing the tests on D.
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The holdout approach
1. Partition D into Dy and Dy: D1 U Dy =D and Dy n Dy = .

2. Apply some selection procedure to D; to select H’

(it may include performing the tests on D).

3) Perform the individual test for each hypothesis in H' on D,
using any MHC method.
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The holdout approach
1. Partition D into Dy and Dy: D1 U Dy =D and Dy n Dy = .

2. Apply some selection procedure to D; to select H’
(it may include performing the tests on D).

3) Perform the individual test for each hypothesis in H' on D,
using any MHC method.

Splitting D is similar to splitting a labeled set into training and test
sets.
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An example: holdout for significant itemsets

G. Webb, Discovering Significant Patterns, Mach. Learn. 2007

Exploratory
Rule Discovery

Statistical
Evaluation

—-—
-— _.
>
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When holdout works and why

Holdout can be used only when D can be partitioned into D; and
Dy s.t. Dy and Dy are samples from the null distribution.
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When holdout works and why

Holdout can be used only when D can be partitioned into D; and
Dy s.t. Dy and Dy are samples from the null distribution.

Such partitioning may not exist or be known. E.g., for graphs:

Split the set of nodes in two and claim that each of the resulting
induced subgraphs is a sample from the original distribution:

what do you do with edges crossing the two sets?

Formally: holdout works when the elements of D are identically
distributed exchangeable random variables.

53/135



How selective shall we be?

Z, S H: set of a-significant hypotheses.

When selecting H', we may get rid of some a-significant ones:
g y & g

Zon (H\H) # &.

Does the power still increases just because the corrected
significance threshold increases?
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How selective shall we be?

Z, S H: set of a-significant hypotheses.

When selecting H’, we may get rid of some «a-significant ones:
Zon (H\H) # &.
Does the power still increases just because the corrected

significance threshold increases? Unclear!

One can build examples where power 1, |, or =.
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Take-away message

Being more or less selective in choosing H' has a complicated effect
on power that cannot be clearly evaluated a priori.

This downside of holdout is due to the fact that
holdout may remove a-significant hypotheses from .

OTOH, holdout is a simple natural procedure, and
it generally leads to higher power because
most discarded hypotheses are not a-significant.
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Take-away message

Being more or less selective in choosing H' has a complicated effect
on power that cannot be clearly evaluated a priori.

This downside of holdout is due to the fact that

holdout may remove a-significant hypotheses from .

OTOH, holdout is a simple natural procedure, and
it generally leads to higher power because

most discarded hypotheses are not a-significant.

Coming up: how to discard only non-a-significant hypotheses.
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A breakthrough [Tarone 1990]

Fisher's exact test statistic is discrete

= there is a minimum attainable p-value for a pattern S.

Example Consider a dataset with ny =5, ny = 10, o(S5) =5

(=n=15n—0(5) = 10).

Smallest p-value for S? When ¢1(S) =5

Sct; | SEt; | Rowm.
g(tl) =C 5 0 5
f(l‘,i) = C9 0 10 10
Col. m. 5 10 15

minimum attainable p-value = 3 x 1074
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A breakthrough [Tarone 1990] (2)

Fisher's exact test statistic is discrete
= there is a minimum attainable p-value for a pattern S.
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A breakthrough [Tarone 1990] (2)

Fisher's exact test statistic is discrete

= there is a minimum attainable p-value for a pattern S.

Sct; | S<Et Row m.
g(tl) = C1 0'1(8) ny — 0'1(8) nq
é(tl) = Cp 0'0(8) ng — 0'0(8) no
Col. m. a(S) | n—0a(S) n

Let p!'(0(S), z) be Fisher's exact test for pattern S with support

o(S) and 01(S) = z.

Note that max{0,n; — (n — 0(S))} < z < min{o1(S),n1} = the
range of p’'(c(S), x) depends only on o(S) (since n; is fixed)
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A breakthrough [Tarone 1990] (3)

Then the minimum achievable p-value for § is:

P(0(8)) = min " (0(8). )}

max{0,n;—(n—0c(8))}<x<min{oy(S),n1}
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A breakthrough [Tarone 1990] (3)

Then the minimum achievable p-value for § is:

P(0(8)) = min " (0(8). )}

max{0,n;—(n—0c(8))}<x<min{oy(S),n1}

Tarone's result: if your are testing hypotheses with significance level
0, then hypotheses that cannot be significant do not count
as hypotheses for Bonferroni’s correction! ©
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A breakthrough [Tarone 1990] (4)

S cannot be significant with significance level ¢ if

P(0(8)) > o
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A breakthrough [Tarone 1990] (4)

S cannot be significant with significance level ¢ if
Y(o(S)) > o/ = S is untestable.

Set of testable hypotheses (for significance level 0):
T(6) = {5 [ ¥(0(S5)) < 6}
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Example: market basket analysis
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S = {orange, tomato, broccoli}
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Example: market basket analysis

R NP R

2 : ¢ ‘g S = {orange, tomato, broccoli}

2 %L |@© minimum achievable p-value

) -] @@® Y(S)= _ _ min  {p"(e(S),2)}
g A dlov <z<min{o;(S),n1}

Bllil=[v Y

&) [-] [ wlel¥
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Example: market basket analysis

A DEOECER

2 : ¢ “g S = {orange, tomato, broccoli}

2) = ‘: ® minimum achievable p-value

T A mew VeS) - win (7 (0(S).0)
% X NP SO Gbtained for @ = 4: P(4) = 0.014.

8 - Glelv
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Example: market basket analysis

T |

R ML

2 :‘ ¢ “:Z S = {orange, tomato, broccoli}

) =% ‘: ® minimum achievable p-value

T on mEE eE) - min (5 0(S).0)
% X NP SO obtained for x = 4; P(4) = 0.014.

a |- Flelv

= if significance level is 6 = 0.01, you do not need to count §
among the hypotheses!
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Tarone's Improved Bonferroni correction

Set of testable hypotheses:
T(0) ={S | ¥(0(S)) < 0}
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p < 6 = § is significant!
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Tarone's Improved Bonferroni correction

Set of testable hypotheses:
T(0) ={S | ¥(0(S)) < 0}

Rejection rule:
Given a statistical level o € (0,1), let § < /| T (5)|: reject H, iff

p < 6 = § is significant!

Theorem

The FWER is < «.
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Tarone's Improved Bonferroni correction

Set of testable hypotheses:

T(0) ={S [ ¥(a(5)) < 6}

Rejection rule:
Given a statistical level o € (0,1), let § < /| T (5)|: reject H, iff
p < 6 = § is significant!

Theorem

The FWER is < «.

Idea: find 6* = max{d : 6 < a/|T(9)|}!
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Introduction to LAMP

Intuitively: patterns with low (and very high) support o(S) in the
data provide less “evidence” of being significant — higher ¥(c(S))!

logyy (¥(0(S5)))

Minimum attainable P-value

---- Pearson's x2 test
Fisher!s exact test

n = 60, n1 = 30.

(from F. Llinares-Lépez, D. Roqueiro,
Significant Pattern Mining for
Biomarker Discovery, ISMB18 Tutorial.)
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Introduction to LAMP
Monotonicity of patterns’ support:

Theorem

Let S be an itemset. Then it holds o(S') < o(S) for all §' =2 S.

Rl M

A CICRS

& v ¥ Example:

2) [*IvL] |@

@) [y [o0[¢ S’ = {tomato, broccoli}, S = {tomato}
8 b dgeoey o§)=4<0(S) =5

Al i8]y

8) - | elee
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Introduction to LAMP

Monotonicity of patterns’ min. achievable p-value:
LAMP!: define the function v(-) as

oo () S ifr sy
vio) = Y(ny) , othw.

Theorem

For Fisher’s test it holds ¥)(x) < 1(y) for all z > 1.

(in simpler terms: ) (z) is monotone)

!Aika Terada, Mariko Okada-Hatakeyama, Koji Tsuda, and Jun Sese. Statistical significance of
combinatorial regulations. Proceedings of the National Academy of Sciences (2013).

67/135



Introduction to LAMP

Intuition: connection between monotonicity of patterns’
min. achievable p-value and patterns’ support:

Theorem

Let S be an itemset. Then 1)(c(S)) < ¥ (o(S")) forall ' 2 S.

I pote 3] B a o3|

NI
v [gje¢
WL [ @

VL e

-In] [@lo¢

- so¢

e

- so¢

Example:

S’ = {wine , coffee}, S = {wine}

o(§)=3<0(S)=5

A

D(0(8)=1(3)=0.14 = {(0(S)) =¢(5) =0.03
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Introduction to LAMP

This holds for itemsets and many other type of patterns with

monotonicity of support (i.e., subgraphs, sequential patterns,
subgroups, ...)

Intuition: let's benefit from extensive research
in Frequent Pattern Mining algorithms!
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Frequent Pattern Mining

Frequent Pattern Mining: given D, compute the set of frequent
patterns FP(D,H,0) < H w.r.t. support 6, that is

FP(D,H,0) :={SeH:o(S)=0}.
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Frequent Pattern Mining

Frequent Pattern Mining: given D, compute the set of frequent
patterns FP(D,H,0) < H w.r.t. support 6, that is

FP(D,H,0) :={SeH:0(S)=0}.

One solution: Explore the search tree of 7, pruning
low-support subtrees:
{
0 L
: Oy & @ §o

<\ T~ T
{OA) (O (oY 1+ - (A A

OAD} (0OAYD ~-~ {oOye

N

©OA
B0 70/135



LAMP

LAMP?: first method to compute §* = max{d : §|7(0)| < «}
enumerating Frequent ltemsets.

| .
piaiue ® Minimum achievable p-value (imgs. from LAMP)
value
P . .
FWER Bound
°
om
Threshold § |= = = = = = = — = — — . -2 __-_BE_8_ ¥ _
o o °* °

ltemsets: @ A [ @A - Y% [k - CQE %E 8%

LAMP

m' testable itemsets m—m' untestable itemsets LAMP Bonferroni

Bonferroni

m=2" -1

2Aika Terada, Mariko Okada-Hatakeyama, Koji Tsuda, and Jun Sese. Statistical significance of
combinatorial regulations. Proceedings of the National Academy of Sciences (2013).
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LAMP algorithm

LAMP: compute 6* = max{d : |7 (5)| < a} enumerating Frequent

[temsets.
o
A
91 e) o oo /
(OAY O (O~ (A AV -+ > O /I/
©ADY R 5 >0
Y (02)
(3
T A
Qzl © _(El)_ o/ STeIl . /
AT Of) ok - A Ao > « ’I/:
S N S o / 1
QA 0LV ™~ (0OYg DLt I
/\ - = —— : s
cam 0" 4)(6y)

(imgs. from LAMP)

Performs multiple Frequent
Pattern Mining instances
to evaluate |7(4)].

i.e., start with §=n and
decrease it until §* is

found.
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LAMP algorithm

Let FP(D,H,0) :={SeH:o(S) =0}

Algorithm 1: LAMP

Input: dataset D, upper bound to FIWER «.
Output: 0* = max{d: § < «/|T(0)|}.
160 —n;
2 while o/|FP(D,H,0)|
3 return «/|FP(D,H,0

~

> 1(0) do  — 0 — 1;
+1
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LAMP algorithm

Let FP(D,H,0):={SeH:a(S)=06}.

Algorithm 2: LAMP

Input: dataset D, upper bound to FIWER «.
Output: 0* = max{d: § < «/|T(0)|}.

160 —n;

2 while o/|FP(D,H,0)|

)| = (0) do 0 — 0 —1;
3 return o/|FP(D,H,0 +

Dl;

Problem: the same patterns are explored many times!
i.e.: all S e FP(D,H,0) are explored again when FP(D,H,0 — 1)
is explored
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LAMP

¢ L 0
(OANOLY(O¥ -+ (A A -+ (OA] (001 (0¥} -‘--?Auﬁmﬁﬂ\
OAD OAY --- (OO¥e -+ QA 0L ~-~ (0O
{o@ : {OA/D§

For 6 = 65 we count again all patterns
already counted for 6 = 6, = 6,!
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LAMP

SR . I
(OANOLY(O¥ -+ (A A -+ (OA} (O} (O -\--{\AD;A*)\
OAD OAY --- (OOYg -+ OAD {OAY ~-~ (OO
{o@ : {OA/D§

For 6 = 65 we count again all patterns
already counted for 6 = 6, = 6,!

Can we count patterns only once?
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SupportIncrease

SupportIncrease’: LAMP with only one Depth-First (DF)
exploration of H.

{3 count testable patterns with DF exploration,

91 {Oﬁ’ﬁ\*“ starting with 8 = 1; increase # while exploring

if the curr. num. of frequent patterns > /t)(6)

/KN\ \N\ -
(OA} (O} (0¥ I - - (ADD (AYY

/\ {3
: ‘92

o

(OANOOY(OYY -+ (ADD (AYD -+

(imgs. from LAMP) oAD OAYD --- (OO

©ADY :
3Minato, S. I., Uno, T., Tsuda, K., Terada, A., Sese, J. A fast method of statistical assessment for

combinatorial hypotheses based on frequent itemset enumeration. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (2014) 75/135




LAMP: Experimental Results

(imgs. from LAMP)

0.05 L AMP 0.05 *LAMP
0.04 —%-Bonferroni 0.04 —*-Bonferroni
o
§0.03 I_éJO.OS
0.02 E Lo0.02
0.01 i i } 0.01 -
3
0 0
1 2 3 4 102 1 2 38 4 397
Max itemsets cardinality Max itemsets cardinality

Estimated FWW ER of LAMP vs Bonferroni correction.
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Mining Significant Subgraphs®
Graph-structured samples S1 S

1| |o S =

®
o
1 |o So :...

1 1 0
0 ol |1 Goal: find induced subgraphs
that are significantly enriched
0 0| |1
in a class of labelled graphs
0 0| |0
0 ol 1 (imgs. from #)

(S )

*F. Llinares-Lépez, D. Roqueiro, Significant Pattern Mining for Biomarker Discovery, ISMB18 Tutorial.
®M. Sugiyama, F. Llinares-Lépez, N. Kasenburg, K.M. Borgwardt. Significant subgraph mining with
multiple testing correction. In Proceedings of the International Conference on Data Mining, (2015). 77/135



LAMP for subgraphs (2)

Correction factor Correction factor

Correction factor

PTC(MR) MUTAG ENZYMES
1074 10° 10°% N
10°4 10% 10* ?{
103433 1024 107
5 10 15 Limitless 5 10 15 Limitess 5 10 15
D&D NCI1 NCI41
1094 104 10%
0% - P 107 oo
107, OOO000000—0Q (o9
10°- 10° 10% JXA
10°4 &
: — 10°E , — 100 ,
10 15 Limitless 5 10 15 Limitless 5 10 15
Max. size of
NCI167 NCI220 subgraph nodes
10° e 10%
8 2
106— A 107
10°%4 . -x-Bonferroni
10° 10% -0-Testable
10% 103 -\~ Effective
5 10 15 Limitless 5 10 15 Limitless

Max. size of subgraph nodes

Max. size of subgraph nodes

- PTC(MR) MUTAG ENZYMES
=
E 8L 8x10* “A 1.5x10% “A
& 9 Mﬁ\ 6x10° b 10°]
4-4oc \ ] I/ (s
52 Yoo WA 4X10 Ay x10°] N
B@' 2 ©OO—0 2%10* A‘,\é;é/ Aﬂg
£EQ I
gg 0+ ; S - s — 024 .
o 5 10 15 Limitless 5 10 15 Limitless 5 0 15
- D&D NCIn NCI41
c
S 8x10*d M"—A 2x1074 “A 1074 JAS
T 7x10Y ol % [
5 g 15x107 P 8ot |
B X0 oseooo—o | 6x10% |
%5 v 5x10% SO 107 4 6
og 4] 4x10
5 8 4x10 }& 5x10°] A
00 3%10% | 2x10
EQx10% 4 : 0
z32 5 10 15 Limitless 5 10 15 Limitless 5 0 15
Max. size of
= NCI167 NCI220 subgraph nodes
< AN 24
e 10% /
5 8x10° P
&, 6x10° 4 1 -x-Bonferroni
oc S P
56 410 O-Testable
2 g 2x10° w«ﬁﬁé - Effective
58 0-&4 . . \ v y : v
z3 5 10 15 Limitless 5 10 15 Limitless

Max. size of subgraph nodes

Max. size of subgraph nodes

From M. Sugiyama,F. Llinares-Lépez, N. Kasenburg, K. M. Borgwardt. Significant subgraph mining

with multiple testing correction. In Proc. of ICDM (2015).
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Relaxing conditional assumptions

Sct;| St Row m.
g(u) = C1 O'1<8) ny — 0'1(S> nq
g(@) = Cp (70(8) Ng — 0'0(5) N
Col. m. |a(S) |n—0(S) |n

Recap: Assumptions of Fisher’s test: all marginals of all the
tested contingency tables are fixed by design of the experiment.

Validity of this assumption depends on how the data is

collected!
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Relaxing conditional assumptions

Sct;| St Row m.
((ti) =c1 | 01(S) | n1 —0a1(S) | my
Ut;) =co | 00(S) | no—ao(S) | mo

Col. m. |a(S) [n—0a(S) |n
Recap: Assumptions of Fisher’s test: all marginals of all the
tested contingency tables are fixed by design of the experiment.
Validity of this assumption depends on how the data is
collected!

In many cases, only ng,ny, and n are fixed, while (S) depends on

the data — Unconditional Test!
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Relaxing conditional assumptions

Sct;| St Row m.
((ti) =c1 | 01(S) | n1 —0a1(S) | my
Ut;) =co | 00(S) | no—ao(S) | mo

Col. m. | a(S) |n—0a(S) |n
Recap: Assumptions of Fisher’s test: all marginals of all the
tested contingency tables are fixed by design of the experiment.
Validity of this assumption depends on how the data is
collected!

In many cases, only ng,ny, and n are fixed, while (S) depends on
the data — Unconditional Test!

Not used in practice, mainly for computational reasons. . .

Until today © 80/135



Recap: Barnard's Exact Test

Sct;| St Row m.
g(u) = C1 O'1<8) ny — 0'1(8) nq
f(tl) = Cp 0'0(8) Ng — 00(8) un

Col. m. [ a(S) n—U(S) n
Nuisance variables: 7s; = P("S < t,"

NH: TS0 = Ts1 = TS = P(“S - tln).

81/135



Recap: Barnard's Exact Test

Sct;| St Row m.
g(u) = C (S) ny — 0'1(8) 1y
f(tl) = Cp (8) Ng — 00(8) N
Col. m. |a(S) [n—0a(S) |n
Nuisance variables: 7s; = P("S < t;" | é( ) =1¢"),
NH: TS0 =TS1 =TS = ( ‘S c ) Leta=0(8), b=0’1(8>1
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Recap: Barnard's Exact Test

Sct;| St Row m.
g(u) = C1 O'1<8) ny — 0'1(8) nq
g(@) = Cp (70(8) Ng — 0'0(8) N

Col. m. [a(S) |n—0a(S) |n
Nuisance variables: 75, = P("S <" | “U(t;) = ¢;") ,

NH: 750 =51 =75 = P("S = t;"). Let a = 0(S), b = 01(S):
Pasin = (7)) (L) @ra- o
T(a,b,7) = {(z,y): P(x,y|7) < Pla,b]| )}

¢(a,b,m) = P(z,y | )
(z,y)eT(a,b,m)

p-value: p(a,b) = mgx{(b(a,b, )} 81/135



Recap: Barnard's Exact Test

Sct;| St Row m.
g(u) = C1 O'1<8) ny — 0'1(8) nq
f(tl) = Cp 0'0(8) Ng — 00(8) un
Col. m. |a(S) [n—0a(S) |n

Nuisance variables: 7s; = P("S < ;" | “U(t;) = ¢;") ,

NH: 750 =51 =75 = P("S = t;"). Let a = 0(S), b = 01(S):

P(ab\ﬂz(nl)( ) )" (1 —m)""
)

T(a, P,y | m) < Pla,b| m)}

T,y
é(a, b, w) = Z P(z,y | )
(z,y)eT (a,b,T)
p-value: p(a, b) = max{¢(a,b, 7)} — hard to compute!
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Relaxing conditional assumptions: SPuManTE

Efficient Unconditional Testing: SPuManTE! °

(Poster #146 on Tuesday!)

®L. Pellegrina, M. Riondato, and F. Vandin. “SPuManTE: Significant Pattern Mining with
Unconditional Testing”. KDD 2019.
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SPuManTE (1)

1) Computes confidence intervals C;(S) for
TS, = P(“S ct” ‘ “f(ti) = Cj”);

83/135



SPuManTE (1)

1) Computes confidence intervals C;(S) for

TS, = P(“S ct” ‘ Hg(ti) = Cj”);

How? Compute an upper bound, for all j € {0,1}, on
OJ@SW

1

sup
SeH

TS,y —

(note: 0,(S)/n; is observed from D, 7s ; is unknown)
with probability > 1 — ¢ (§ < « for FW ER control),
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SPuManTE (1)

1) Computes confidence intervals C;(S) for

TS, = P(“S - ti” Hf(ti) = Cj”);

How? Compute an upper bound, for all j € {0,1}, on
03(33)‘

1

sup
SeH

mSj —

(note: ¢j(S)/n; is observed from D, 7s ; is unknown)

with probability > 1 — 9§ (6 < « for FW ER control), by upper
bounding’ the Rademacher Complexity of 7. No assumptions
on the input distribution: only information from D!

"M. Riondato and E. Upfal. Mining frequent itemsets through progressive sampling with
Rademacher averages. KDD 2015.
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SPuManTE (2)

2) Defines UT, an Unconditional Test that conditions (@) on the
event Fg = "Cy(S) n C1(S) =C(S) ="
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SPuManTE (2)

2) Defines UT, an Unconditional Test that conditions (@) on the
event Fg = "Cy(S) n C1(S) =C(S) ="

p-value pg according to UT:

B {o if C(S) = &
P57 max{(o(S), 01(S), 1), m € C(S)} , othw.
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SPuManTE (2)

2) Defines UT, an Unconditional Test that conditions (@) on the
event Es = “Cy(S) n C1(S) = C(S) = "

p-value pg according to UT:
0 L ifC(S) = &
bs= {max{gb(a(S), 01(S), 7)., m e C(S)} ., othw.
— A pattern is flagged as significant if
c(S)=¢g.
The confidence of the validity of C'(S) provides F'W ER control.
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SPuManTE (3)

p-value pg according to UT:

B {o if C(S) = &
P57 max{e((S), 01(S), 1), 7 € C(S)} , othw.

Case C'(S) # &: still hard to compute! ©f
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SPuManTE (3)

p-value pg according to UT:

B {o if C(S) = &
P57 max{e((S), 01(S), 1), 7 € C(S)} , othw.

Case C'(S) # : still hard to compute! ©H

3) Upper and Lower bounds to pg, and efficient algorithms to
compute them — requirements to combine UT with LAMP.
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SPuManTE (4)

Let To — U(S)'
n

Lower bound ps to p-value ps:

bs =

. {o if C(S) = &
¢(o(S),01(S),Ts) , othw.
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SPuManTE (4)

Let To — U(S)'
n

Lower bound ps to p-value ps:

- {0 ifC(S) = o
S =) 6(0(S), 01(S),7s) . othw.

Compute ¢(0(S),0((S),7s) efficiently? Yes! ©
(For more details: paper or come to talk to #146 poster! ©)
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SPuManTE (7)

Upper bound ps to p-value pgs:

ps = P(0(S),01(S) [ T)(no + 1)(n1 +1).

Theorem

ps < Ps.
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SPuManTE: Experimental Results

10—10

Fisher's test (conditional)

1079 { ; -
Barnard's test (unconditional)

108 -
10—7 J
1076
1075

10—4 .

Test p-value

1073 - L
1072 1 ",.f’

10—1 i

Comparison of p-values of Fisher's
and Barnard's tests w.r.t. the exact
p-value (under the unconditional null
hypothesis) for all contingency
tables with n = 10%, ny = 0.25 - n,
o(S) =0.1-n.

10°

Exact p-value

10° 107 10-2 1073 10-4 10~5 10-6 10~7 10-8 10~°10-10
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SPuManTE: Experimental Results

Number of results

-8- breast-cancer (F) -8- retail (F)
—©— breast-cancer (UT) —©— retail (UT)
X breast-cancer (UT") - retail (UT")

-H- covtype (F)
—6— covtype (UT)
- covtype (UT™)

Comparison of number of significant
patterns using Fisher's test (F),
UT (upper bound ps to p-values),

UT* (lower bound ps to p-values).

Additional results: may

not be well supported by the data!

104 10°

Sample Size

106
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SPuManTE: Experimental Results

-B8- breast-cancer (F) -3- retail (F) -H- covtype (F)
—6— breast-cancer (UT) —6— retail (UT) —6— covtype (UT)
x- breast-cancer (UT")  -x- retail (UT") - covtype (UT")
103 3
—~ 1024
2 E . . . . ,
g ] Running times of LAMP with Fisher's
£ 1] .
S 1077 test (F), SPuManTE using UT and UT*.
c ]
S 100 SPuManTE: very efficient!
1071 E &
103 104 10° 106

Sample Size
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Permutation Testing

Main idea: estimate the null distribution by randomly perturbing
the observed data.

Pro: takes advantage of the dependence structure of the hypothesis

Cons: computationally expensive and formally imprecise
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Settings

Dy: observed dataset as a binary matrix. é (1) i (1)
E.g., a transactional dataset 1010
(rows: transactions: columns: items) 100 1

To = A(Dy) € R: output of analysis algorithm A on Dj.

E.g., the number of frequent itemsets w.r.t. min. freq. thresh. 6.
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Settings

3132
Dy: observed dataset as a binary matrix. 101 113
E.g., a transactional dataset 011 0|2
(rows: transactions: columns: items) 1 0102
1 00 12

To = A(Dy) € R: output of analysis algorithm A on D,.
E.g., the number of frequent itemsets w.r.t. min. freq. thresh. 6.

P: a set of properties of Dy considered important, characteristics.

E.g., the rows and columns totals
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Settings

3132
Dy: observed dataset as a binary matrix. 101 113
E.g., a transactional dataset 011 0|2
(rows: transactions: columns: items) 1 0102
1 00 12

To = A(Dy) € R: output of analysis algorithm A on D,.
E.g., the number of frequent itemsets w.r.t. min. freq. thresh. 6.
P: a set of properties of Dy considered important, characteristics.
E.g., the rows and columns totals
QUESTION: Is Ty a “consequence’ of P?
93/135



Null hypothesis

Null hypothesis Hy: Ty is fully explained by P.
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Null hypothesis

Null hypothesis Hy: Ty is fully explained by P.
l.e., a value of Tj is “typical’ for datasets satisfying P.

l.e., it is very likely to observe a value A(D) close to T} in
a dataset D satisfying P.
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Null hypothesis

Null hypothesis Hy: Ty is fully explained by P.
l.e., a value of Tj is “typical’ for datasets satisfying P.

l.e., it is very likely to observe a value A(D) close to Tj in
a dataset D satisfying P.

l.e., let Dp: set of datasets satisfying P, then
O(Tp) = min {1:;1« (A(D) > Th), Pr (A(D) < TO)} >0,

U: uniform distribution over Dp.
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Null distribution

To test Hy, we need a quantitative approach:

For a € (0,1), if Q(Ty) < « then reject Hy.
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Null distribution

To test Hy, we need a quantitative approach:

For a € (0,1), if Q(Ty) < « then reject Hy.
Null distribution © = ©(A, P) over values of T' = A(D), D € Dp.
O has c.d.f.

(DeDp : T = AD) = v}
Dp|

O(v) = Pur (T'=A(D) =v) = |
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Null distribution

To test Hy, we need a quantitative approach:

For a € (0,1), if Q(Ty) < « then reject Hy.
Null distribution © = ©(A, P) over values of T' = A(D), D € Dp.
O has c.d.f.

(DeDp : T = AD) = v}
Dp|

O(v) = Pur (T'=A(D) =v) = |

We can use 0(Tj) to test Hy:
if min{0(7y),1 — 0(T)} < o, reject Hy.
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Null distribution
To test Hy, we need a quantitative approach:
For a € (0,1), if Q(Ty) < « then reject Hy.
Null distribution © = ©(A, P) over values of T' = A(D), D € Dp.

O has c.d.f.
{DeDp : T =A(D) = v}|
Dp|

O(v) = Pur (T'=A(D) =v) = |

We can use 0(Tj) to test Hy:
if min{0(7y),1 — 0(T)} < o, reject Hy.

ISSUE: deriving 6 is infeasible for most (A, P).
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Empiricism to the rescue

ISSUE: deriving 6 is infeasible for most (A, P).

SOLUTION: approximate 6 using an empirical c.d.f. 0.
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Empiricism to the rescue

ISSUE: deriving 6 is infeasible for most (A, P).

SOLUTION: approximate 6 using an empirical c.d.f. 0.

1. Generate D = {D, ..., Dy} < Dp independent uniform samples.
2. Run A on each D; € D to obtain T = {T,...,T}}.

3. Compute an empirical p-value from the 0 arising from T:

b= g uinfl{i e (6] | T3 < Ty}l i € [K] | 75 > T}l + 1) € [0,0.5

4. If p < a, reject Hy.
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Why does it work?

It is a consistent approach:

As the number k = |D| of samples grows,
the empirical c.d.f. 0 converges to 0,

thus, p converges to the exact p-values.

WARNING: Convergence happens in the limit,

but there are finite-sample deviation bounds for 6 from 6.
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The crux of the matter

The steps again:

1. Generate D = {Dy,..., Dy} < Dp independent uniform
samples.

2. Run A on each D; € D to obtain T = {T,...,T;}.

3. Compute an empirical p-value from the 0 arising from T

p= s (minfl{ie (K] | T < T}l (i€ (1] | T3 > To}ly + 1)

4. If p < «, reject H,.
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The crux of the matter

The steps again:

1. Generate D = {Dy,..., Dy} < Dp independent uniform
samples.

2. Run A on each D; € D to obtain T = {T,...,T;}.

3. Compute an empirical p-value from the 0 arising from T

p= g (min{l{i € [K] | T < T, i 11 | T3 > T}y + 1)

4. If p < «, reject Hy. Easy
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The crux of the matter

The steps again:
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samples.

2. Run A on each D; € D to obtain T = {T,...,T;}.
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p= g (min{l{i € [K] | T < T, i 11 | T3 > T}y + 1)
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The crux of the matter

The steps again:

1. Generate D = {Dy,..., Dy} < Dp independent uniform
samples.

2. Run A on each D; € D to obtain T = {T3,...,T;}. Easy

3. Compute an empirical p-value from the arising from T: Easy

p= g (min{l{i € [K] | T < T, i 11 | T3 > T}y + 1)

4. If p < «, reject Hy. Easy
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The crux of the matter

The steps again:

1. Generate D = {Dy,..., Dy} < Dp independent uniform
samples. How?

2. Run A on each D; € D to obtain T = {T3,...,T;}. Easy

3. Compute an empirical p-value from the arising from T: Easy

p= g (min{l{i € [K] | T < T, i 11 | T3 > T}y + 1)

4. If p < «, reject Hy. Easy
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Perturbing the data

Assumption: there exists a perturbation operation

¢p:Dpx Y —Dp
——

parameters

s.t. for any D', D" € Dp, D’ can be obtained by repeatedly
applying ¢ to D”.

l.e., there exists a finite sequence Y7,...,Y,, Y, € V s.t.
D" = ¢(¢(¢( o (¢(DH7 Yi)? YQ)? T )7 n))
If D" = ¢(D’,y), then there exists y L € Y s.it. D' = ¢(D", y1).
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Example: perturbation for rows and columns sums
1. Take two rows u and v and two columns A and B of D,

such that u(A) = v(B) =1 and u(B) = v(A) = 0;

2. Change the rows so that
uw(B) =v(A)=1and u(A) =v(B) =0

Fig. 1. A swap in a 0-1 matrix.

From Gionis et al., Assessing Data Mining Results via Swap Randomization, ACM TKDD, 2007.

Y is the set of quadruples of two rows and two columns indices.
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Generating the samples

G = (Dp, E): directed graph s.t. (D,D’) € E if D’ can be obtained
from D with one perturbation:

(D,D'Ye E < yeYst. D =¢(D,y)

Add self-loops and run Metropolis-Hastings on the resulting graph
GG’ to obtain independent and uniform samples.
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Running Metropolis-Hastings

M-H performs a random walk on G’ with uniform stationary
distribution.

For each (visited) D, M-H needs its neighbors

N(D) = {D' eDp : JyeYst. D =¢(D,y)
Computing N(D) requires to find all quadruplets (u,v, A, B) € Y
leading to valid perturbations from D.

Gionis et al. show how to get N(D) in expected constant time when
no row/column has too many 1s.
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Mixing Time

The samples Dy, ..., D, must be independent and uniform

M-H must make at least M moves after taking each sample

M mixing time of G’ with M-H transition probabilities.
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Mixing Time

The samples Dy, ..., D, must be independent and uniform

M-H must make at least M moves after taking each sample

M mixing time of G’ with M-H transition probabilities.

Deriving M is usually infeasible

so M is fixed to be “large enough” after experimentation.

103/135



Advantages and disadvantages of permutation testing

Conceptually very natural ©
Requires a perturbation operation ¢ for P @

Computationally very expensive:

sample generation + running A on each sample G

“Empirical everything”: p-value, independence, uniformity, .. .GH
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Outline

1. Int_ro_duction a_nd_TheoreticaI Foundations
2. Mining Statistically-Sound Patterns

2.1 LAMP: Tarone's method for Significant Pattern Mining
2.2 SPuManTE: relaxing conditional assumptions

2.3 Permutation Testing

2.4 WY Permutation Testing

3. Recent developments and advanced topics
4. Final Remarks
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Westfall-Young (WY8) Permutation Testing

Randomly shuffle the labels; compute patterns’ p-values w.r.t. the
random labels.
Original Data Random Permutations

v @
‘ ces
k)
w
L ©d
—
° ‘ cee
. L
L J " s
b4 ¢
1 2 3 4 s j,

8P. H. Westfall and S. S. Young, Resampling-Based Multiple Testing: Examples and Methods for
-Value Adjustment. Wiley-Interscience, 1993.
P ! Y 106/135
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Westfall-Young (WY®) Permutation Testing
Any association found on the random permutations is a false

positive: directly estimate the p-values from the null hypothesis

joint distribution — account for dependencies of hypotheses
Original Data Random Permutations

» 7
w |V
...:’:
b
o
. &
»
b w
- so¢

°P. H. Westfall and S. S. Young, Resampling-Based Multlple Testlng Examples and Methods for
p-Value Adjustment. Wiley-Interscience, 1993. 107/135
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WY Permutation Testing: formally

gj(tl) = j—th permuted label of ti , U{(S) = Z¢S(tl)l [@(tz) = Cl]
i=1
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WY Permutation Testing: formally

(;(t;) = j-th permuted label of t; , o](S) = Z¢S(ti)l [4;(ti) = c1]
i=1

Example:

Original Data Random Permutations

v L@ .
§ NI 81<=S§bro<1:co||}
g L ; ¢ 0-1 =1,
2] [-[vi] e @ﬁ@; o%(S) =3,
2 % FOo¢ 03(8)22
a ® g o 1 '
A ° (%% e
a) - geov
1 2 3 4 =+ j,
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WY Permutation Testing: formally
(j(t;) = j-th permuted label of t; , o(S) = > ds(t;)1[£;(t:) = c1]
1=1

Vi = min {p(o(8).0(8))} . FWER() = — 21 < 1
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WY Permutation Testing: formally

¢;(t;) = j-th permuted label of ¢;

P = min {p(0(8), o{(8))

Compute §* = max {z : FWER(z) < o}

(jp ~ 10%-10* for a ~ 0.05)
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WY Permutation Testing: formally

¢;(t;) = j-th permuted label of ¢;

P = min {p(0(8), o{(8))

Compute §* = max {z : FWER(z) < o}

(jp ~ 10%-10* for a ~ 0.05)

5*

Output {S :ps < 67}.
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WY Permutation Testing: formally
(j(t;) = j-th permuted label of t; , o(S) = > ds(t;)1[£;(t:) = c1]
1=1

Vi = min {p(o(8).0(8))} . FWER() = — 21 < 1

Compute §* = max {z : FWER(z) < o} -
(j, ~ 103-10* for a ~ 0.05) O _
P . | _;

1
Output {S :ps < 67}.

. H 1 j
Problem: exhaustive enumeration of H to compute p; ... 109/135



Computing p’ . : FASTWY

How to compute p’ . efficiently?
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Computing p’.. : FASTWY
How to compute pfnin efficiently?
Tarone saves us again ©

FASTWY!?: Intuition:
H(S) = P = p(0(8).01(S)) = P

Pattern S is untestable = cannot improve pfnin!

A Terada, K. Tsuda, and J. Sese. Fast westfall-young permutation procedure for combinatorial
regulation discovery. In IEEE International Conference on Bioinformatics and Biomedicine, 2013.
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Computing p’ . : FASTWY
(improved version'? of) FASTWY: computes efficiently pmm with a

branch-and-bound search over A, pruning subtrees with ¢)(-):

start with 6 = 1 and pfmn = 1, explore

ﬁ\, patterns with DF exploration, updating pj s
01 © A @ o o

increase 6 while exploring if pfnin < 1[1(9)

04} o) (O 1+ {AD} {Aﬂr}

{ 3
QAL (O A*}mgﬁ} \ . m

INmY!
- {ON OOV (O - (ADY AV -+
(imgs. from LAMP) OAD OAYD --- (OO

©ADY
T, Aika, H. Kim, and J. Sese. High-speed westfall-young permutation procedure for
genome-wide association studies, ACM-BCB 2015. 111/135




FASTWY
Issues of FASTWY:
1) repeat the procedure j, times (j, ~ 103-10%);
2) for some j € [1, j,]:
pfnin may not be very small — #/ very small — impractically
large number of hypotheses to explore.

pﬁnin (9]
) Huge work! @

persa B

1 [aij Ip 1 Jp
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WYlight

WYlight'?: Intuition: to find 6* we only need to compute
exactly the lower a-quantile of {p’ . }7"

j=1
p‘znin 9]
) ] Less work! @
5* . o« ° . '
—— -J , - J
1 [O‘]pJ Jp 1 [OUPJ Jp

12F Llinares-Lépez, M. Sugiyama, L. Papaxanthos, and K. Borgwardt. Fast and memory-efficient
significant pattern mining via permutation testing, KDD 2015.
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WYlight

WYlight algorithm: one DF exploration of H processing all j,
permutations at once.

start with § = 1 and pfnin = 1,Vj; explore
) patterns with DF exploration, updating
0, {Om~ {pfnin ;p:l; increase ¢ while exploring

if a-quant. of {p/ . j”zl < (h)

(OA] (o) (oY% 1+ {AD} (A%

oAD {OA*)\{O oye \ ﬂ\

PN o 5o
O 2
- . OANODY(OW) -+ (ADD Ay -
(imgs. from LAMP) oAD OAYD --- (OO
(OADVe
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13F_ Llinares-Lépez, M. Sugiyama, L. Papaxanthos, and K. Borgwardt. Fast and memory-efficient
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WYlight!4 - Memory
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Too many results!

Motivation: for many
datasets, impractically large
set of results (SP(0.05)) are
found even when controlling
FWER < 0.05:

| avg

ni/n | SP(0.05) |

dataset DI [ 1
svmguide3(L) 1,243 44 | 219 0.23 36,736
chess(U) 3,196 75 37 0.05 > 107
mushroom(L) 8,124 118 | 22 0.48 71,945
phishing(L) 11,055 813 | 43 | 0.44 > 107
breast cancer(L) 12,773 1,129 | 6.7 0.09 6
a9a(L) 32,561 247 | 139 0.24 348,611
pumb-star(U) 49,046 7117 | 50.5 | 0.44 > 107
bms-web1(U) 58,136 60,978 | 2.51 0.03 704,685
connect(U) 67,557 129 | 43 0.49 > 108
bms-web2(U) 77,158 | 330,285 | 4.59 0.04 289,012
retail(U) 88,162 16,470 | 10.3 0.47 3,071
ijenn1(L) 91,701 44 13 0.10 607,373
T10I14D100K(U) 100,000 870 | 10.1 0.08 3,819
T40110D100K(U) 100,000 942 | 39.6 0.28 5,986,439
codrna(L) 271,617 16 8 0.33 4,088
accidents(U) 340,183 467 | 33.8 | 0.49 > 107
bms-pos(U) 515,597 1,656 6.5 0.40 | 26,366,131
covtype(L) 581,012 64 | 119 | 049 542,365
susy(U) 5,000,000 190 | 43 | 048 > 107
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TopKWY

What if we want (more efficiently!) only the top-£ significant
patterns, retaining the guarantees of WY procedure? — TopKWY'®!

= k-th smallest element of {ps: S eH}
5* = max {a: FWER(x }
0 = min {pk, 5}.

Set of top-k significant patterns:

TOPKSP(D,H,a.k) :={S:ps<d}.

15 . Pellegrina and F. Vandin. Efficient mining of the most significant patterns with permutation
testing. KDD 2018.
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TopKWY
Intuition: to compute TOPKSP(D,H, a, k) we only need to

compute exactly the values of the set {pfmn} " that are < 0.
=1

P '
min 07 Even less work! @ @
- _——

Jp

119/135



TopKWY
Algorithm: Best First (BF) exploration of H to compute .

(Approach similar to TopKMiner for top-k frequent itemsets).

start with 8 = 1 and pﬁnin = 1,Vj; explore
O patterns with BF exploration, updating

0, {0}47\- {pjmm} » . and p*; increase 0 while exploring

(A O=pisr ) i v . .
if min § a-quant. of {py; 132, , P" ¢ < ¥(0)

N =
(OAY (O (O I+ -+ (AL (AYY

<OA/|:|>>A71(} . (OoOYe \ %f\

{OA} OOYIO¥ --- (AN O -

(imgs. from LAMP) OAD} OAY -+ {OOYe

PN
AV
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TopKWY: Guarantees

1) BF search: guarantees on the set of explored patterns:

Theoiem X 3
Let 6 = min{p*, 6}, and 6* = max{z : ¢ (z) > 5}. ~
TopKWY will process only the set FP(D,H,0*) = T(0).

— the DF search always explores a super-set of T (4).

2) Improved bounds to skip the processing of the permutations for
many patterns.

(More details on the paper ©)
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TopKWY: Running time

= WY light

W TopKWY(k=10°)
W TopKWY(k

m TopKWY(k=103)
B TopKWY(k

=10)

B TopKWY(k
m TopKWY(k

=109)

=10%)

10?)

T T T T T T 1
~ © wn < ) o~ - o

o o o o o o o o
- — — — — — — —

(s) @wiL uolndax3
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Outline

1. Introduction and Theoretical Foundations
2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics

3.1 Controlling the FDR
3.2 Covariate-adaptive methods
3.3 Relaxing all conditional assumptions

4. Final Remarks
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What about controlling the FDR?

Let V' the number of false discoveries (rejected null hypotheses).
Family-Wise Error Rate (FWER): Pr[V > 1].
Let R the number of discoveries (i.e., rejected hypotheses).

False Discovery Rate (FDR): E[V/R] (assuming V' /R = 0 when
R =0).
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What about controlling the FDR?

Let V' the number of false discoveries (rejected null hypotheses).
Family-Wise Error Rate (FWER): Pr[V > 1].
Let R the number of discoveries (i.e., rejected hypotheses).

False Discovery Rate (FDR): E[V/R] (assuming V' /R = 0 when
R =0).

Significant pattern mining while controlling the FDR?
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What about controlling the FDR? (2)

Some methods for scenario where significance # association with a
class label:
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What about controlling the FDR? (2)

Some methods for scenario where significance # association with a
class label:
» significance = deviation from expectation when items place
independently in transactions (with same frequency as in

dataset D) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal,
Vandin. Journal of the ACM 2012]
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Some methods for scenario where significance # association with a
class label:

» significance = deviation from expectation when items place
independently in transactions (with same frequency as in
dataset D) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal,
Vandin. Journal of the ACM 2012]

> statistical emerging patterns: given a threshold a € (0, 1),
probability class label is ¢; when pattern S is present is > a
[Komiyama, Ishihata, Arimura, Nishibayashi, Minato. KDD
2017.]
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What about controlling the FDR? (2)

Some methods for scenario where significance # association with a
class label:

» significance = deviation from expectation when items place
independently in transactions (with same frequency as in
dataset D) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal,
Vandin. Journal of the ACM 2012]

> statistical emerging patterns: given a threshold a € (0, 1),
probability class label is ¢; when pattern S is present is > a
[Komiyama, Ishihata, Arimura, Nishibayashi, Minato. KDD
2017.]

Not a solved problem!
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2. Mining Statistically-Sound Patterns
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Using additional information

Sometimes there are additional measures (covariates) that provide
information on whether a pattern can be significant.
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Using additional information

Sometimes there are additional measures (covariates) that provide
information on whether a pattern can be significant.

Example: the support o(S) of S has an impact on its minimum
achivable p-value for Fisher's exact test
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Using additional information

Sometimes there are additional measures (covariates) that provide
information on whether a pattern can be significant.

Example: the support o(S) of S has an impact on its minimum
achivable p-value for Fisher's exact test

The covariate can be used to weight hypotheses/patterns or,
equivalently, use different correction thresholds for False Discovery
Rate (FDR) based on the covariate
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Independent Hypothesis Weighting (IHW)!®

®)gnatiadis, Nikolaos, et al. Data-driven hypothesis weighting increases detection power in
genome-scale multiple testing. Nature methods 13.7 (2016): 577.
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Independent Hypothesis Weighting (IHW)!®

Covariate

BH
|

—log,4(P-value)

18|gnatiadis, Nikolaos, et al. Data-driven hypothesis weighting increases detection power in
genome-scale multiple testing. Nature methods 13.7 (2016): 577.
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Independent Hypothesis Weighting (IHW)!®

1,800 IHW
2 1,600 - BH
s
© 8
g A 1,400
(@)
o
BH 1,200 - T T 1
2 0.06 0.08 0.10
Nominal o

—log,4(P-value)

18|gnatiadis, Nikolaos, et al. Data-driven hypothesis weighting increases detection power in
genome-scale multiple testing. Nature methods 13.7 (2016): 577.
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No conditioning?

S

IN

ti S $ t; Row m.
E(tz) =C | 01 8) ny — 0'1(8) T
E(Q) = 0'0(8) ng — 0'0(8) no
Col. m. |a(S) [n—0a(S) |n

/N

Fisher's test: conditioning on both row and column totals

Barnard's test: conditioning only on row totals.
Removing the conditioning on the columns was really controversial.

It makes sense in a pattern mining setting (and others).
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No conditioning?

Sct,|S<Et; Row m.
E(tz) = 0'1(5) ny — 0'1(8) T
E(@) = 0'0(8) ng — 0'0(8) no
Col. m. |a(S) |n—0a(S) | n

Fisher's test: conditioning on both row and column totals
Barnard's test: conditioning only on row totals.
Removing the conditioning on the columns was really controversial.
It makes sense in a pattern mining setting (and others).
Q: Shall we stop conditioning on the row totals?
In general, removing assumptions is a blessed goal.
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Why no conditioning? (2)

Conditioning is bad, even when it approximately preserve the
likelihood.

It destroys the repeated-sampling (frequentist) interpretation of
p-value, because it reduces the sample space:

fewer datasets are considered possible,
often too few to be realistic.
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Why no conditioning? (1)

Single-experiment. removing row conditioning is almost unnatural.

No one does it — no controversy! ©
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Why no conditioning? (1)

Single-experiment. removing row conditioning is almost unnatural.

No one does it — no controversy! ©

KDD settings: D is built by actually sampling from a distribution
whose domain also include the group label:

the row totals are random variables and rightly so.

So let’s stop conditioning, and only keep the sample size n as fixed.
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Why no conditioning? (1)

Single-experiment. removing row conditioning is almost unnatural.

No one does it — no controversy! ©

KDD settings: D is built by actually sampling from a distribution
whose domain also include the group label:

the row totals are random variables and rightly so.

So let’s stop conditioning, and only keep the sample size n as fixed.

How? GH
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4. Final Remarks

133/135



Final Remarks

Knowl. Disc. should be based on hypothesis testing:

the data is never the whole universe.

Lots of room for research: we scratched the surface

Statistics: tests with higher power, fewer assumptions

CS: scalability (wrt many dimensions) is still an issue.
Balance theory and practice (that's what we are good at)

Work with real scientists, with real data, with real problems.
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